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Abstract: We propose a method for combining QCD matrix elements and parton

showers in Monte Carlo simulations of hadronic final states in e+e− annihilation. The

matrix element and parton shower domains are separated at some value yini of the jet

resolution, defined according to the kT -clustering algorithm. The matrix elements

are modified by Sudakov form factors and the parton showers are subjected to a veto

procedure to cancel dependence on yini to next-to-leading logarithmic accuracy. The

method provides a leading-order description of hard multi-jet configurations together

with jet fragmentation, while avoiding the most serious problems of double counting.

We present first results of an approximate implementation using the event generator

APACIC++.

Keywords: LEP HERA and SLC Physics, QCD, Jets.

∗On leave of absence from INFN, Sezione di Firenze, Florence, Italy.



J
H
E
P
1
1
(
2
0
0
1
)
0
6
3

Contents

1. Introduction 1

2. Modified matrix elements 2

2.1 NLL jet rates and Sudakov factors 2

2.2 Matrix element improvement 6

2.3 General procedure 6

3. Vetoed parton showers 8

3.1 Angular ordering and veto procedure 8

3.2 Initial conditions for showers 10

3.3 Proof of cancellation of yini dependence 10

3.4 Colour structure 11

4. Results 12

5. Comments/Conclusions 15

1. Introduction

The Monte Carlo simulation of multi-jet hadronic final states is a challenging problem

that has great practical importance in the search for new physics processes at present

and future colliders. For example, the accurate simulation of 4-jet backgrounds was

a central issue in the search for the Higgs boson at LEP2, and multi-jets will be a

key ingredient in signatures of supersymmetry at the LHC.

Two extreme approaches to simulating multi-jets can be formulated as follows.

One can use the corresponding matrix elements, which are available at leading, or in

a few cases next-to-leading, order in αS, with bare partons representing jets. Alter-

natively one can use the parton model to generate the simplest possible final state

(e.g. e+e− → qq̄) and produce additional jets by parton showering.

In the matrix-element approach, a full simulation of the final state is impossible

unless one adds a model for the conversion of the produced partons into hadrons. Any

realistic model will include parton showering, and then one has the problem of extra

jet production during showering and potential double counting of jet configurations.

On the other hand the pure parton shower approach gives a poor simulation of

configurations with several widely separated jets.
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The interfacing of matrix-element and parton-shower event generators is a topic

of great current interest [1]–[4]. For earlier work on combining these approaches see

refs. [5]–[12]. Here we suggest a method in which the domains of applicability of

matrix elements and parton showers are clearly separated at a given value yini of

the jet resolution variable ycut, defined according to the kT -algorithm [13, 14] for jet

clustering (sometimes called the Durham algorithm). Recall that two objects i and

j are resolved according to the kT -algorithm if

yij ≡ 2min{E2
i , E

2
j }(1− cos θij)/Q

2 > ycut , (1.1)

where Ei,j are the energies of the objects, θij is the angle between their momenta and

Q is the overall energy scale (the c.m. energy in e+e− annihilation). Two objects that

are not resolved are clustered by combining their four-momenta as p(ij) = pi + pj.

The method we propose has the following features: At ycut > yini multi-jet

cross sections and distributions are given by matrix elements modified by Sudakov

form factors. At ycut < yini they are given by parton showers subjected to a ‘veto’

procedure, which cancels the yini dependence of the modified matrix elements to

next-to-leading logarithmic (NLL) accuracy.

Note that we do not attempt to give a complete description of any configuration

to next-to-leading order (NLO) in αS, which is why we refer to “combined” rather

than “matched” matrix elements and showers. Procedures to combine parton show-

ers with the matrix element corrections due to the first (i.e. at the first relative order

in αS) hard multi-jet configuration were considered in refs. [5, 6, 7]. Such procedures

might be improved by including first-order virtual corrections (see refs. [9]–[12]). For

the present, our main objective is to describe any hard multi-jet configuration to

leading order, i.e. O(αn−2
S

) for n jets in e+e− annihilation, together with jet fragmen-

tation to NLL accuracy, while avoiding major problems of double counting and/or

missed phase-space regions.

In the present paper we consider the case of e+e− annihilation only. In section 2

we recall the NLL expressions for e+e− jet rates, and show how they can be used

to develop a systematic procedure for improving the tree-level predictions of multi-

parton configurations above some jet resolution yini. Then in section 3 we show how

to combine these modified matrix-element configurations with parton showers, in

such a way that dependence on yini is cancelled to NLL precision. In section 4 we

show results of an approximate Monte Carlo implementation of the above scheme,

and finally in section 5 we present brief comments and conclusions.

2. Modified matrix elements

2.1 NLL jet rates and Sudakov factors

The exclusive e+e− n-jet fractions at c.m. energy Q and kT -resolution

yini = Q2
1/Q

2 (2.1)
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are given to NLL accuracy1 for n = 2, 3, 4 by [14]

R2(Q1, Q) = [∆q(Q1, Q)]2 , (2.2)

R3(Q1, Q) = 2 [∆q(Q1, Q)]2
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q) , (2.3)

R4(Q1, Q) = 2 [∆q(Q1, Q)]2 ×

×
{
∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)

∫ Q

Q1

dq′ Γq(q
′, Q)∆g(Q1, q

′) +

+

∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)

∫ q

Q1

dq′ Γg(q
′, q)∆g(Q1, q

′) +

+

∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)

∫ q

Q1

dq′ Γf(q
′)∆f(Q1, q

′)

}

, (2.4)

where Γq,g,f are q → qg, g → gg and g → qq̄ branching probabilities

Γq(q, Q) =
2CF

π

αS(q)

q

(

ln
Q

q
− 3

4

)

(2.5)

Γg(q, Q) =
2CA

π

αS(q)

q

(

ln
Q

q
− 11

12

)

(2.6)

Γf (q) =
Nf

3π

αS(q)

q
, (2.7)

CF = (N2
c −1)/2Nc and CA = Nc for Nc colours, Nf is the number of active flavours,

and ∆q,g are the quark and gluon Sudakov form factors

∆q(Q1, Q) = exp

(

−
∫ Q

Q1

dq Γq(q, Q)

)

(2.8)

∆g(Q1, Q) = exp

(

−
∫ Q

Q1

dq [Γg(q, Q) + Γf(q)]

)

(2.9)

with

∆f (Q1, Q) = [∆q(Q1, Q)]2 /∆g(Q1, Q) . (2.10)

The QCD running coupling αS(q) is defined in the MS renormalization scheme. Part

of the contributions beyond NLL order can be included in the calculation by using

the definition of αS(q) in the bremsstrahlung scheme of ref. [15].

The Sudakov form factors ∆i(Q1, Q) for i = q, g represent the probability2 for a

quark or gluon to evolve from scale Q to scale Q1 without any branching (resolvable at

scale Q1). Thus R2 is simply the probability that the produced quark and antiquark

1By NLL accuracy, we mean that the leading and next-to-leading logarithmic contributions

αn
S ln

2nQ/Q1 and α
n
S ln

2n−1Q/Q1 are included in the expressions for Rn(Q1, Q).
2The NLL approximate expressions in eqs. (2.5) and (2.6) can lead to ∆i > 1. In that case one

should replace ∆i > 1 by 1.
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Q

q

Figure 1: Branching structure of three-jet final state.

q

Q

’
q

Figure 2: An abelian four-jet contribution.

both evolve without branching. More generally, the probability for a parton of type

i to evolve from scale Q to q ≥ Q1 without branching (resolvable at scale Q1) is

∆i(Q1, Q)/∆i(Q1, q).

In the expression (2.3) for R3, a gluon jet is resolved at scale q where

min{yqg, yq̄g} = q2/Q2 . (2.11)

Recall that in coherent parton branching the evolution variable is the emission angle

[16] and the corresponding scale is the parton energy times the angle [17]. In the

contribution depicted in figure 1, the energy and angular regions of the phase space

that dominate at NLL order are Q ∼ Eq ∼ Eq̄ > Eg and 1 ∼ θqq̄ > θq̄g. The quark

evolves from scale Eqθqq̄ ∼ Q to Q1 without branching, while the antiquark evolves

from Eq̄θqq̄ ∼ Q to q̃ ∼ Eq̄θq̄g and then branches. The resulting antiquark evolves

from q̃ to Q1, while the gluon evolves from q ∼ Egθq̄g to Q1, both without branching.

Thus the overall NLL probability is

∆q(Q1, Q)
∆q(Q1, Q)

∆q(Q1, q̃)
Γq(q, Q)∆q(Q1, q̃)∆g(Q1, q) = Γq(q, Q)Fqq̄g(Q1, Q; q) , (2.12)

where the ‘Sudakov factor’ Fqq̄g is

Fqq̄g(Q1, Q; q) = [∆q(Q1, Q)]2 ∆g(Q1, q) . (2.13)

Taken together with the contribution in which the quark branches instead of the

antiquark, this gives eq. (2.3) after integration over Q1 < q < Q.
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Figure 3: A non-abelian four-jet contribution.

For four or more jets, there are several branching configurations with different

colour factors. The first term in the curly bracket of eq. (2.4) comes from Abelian

(QED-like) contributions such as figure 2, with associated probability

∆q(Q1, Q)

∆q(Q1, q̃)
Γq(q, Q)∆q(Q1, q̃)∆g(Q1, q)

∆q(Q1, Q)

∆q(Q1, q̃′)
Γq(q

′, Q)∆q(Q1, q̃
′)∆g(Q1, q

′) =

= Γq(q, Q) Γq(q
′, Q)Fqq̄gg(Q1, Q; q, q′) , (2.14)

where the Sudakov factor is now

Fqq̄gg(Q1, Q; q, q′) = [∆q(Q1, Q)]2 ∆g(Q1, q)∆g(Q1, q
′) . (2.15)

The second term in the curly bracket of eq. (2.4) comes from contributions with

a q → qg branching at scale q followed by g → gg at scale q ′ (figure 3). The

probability of this is

∆q(Q1, Q)
∆q(Q1, Q)

∆q(Q1, q̃)
Γq(q, Q)∆q(Q1, q̃)

∆g(Q1, q)

∆g(Q1, q̃′)
Γg(q

′, q)∆g(Q1, q
′)∆g(Q1, q̃

′) =

= Γq(q, Q) Γg(q
′, q)Fqq̄gg(Q1, Q; q, q′) , (2.16)

where the factor Fqq̄gg is the same as that given in eq. (2.15).

The final term in eq. (2.4) corresponds to diagrams like figure 3 except that the

branching at q′ is g → qq̄ instead of g → gg. The factor of Γg(q
′, q) is replaced

by Γf(q
′) given by eq. (2.7), and ∆g(Q1, q

′) becomes ∆f (Q1, q
′) given by eq. (2.10).

Thus the Sudakov factor becomes

Fqq̄qq̄(Q1, Q; q, q′) = [∆q(Q1, Q)]2 ∆g(Q1, q)∆f(Q1, q
′) . (2.17)

We see that in general the overall Sudakov factor depends on the nodal values of

the kT -scale q, q
′, . . . at which branching occurs, and on the types of partons involved.

There is an overall factor of [∆q(Q1, Q)]2 coming from qq̄ production at scale Q, a

factor of ∆g(Q1, q) when a gluon is emitted at scale q, and a factor ∆f (Q1, q) when a

gluon branches to quark-antiquark at scale q. Although we have explicitly discussed

only the n = 2, 3, 4 jet rates, this structure of the Sudakov factor is valid for any n,

as can be derived from the generating function given in ref. [14].
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2.2 Matrix element improvement

We can improve the description of the 3-jet distribution throughout the region

yqq̄ > yqg, yq̄g > yini by using the full tree-level matrix element squared |Mqq̄g|2 in

place of the NLL branching probability Γq(q, Q) in eq. (2.12). More precisely, we gen-

erate qq̄g momentum configurations according to the matrix element squared, with

resolution cutoff yini = Q2
1/Q

2, and then weight each configuration by the Sudakov

factor Fqq̄g(Q1, Q; q) in eq. (2.13), where q is given by eq. (2.11). For consistency

with eqs. (2.5)–(2.7), we should also use q as the argument of the running coupling

in the matrix element squared.

Similarly in the four-jet case of eq. (2.14) the product Γq(q, Q)Γq(q
′, Q) is an

approximation to the full matrix element squared |Mqq̄gg|2 in the kinematic region

where yqg and yq̄g′ are the smallest interparton separations. Thus it is legitimate in

NLL approximation to replace it by |Mqq̄gg|2 in that region. The remaining factor

Fqq̄gg(Q1, Q; q, q′) in eq. (2.14) is the extra Sudakov weight to be applied.

In general, we obtain an improved description of the jet rates and distributions,

above the resolution value yini, by choosing the parton configurations according to

the tree-level matrix elements squared and then weighting them by a product of

Sudakov form factors. The arguments of the form factors and the running coupling

are given by the nodal values of the kT -resolution in the branching process, estimated

by applying the kT -clustering algorithm to the parton configuration.

2.3 General procedure

The proposed procedure for generating e+e− → n-jet configurations at c.m. energy

Q and jet resolution yini is thus as follows:

1. Select the jet multiplicity n and parton identities i with probability

P (0)(n, i) =
σ
(0)
n,i

∑k=N
k,j σ

(0)
k,j

, (2.18)

where σ
(0)
n,i is the tree-level e+e− → n-jet cross section at resolution yini =

Q2
1/Q

2, calculated using a fixed value αS(Q1) for the strong coupling. The

label i is to distinguish different parton identities with the same multiplicity,

e.g. i = qq̄gg or qq̄qq̄ for n = 4. N is the largest jet multiplicity for which the

calculation can realistically be performed (N ∼ 6 currently). Errors will then

be of relative order αN−1
S

. Ideally, one should check that any given result is

insensitive to N .

2. Distribute the jet momenta according to the corresponding n-parton matrix

elements squared |Mn,i|2, again using fixed αS(Q1).

6
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3. Use the kT -clustering algorithm to determine the resolution values y2 = 1 >

y3 > . . . > yn > yini at which 2, 3, . . . , n jets are resolved. These give the nodal

values of qj = Q
√
yj for a tree diagram that specifies the kT -clustering sequence

for that configuration.

4. Apply a coupling-constant weight of αS(q3)αS(q4) · · ·αS(qn)/[αS(Q1)]
n−2 < 1.

5. For each internal line of type i from a node at scale qj to the next node at

qk < qj, apply a Sudakov weight factor ∆i(Q1, qj)/∆i(Q1, qk) < 1. For an

external line from a node at scale qj, the weight factor is ∆i(Q1, qj). This

procedure gives the overall Sudakov factors Fi(Q1, Q; q3, . . . , qn) of section 2.1.

6. Accept the configuration if the product of the coupling-constant weight and the

Sudakov factor is greater than a random number R ∈ [0, 1] times3 [∆q(Q1, Q)]2.

Otherwise, return to step 1.

Note that the weight assignment is a fully gauge-invariant procedure relying only

on the types (quark or gluon) and momenta of the final-state partons. The weight

factor is actually independent of the detailed structure of the clustering tree and is

the same as that for the Abelian (QED-like) graph with the same nodal scale values:

see, for example, eqs. (2.14) and (2.16).

An advantage of the above procedure is that it adjusts the jet multiplicity distri-

bution to include the Sudakov and coupling-constant weights, without the need for

separate numerical integrations. To prove this, note that the probability of accepting

an (n, i)-parton final state, once selected, is pn,i = σn,i/σ
(0)
n,i , where σn,i includes the

weight factors. The overall probability P (n, i) of selecting an (n, i)-parton state is

the probability of rejecting any state any number of times before finally accepting

the (n, i) state. Thus

P (n, i) =

∞
∑

m=0

[

k=N
∑

k,j

P
(0)
k,j (1− pk,j)

]m

P
(0)
n,i pn,i

=
P

(0)
n,i pn,i

∑k=N
k,j P

(0)
k,j pk,j

=
σn,i

∑k=N

k,j σk,j

, (2.19)

as required.

In the clustering step 3, attempted clustering of partons will sometimes be

‘wrong’: for example, a qq̄g final state may be clustered first as (qq̄)g. The nodal

value for the (qq̄) clustering is irrelevant to NLL accuracy since there is no associated

soft or collinear enhancement. Hence the optimal procedure is to forbid such a clus-

tering and continue until either (qg) or (q̄g) is clustered. In more complicated cases,

3Multiplying by [∆q(Q1, Q)]
2 increases the efficiency of the procedure, since this constant factor

is always present.
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e.g. qq̄qq̄, the clustering (qq̄) is allowed but (qq) and (q̄q̄) should always be forbidden.

This is simply achieved by moving to the pair of objects with the next-higher value

of yij whenever the lowest value belongs to a forbidden combination.

3. Vetoed parton showers

3.1 Angular ordering and veto procedure

Having generated multi-jet distributions above the resolution value yini according to

matrix elements modified by form factors, it remains to generate distributions at

lower values of ycut by means of parton showers. This should be done in such a way

that the dominant (LL and NLL) dependence on the arbitrary parameter yini cancels.

Any residual dependence on yini could be exploited for tuning less singular terms to

obtain optimal agreement with data.

Note that yini must set an upper limit on interparton separations yij generated

in the showers. Otherwise the exclusive jet rates at resolution yini could be changed

by showering. At first sight, this might suggest that we should evolve the showers

from the scale Q1 = Q
√
yini instead of Q. However, this would correspond to using

transverse momentum rather than angle as the evolution variable, and therefore it

would not lead to cancellation of the dependence on ln yini.

Consider, for example, the 2-jet rate at resolution y0 = Q2
0/Q

2 < yini. If we start

from R2 at scale Q1 and then evolve from Q1 to Q0, we obtain a 2-jet rate of

[∆q(Q1, Q)∆q(Q0, Q1)]
2 (3.1)

instead of the correct result

R2(Q0, Q) = [∆q(Q0, Q)]2 . (3.2)

This is because, although the yij values in the showers are limited by yini, the angular

regions in which they evolve should still correspond to scale (energy times angle) Q

rather than Q1. Consequently we should allow the showers to evolve from scale Q

but veto any branching with transverse momentum q > Q1, i.e. the selected parton

branching is forbidden but that parton has its scale reset to the current value as an

upper limit for subsequent branching.

The 2-jet rate at any scale Q0 < Q1 is now given by the sum of probabilities

of 0, 1, 2, . . . vetoed branchings (represented by crosses in figure 4) and no actual

resolved branchings. The sum of these probabilities for the quark line is

∆q(Q1, Q)∆q(Q0, Q)

{

1+

∫ Q

Q1

dqΓq(q, Q)+

∫ Q

Q1

dqΓq(q, Q)

∫ q

Q1

dq′Γq(q
′, Q)+· · ·

}

=

= ∆q(Q1, Q)∆q(Q0, Q) exp

(
∫ Q

Q1

dq Γq(q, Q)

)

. (3.3)
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Figure 4: Vetoed showers on two-jet contribution.
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xx
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Figure 5: Vetoed showers on contribution with two jets at scale Q1 and three at scale Q0.

x
x

x
x

x
x

x
x

x

Figure 6: Vetoed showers on contribution with three jets at scales Q1 and Q0.

Comparing with eq. (2.8), we see that the series sums to 1/∆q(Q1, Q), cancelling the

yini dependence and giving ∆q(Q0, Q). Similarly for the antiquark line, so that the

product does indeed give eq. (3.2).

For the 3-jet rate at scale Q0 < Q1 there are two possibilities: either the event

is a 2-jet at scale Q1 and then has one branching resolved at scale Q0, or it is a 3-jet

at scale Q1 and remains so at scale Q0. The first case is depicted in figure 5. Its

probability is

2[∆q(Q1, Q)]2
[

∆q(Q0, Q)

∆q(Q1, Q)

]2 ∫ Q1

Q0

dq Γq(q, Q)∆g(Q0, q) (3.4)

while that of the second case (figure 6) is

2[∆q(Q1, Q)]2
[

∆q(Q0, Q)

∆q(Q1, Q)

]2 ∫ Q

Q1

dq Γq(q, Q)∆g(Q1, q)
∆g(Q0, q)

∆g(Q1, q)
. (3.5)
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The sum is indeed yini-independent and equal to R3(Q0, Q) as given in eq. (2.3).

Similarly for higher jet multiplicities. A general proof of the cancellation of yini-

dependence to NLL accuracy is given in section 3.3.

3.2 Initial conditions for showers

Notice in eq. (3.5) that the vetoed parton shower from a gluon created in a branching

at scale q > Q1 starts at scale q rather than Q or Q1. On the other hand, the shower

from the quark line starts at scale Q. In general, each vetoed shower on an external

parton line must start at the scale value of the node at which that parton was

‘created’, in order to cancel the Q1 dependence of the associated Sudakov factor. In

the case of the branching g → gg, the softer of the two gluons should be regarded as

the one ‘created’, the harder one being traced back to a node at a higher scale.

The correct treatment of the branching g → qq̄ is more subtle, although less

crucial because this branching contributes only at NLL level. The associated factor

∆f (Q1, q
′) in eq. (2.4) is a correction rather than a form factor, representing the

conversion of a gluon jet into two quark jets at scale q ′. Consequently the optimal

treatment would be as follows: for a qq̄ pair clustered at scale q ′, coming from an

internal gluon line ‘created’ at scale q > q′, one should generate a vetoed shower from

the gluon starting from scale q and evolving the harder gluon at each branching4 down

to scale q′, then switch to separate showers from the quark and antiquark starting at

scale q′. If this seems unnecessarily complicated for a next-to-leading contribution,

one may instead consider treating the quark and antiquark as being ‘created’ at the

higher scale q of their parent gluon. Then the colour factor which should be CA

between scales q and q′ is approximated by 2CF , an error of relative order 1/N 2
c in a

contribution that is already non-leading with respect to ln yini.

3.3 Proof of cancellation of yini dependence

Here we make use of the generating function formalism and results of ref. [14] to prove

the cancellation of yini-dependence at NLL order. Recall that the NLL jet fractions

at kT -resolution yini = Q2
1/Q

2 in a quark jet initiated at scale Q are given by

R(q)
n (yini = Q2

1/Q
2) =

1

n!

(

∂

∂u

)n

φq(Q1, Q; uq = ug = u)|
u=0 , (3.6)

where the quark-jet generating function φq is [14]

φq(Q1, Q; uq, ug) = uq exp

{
∫ Q

Q1

dq Γq(q, Q) [φg(Q1, q; uq, ug)− 1]

}

, (3.7)

φg being the corresponding gluon-jet generating function. Now we wish to generate

the jet fractions at some lower resolution value ycut = Q2
0/Q

2 < yini. This is to

4The softer gluon, on the other hand, is allowed to evolve down to the shower cut-off Q0.
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be done by replacing ui everywhere in eq. (3.7) by a modified generating function

φ̃i(Q0, Q1, Q; uq, ug), representing the vetoed parton shower. To have the correct jet

fractions at scale Q0 we require that

φi(Q1, Q; φ̃q, φ̃g) = φi(Q0, Q; uq, ug) . (3.8)

Consequently we must have

φq(Q0, Q; uq, ug) = φ̃q(Q0, Q1, Q; uq, ug) exp

{
∫ Q

Q1

dq Γq(q, Q) [φg(Q0, q; uq, ug)− 1]

}

.

(3.9)

Hence

φ̃q(Q0, Q1, Q; uq, ug)=φq(Q0, Q; uq, ug) exp

{

−
∫ Q

Q1

dqΓq(q, Q) [φg(Q0, q; uq, ug)−1]

}

= uq exp

{
∫ Q1

Q0

dq Γq(q, Q) [φg(Q0, q; uq, ug)− 1]

}

, (3.10)

using eq. (3.7) with Q1 replaced by Q0 for φq(Q0, Q; uq, ug). Thus the modified

generating function φ̃q(Q0, Q1, Q; uq, ug) differs from the full generating function

φq(Q0, Q; uq, ug) only by having Q1 as the upper limit on the q-integration in place

of Q, i.e. by having a veto, q < Q1. Note that Q remains Q in the integrand Γq, so

this is not equivalent to an unvetoed secondary shower starting at scale Q1. Note

also that Q is the initial scale of the quark-jet generating function in eq. (3.7): as

pointed out in section 3.2, this is the scale value of the node at which the external

quark is ‘created’.

A similar result holds for gluon jets. The only difference between quark and gluon

jets concerns the treatment of the branching g → qq̄, as discussed in section 3.2.

3.4 Colour structure

The vetoed shower from each parton evolves in the phase space for angular-ordered

branching [18]. This depends on the colour structure of the matrix element. As

illustrated in figure 7, the angular region for parton i is a cone bounded by the

direction of parton j (and vice-versa), where i and j are colour-connected. The

upper limit on the scale in the vetoed shower for each parton is given by the energy

of that parton times the relevant cone angle. This prescription identifies the cone

angles for the ‘intrinsic’ radiation from each parton and is correct when the matrix

element describes parton configurations at a hard scale Q1 ∼ Q.

However, in our case some of the hard partons are produced at the scale Q,

which is much larger than the resolution scale Q1, and the relevant cone angles are

not set directly by the final state at scale Q1. To cancel the dependence on the

logarithms of Q/Q1 to NLL precision, the vetoed shower has to include ‘interparton’

radiation [19], i.e. soft gluons emitted at angles that are larger than the cone angles
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i

j

Figure 7: Parton shower cones.

for ‘intrinsic’ radiation. In the qq̄g case depicted in figure 1, for example, the nodal

scale is q ∼ Egθq̄g. The vetoed shower from the antiquark has to include not only

gluons emitted at smaller angles θg < θq̄g but also those emitted at larger angles,

θq̄g < θg < θqq̄, with energies less than Q1/θg. These soft gluons emitted at large

angles are radiated coherently by the final-state gluon and antiquark. Thus the cone

angle for the vetoed antiquark shower is θqq̄ and the initial scale is Eq̄θqq̄ ∼ Q.

Notice that the starting conditions for the vetoed showers are deduced from the

application of the kT -clustering algorithm to the parton configurations generated

from the modified matrix elements. It is not necessary to assign a colour structure

explicitly to the final state at scale Q1 for this purpose. The relevant colour structures

are sampled with the correct probabilities to cancel yini-dependence to NLL order.

On the other hand, if a hadronization model (cluster or string) is to be applied after

the showers, a specific colour connection structure must be provided to the model.

If the colour structure is not unique, colour connections can be selected according

to their relative contributions to the matrix element squared, which are well-defined

in the limit that the number of colours Nc is large. Corrections to the large-Nc limit

are normally of relative order 1/N 2
c . For high parton multiplicity, when the colour

structure is not easily computable even at largeNc, one may use the clustering scheme

as a first approximation in assigning colour connections. This is the procedure we

shall adopt in section 4.

4. Results

An approximate version of the procedure described above has been implemented in

version 1.1 of the event generator APACIC++ [20] as follows:

1. Cross sections σ
(0)
n for the production of 2, 3, 4, and 5 jets according to some

yini are calculated at the tree-level. The tree-level cross sections are translated
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into rates via

R3,4,5(yini) =
σ
(0)
3,4,5(yini)

σ
(0)
2

, R2(yini) = 1−
5
∑

i=3

Ri(yini) . (4.1)

For each number 3, 4, and 5 of jets, the argument of αs is chosen to be κiQ
2,

where the factors κ3,4,5 are adjustable parameters chosen to reproduce the mea-

sured jet rates. Note that this determination of the jet rates is slightly different

from the one outlined in section 2.3, for simplicity and to allow extra freedom

in fitting the measured rates.

2. The number of partons and their flavours are now chosen according to the

corresponding rates in eq. (4.1).

3. The four-momenta of the jets are generated according to the appropriate tree–

level matrix element.

4. The kT -clustering algorithm is applied sequentially until only two jets remain.

The event is accepted with probability equal to the weight assigned to the

sequence of clustering, computed as described in points 4 and 5 of section 2.3.

As recommended there, the remaining two jets are ‘forced’ to be a quark-

antiquark pair. When an event is rejected, a new configuration of momenta is

chosen, i.e. the program returns to step 3.

5. Next the colour configuration is chosen to be identical to the topology obtained

in the clustering step above.

6. Finally, parton showers are generated on external lines according to the

APACIC++ algorithm described in ref. [20], except that a veto on emission with

transverse momentum greater than Q1 is applied. In APACIC++, the evolu-

tion variable is virtuality and angular ordering is imposed. The initial condi-

tions on the showers appear somewhat more restrictive than those proposed

in section 3.2, and so a slight reduction in QCD radiation is expected in this

approximate implementation of the veto procedure.

Note that within APACIC++, more options for the steps outlined above exist,

which are described in some detail in the manual [20]. For instance, jet rates can be

chosen according to the NLL–rates of eqs. (2.2)–(2.4), in clustering to two jets the

configuration can be rejected if the two remaining jet flavours do not correspond to

an quark–antiquark pair, and the colour configuration of the jets can be chosen in a

probabilistic fashion following the prescription of ref. [6].

However, we find at present that the procedure above yields the best agreement

with experimental data. It leaves a number of parameters to be tuned, namely
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1. The value of αs at some reference scale. We have chosen the scale of LEP 1,

the Z–pole. For the results displayed in the figures, αS = 0.1127 was found in

the tune of ref. [21].

2. The value of the jet resolution parameter yini at which one divides the phase

space into a region populated by the matrix elements and the region populated

by the parton showers. The weak (beyond NLL) dependence on this parameter

has been employed for optimizing agreement with data. In the tune, the value

of yini was fixed to yini = 10−2.4.

3. The values of the three scale factors κ3,4,5. These are supposed to compensate

to some extent for the absence of subleading corrections to jet rates at the

parton level. The tune gave κ3,4,5 = 10−1.35,−1.48,−3.08.

The parameters above together with the infrared cut–off of the parton shower and

some fragmentation parameters have been tuned recently; for more details we refer to

[21]. In the following we display some illustrative results, comparing the performance

of APACIC++ with the standard event generators HERWIG [22], PYTHIA [23], ARIADNE

[24] and with data taken by the DELPHI collaboration. The parameters of HERWIG,

PYTHIA and ARIADNE were tuned in refs. [25], [26] and [27], respectively.

In figure 8 we depict the differential jet rates at the Z–pole as functions of the

variable yn, which is the value of ycut at which an n-jet event becomes an (n − 1)-

jet event. Clearly, all three event generators depicted here reproduce the shape of

the distributions: deviations are on the level of at most 20% in the statistically

significant bins. In general, APACIC++ tends to underestimate the first bins of the

3→ 2 and 4→ 3 distributions with an overshoot in the higher bins. This behaviour

is somewhat reversed for the 5→ 4 distribution.

Integrated jet rates taken at a c.m. energy of 189 GeV, defined here by the

Cambridge algorithm [28], are displayed in figure 9. They demonstrate that APACIC++

extrapolates correctly to higher energies with all parameters fixed at the Z–pole.

To show that the approach outlined above does indeed reproduce not only the

correct number of jets but also the overall shape of the events, we display some event

shapes taken at the Z-pole (figure 10).

In figure 11 we depict some momentum spectra. Here, all the event generators

tend to underestimate the high-momentum regions. Given the fact that the overall

shapes of the events tend to be reproduced fairly well by the generators, one is

tempted to conclude that this reflects a lack of particle multiplicity in the high-

momentum regions.

However, it should be stressed that the error bands in the right-hand plots con-

sists of experimental errors — statistical and systematical — only. Monte-Carlo

errors of the event generators are not included. To give some idea of the relative size

of these errors, the numbers of events for the plots at 91 GeV are listed in table 1.
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Figure 8: Differential 3→ 2, 4→ 3, and 5→ 4 jet rates in the Durham algorithm at the

Z–pole. DELPHI data (points) are compared to results (curves) of parton shower Monte

Carlo generators. The shaded regions denote the size of the experimental errors.

DELPHI Ariadne Herwig Pythia APACIC++

350000 2000000 250000 2000000 500000

Table 1: Number of events used to generate the plots.

5. Comments/Conclusions

• Modified matrix elements plus vetoed parton showers, interfaced at some value

yini of the kT -resolution parameter, provide a convenient way to describe simul-

taneously the hard multi-jet and jet fragmentation regions.

• The matrix element modifications are coupling-constant and Sudakov weights

computed directly from the kT -clustering sequence, which also serves to define
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Figure 9: Integrated 2- and 3-jet rates defined by the Cambridge algorithm at
√

s =

189 GeV. Note that the jet rates predicted by APACIC++ are in good agreement with the

experimental ones in the regime of the matrix elements, i.e. to the right of log10 yini = −2.4.

the initial conditions for the parton showers.

• Dependence on yini is cancelled to NLL accuracy by vetoing yij > yini in the

parton showers.

• This prescription avoids double-counting problems and missed phase-space re-

gions.

• In principle one needs the tree–level matrix elements |Mn,i|2 for ycut > yini at

all values of the parton multiplicity n. In practice, if we have n ≤ N , then yini
must be chosen large enough for Rn>N (yini) to be negligible.

• An approximate version of this approach (with N = 5) has been implemented

in the event generator APACIC++ [20]. The results look promising: a rather good

description of multi-jet observables can be achieved, and residual dependence

on yini is weak.

• It should be possible to extend this approach to lepton-hadron and hadron-

hadron collisions. In particular, the procedure discussed in sections 2 and 3

can be extended to deep-inelastic lepton-hadron scattering by using the corre-

sponding calculation of multi-jet rates performed in ref. [29].
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Figure 10: Some event shape (thrust, major and minor) distributions at the Z–pole.

• Extension to NLO along the lines of refs. [9]–[12] may also be possible.

Taken together, the results show sufficient agreement with data to conclude that

this approach to combining matrix elements and parton showers is successful and

merges the benefits of both in a rather simple way. This approach can also be used to

introduce corrections due to the finite mass of light (with respect to the c.m. energy)

quarks, by combining the massive-quark matrix elements with the corresponding

angular-ordered parton shower [30]. It has to be mentioned, however, that some

significant deviations from the data remain. Therefore, additional improvements

such as the inclusion of NLO matrix elements seem to be necessary to achieve better

agreement.
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Figure 11: Scaled-momentum (x = 2p/
√

s), pint and poutt spectra at the Z–pole.
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