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Abstract: We present a process-independent technique to consistently combine next-to-
leading order parton-level calculations of varying jet multiplicity and parton show-
ers. Double counting is avoided by means of a modified truncated shower scheme.
This method preserves both the fixed-order accuracy of the parton-level result
and the logarithmic accuracy of the parton shower. We discuss the renormal-
isation and factorisation scale dependence of the approach and present results
from an automated implementation in the SHERPA event generator using the test
case of W -boson production at the Large Hadron Collider. We observe a dra-
matic reduction of theoretical uncertainties compared to existing methods which
underlines the predictive power of our novel technique.

1 Introduction

Events with large final-state multiplicity, and in particular with many jets, are notorious in recent and present
particle physics experiments at the energy frontier. This is especially true for measurements at the Large
Hadron Collider, which operates at the highest centre-of-mass energies ever achieved in an accelerator-based
experiment. Multi-jet events constitute a significant fraction of both signals and backgrounds. They must
therefore be described with a theoretical precision that aims at matching the experimental one, or better.
Triggered by this necessity, astounding practical improvements in event simulation have occurred over the
past decade, with far-reaching consequences for particle physics phenomenology, including precision physics
and searches for new phenomena alike. These developments range from the (near) automation of cross
section calculations for multi-particle final states at the next-to leading order [1–16] to the construction of
algorithms that allow to use multi-particle calculations at leading and next-to-leading order to drive event
simulation at the particle level.
For the latter point, it is necessary to consistently combine fixed-order matrix elements with parton showers.
Two alternative ideas have been pursued in this regard: An exact matching of next-to-leading order calcu-
lations to parton showers has been worked out in the MC@NLO [17–22] and POWHEG [23–28] approaches.
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For the latter, first steps to also incorporate electroweak corrections have been reported in [29, 30]. In gen-
eral, both these methods are suitable for simulating inclusive processes, but they fail to describe the precise
kinematics of multi-jet final states as part of the inclusive reaction. Alternatively, algorithms to merge var-
ious leading-order matrix elements with increasing parton multiplicity into one inclusive sample have been
proposed [31–37]. They describe the inclusive cross section at Born level only, but each additional jet is
also described by exact leading-order matrix elements, while respecting the overall logarithmic accuracy of
the parton shower. This is best achieved by implementing truncated vetoed parton evolution [35, 36]. A
combination of MC@NLO and MEPS, called MENLOPS, was recently introduced [38, 39], which allows to
promote the cross section of the inclusive MEPS sample to NLO accuracy.
In this publication we propose a new method to merge next-to leading order predictions for the production
of multi-jet final states in hadron-hadron collisions with the parton shower, maintaining both the fixed
order accuracy for each jet multiplicity and the logarithmic accuracy of the parton shower. This is achieved
by combining individual MC@NLO simulations [40] with suitably modified truncated parton showers. The
actual implementation takes advantage of the various matrix element and parton shower generators which
are implemented in the event generation framework SHERPA [41,42]. The main aim of our work is to reduce
renormalisation and factorisation scale dependence of the fixed-order part in the simulation.
We have elucidated the new merging technique, MEPS@NLO, for electron-positron annihilation in a parallel
publication [43]. The present paper is therefore organised as follows: Section 2 reviews the basic formulae and
discusses their extension to hadron-hadron collisions. For a more pedagogical introduction of the new method,
based on the case of e−e+ annihilations into hadrons, the reader is referred to the parallel publication, [43].
Section 3 details the Monte-Carlo implementation of our method. Section 4 presents first applications of
the procedure to W -production at the Large Hadron Collider. Section 5 contains our conclusions and an
outlook.

2 Multijet merging at next-to leading order - MEPS@NLO

As the scope of this publication will be to extend the method presented in [43] to hadron collisions, let
us briefly discuss the difference between initial- and final-state parton evolution. Combining the two in a
common formalism allowed an easy proof of logarithmic accuracy for the leading-order merging methods
described in [35,44]. The exact same arguments will hold in the next-to-leading order case.
Parton showers have two main ingredients, the differential branching probability Pab for a parton of flavour
a to branch and produce a new parton b, and the momentum mapping, also called the recoil scheme, which
describes how a final state of n on-shell partons is transformed into a final state with (n+1) on-shell partons
after the emission. The differential branching probability lends itself into a no-branching probability, ∆, also
called the Sudakov factor of the parton shower.
In the case of leptonic initial states, parton evolution takes place solely in the final state, and it is therefore
unconstrained. The corresponding Sudakov factors represent unconstrained no-branching probabilities

∆(t, t′) = exp
{
−
∫ t

t′
dt̄
∫ zmax

zmin

dz̄
αs(z̄, t̄)

2πt̄
Pab(z̄, t̄)

}
. (2.1)

They fulfill the simple relation ∆(t, t′) = ∆(tc, t)/∆(tc, t′), where tc is an auxiliary scale, commonly taken
to be the infrared cutoff scale of the evolution.
In the case of hadronic initial states, the incoming partons undergo a constrained evolution, with the bound-
ary condition being energy-momentum sum rules for the proton. There are two possible formulations of the
respective no-branching probability, which can be interchanged and which are fully equivalent [45,46].

∆(x, t, t′) =
fa(x, t′)
fa(x, t)

∆(tc, t)
∆(tc, t′)

= exp
{
−
∫ t

t′
dt̄
∫ zmax

x

dz̄
αs(z̄, t̄)

2πt̄
Pab(z̄, t̄) fb(x/z̄, t̄)

z̄ fa(x, t̄)

}
. (2.2)

Equation (2.2) is easy to interpret. When an initial-state parton undergoes branching, sum rules must be
respected, and therefore the branching probability is reduced or enhanced by a factor proportional to the
parton densities in the initial-state hadron before and after the splitting. In the following, we will only
work with the second formulation, as it allows to write the evolution kernel in the same manner for initial-
and final-state evolution. That is, we define the combined evolution kernel for an n-parton state with m
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initial-state partons as follows:

Kn(Φ1) =
m∑
i=1

αs(zi, ti)
2πti

Pbiai(zi, ti)
fb(xi/zi, ti)
zi fa(xi, ti)

+
n+2∑

i=m+1

αs(zi, ti)
2πti

Paibi(zi, ti) . (2.3)

Note that the definition of zi and ti as functions of the phase space variables of the emission, Φ1, depends
on the choice of evolution or ordering parameter and the specifics of the recoil scheme of the shower.

2.1 Ingredients of the merging method

In order to describe the merging of next-to-leading order matrix elements, starting from a core n-parton
process, the following quantities need to be introduced:

a) Hardness measure Q and phase space regimes. A measure Qij , defined on any pair of partons i and j
in both final- and initial-state is used to define their relative phase space distance. Thus, any (n+ k)-
parton final state can be assigned a unique value Qn+k = Q(Φn+k), equal to the minimum of all
Qij constructed from the n + k partons, including initial states. This value can be below or above a
predefined value Qcut, called the merging scale. The merging scale acts as an infrared cutoff on all
n+ k-jet calculations.

b) Squared leading-order (Born) matrix elements, Bn+k(Φn+k), for n + k outgoing particles, summed
(averaged) over final state (initial state) spins and colours, including symmetry and flux factors
and multiplied by parton luminosities. The corresponding real-emission matrix elements are called
Rn+k(Φn+k+1). Note that Rn+k(Φn+k+1) = Bn+k+1(Φn+k+1). For details see [39].

c) Sudakov factors of the parton shower for the evolution kernel Kn+k, which are given by

∆(PS)
n+k (t, t′) = exp

{
−

t′∫
t

dΦ1 Kn+k(Φ1)

}
. (2.4)

They include parton luminosities for initial state legs, as detailed in Eq. (2.3). The one-emission
phase-space element for the splitting, dΦ1, is parametrised as

dΦ1 ∝ dtdz dφ , (2.5)

where t is the ordering variable, z is the splitting variable and φ is the azimuthal angle.

d) The resummation scale µQ, which defines an upper limit of parton evolution for the core process with
multiplicity n.

e) The MC@NLO method of [40] is used to match each n + k-parton NLO matrix element to parton
showers individually. This implies MC@NLO evolution kernels D(A)

n+k/B
(A)
n+k as introduced in [40]. They

account for the first (hardest) emission in the MC@NLO generator, which is produced with a modified
Sudakov factor, ∆(A)

n+k(t, tn+k). In our implementation, the kernels carry full colour information, which
is needed to maintain NLO accuracy [40].

f) The NLO-weighted Born differential cross sections B̄(A)
n+k and B̃(A)

n+k,

B̄(A)
n+k(Φn+k) = Bn+k(Φn+k) + Ṽn+k(Φn+k) + I(S)

n+k(Φn+k)

+
∫

dΦ1

[
D(A)
n+k(Φn+k+1)Θ(tn+k − tn+k+1)−D(S)

n+k(Φn+k+1)

]
B̃(A)
n+k(Φn+k) = B̄(A)

n+k(Φn+k)

+ Bn+k(Φn+k)
n+k−1∑
i=n

∫
dΦ1 Ki(Φ1) Θ(ti − tn+k+1) Θ(tn+k+1 − ti+1) .

(2.6)
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While the B̄(A)
n+k are the regular NLO-weighted differential cross sections of the MC@NLO method [40],

B̃(A)
n+k also take into account emissions introduced by the parton shower above the last hard scale

identified in the matrix element, tn. They populate different regions of phase space, as indicated by
the Θ-functions in the evolution parameter tn+k+1 of the respective emission. Compared to a standard
MC@NLO simulation their inclusion is necessary because truncated parton shower emissions alter the
real-radiation pattern at O(αs). Further, Ṽn+k is the Born-contracted collinear-subtracted one-loop
amplitude, while the sum of integrated subtraction terms is given by I(S)

n+k. The latter correspond to

the real subtraction terms D(S)
n+k, which can be decomposed in terms of individual dipole contributions,

D =
∑
ij,k Dij,k [47, 48]. The D(A)

n+k again are the MC@NLO evolution kernels.

g) The hard remainder functions

H(A)
n+k(Φn+k+1) = Rn+k(Φn+k+1)−D(A)

n+k(Φn+k+1)Θ(tn+k − tn+k+1)

H̃(A)
n+k(Φn+k+1) = H(A)

n+k(Φn+k+1)

− Bn+k(Φn+k)
n+k−1∑
i=n

Ki(Φ1) Θ(ti − tn+k+1) Θ(tn+k+1 − ti+1) ,

(2.7)

which contain both the standard MC subtraction terms, D(A)
n+k, and the additional subtraction terms

for the parton shower above tn.

h) The compound subtraction term

D̃(A)
n+k(Φ̄1) = D(A)

n+k Θ(tn+k − t̄) + Bn+k

n+k−1∑
i=n

Ki Θ(ti − t̄) Θ(t̄− ti+1) , (2.8)

which is used to simplify the above expressions for B̃(A)
n+k and H̃(A)

n+k. It leads to a compound evolution
kernel defining the compound Sudakov factor

∆̃(A)
n+k(t, t′) = exp

{
−

t′∫
t

dΦ̄
D̃(A)
n+k

Bn+k

}

= exp

{
−

t′∫
t

dΦ̄
D(A)
n+k

Bn+k
Θ(tn+k − t̄)

}
n+k−1∏
i=n

exp

{
−

t′∫
t

dΦ̄ Ki Θ(ti − t̄) Θ(t̄− ti+1)

}

= ∆(A)
n+k(t, t′)

n+k−1∏
i=n

∆(PS)
i (t, t′) .

(2.9)

Correspondingly, a compound Sudakov factor for the parton shower is given by

∆̃(PS)
n+k (t, t′) =

n+k∏
i=n

exp

{
−

t′∫
t

dΦ̄1 Ki Θ(ti − t̄) Θ(t̄− ti+1)

}
=

n+k∏
i=n

∆(PS)
i (t, t′) . (2.10)

The compound Sudakov factors describe the evolution from t′ to t, embedding it into the emission
structure which is predefined by the hard matrix elements in the respective n + k configuration. For
details on how to construct this structure, see [35].

One could identify the hardness measure Q of item a) with the parton shower evolution variable t. If this is
not done, for example in the case of an angular ordered parton shower and a hardness measure corresponding
to transverse momenta, a truncated parton shower must be used to ensure that the emission phase space is
properly filled [23, 35]. This is the case for example in HERWIG, where the evolution is formulated in terms
of generalised relative angles [49,50].
Sudakov form factors are split into two regimes, a hard one (>Qcut) and a soft one (<Qcut) such that

∆(PS)(t, t′;<Qcut) ∆(PS)(t, t′;>Qcut) = ∆(PS)(t, t′) . (2.11)
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Pictorially speaking these two regions can be identified with emissions that populate the matrix element and
the parton shower region, respectively. In the case where evolution variable and hardness measure coincide,
it is not possible to produce emissions < Qcut in the matrix element region, therefore ∆(PS)(t, t′;<Qcut) =
∆(PS)(t, t′;<tcut) = 1. In this case the Sudakov factors

∏n+k−1
i=n ∆(PS)

i (t, t′) of Eqs. (2.9) and (2.10) should
be interpreted as pure vetos in the kinematic regime of the intermediate states. If, on the other hand, there
is a mismatch between evolution variable and hardness parameter, there are two possibilities to implement
emissions with Q < Qcut that have an ordering parameter larger than the smallest one identified in the
matrix element. Either one chooses to veto matrix element configurations where the boundary between
matrix element and parton shower regions would be crossed multiple times and fills these regions entirely
with the parton shower [32,37]. Or one implements the additional intermediate branchings, thereby amending
momentum and colour topology of the final state [35,36]. The formalism for merging NLO matrix elements
presented here works for both of these methods.

2.2 Definition of the merging method

We define our algorithm in terms of the expectation value of an arbitrary, infrared-safe observable O, evalu-
ated by taking the average over sufficiently many points in the multi-parton phase-space. This will help us
to show, by explicit calculations, that our method indeed satisfies the two formal requirements for a correct
multijet merging:

1. The formal perturbative accuracy of the matrix elements is preserved - in our case this translates into
ensuring that the jet cross section for any given n+ k-jet final state is described at NLO accuracy and
that the first emission is LO correct. This means that all terms which are parametrically O(αs) with
respect to the Born configuration are unaltered.

2. The formal accuracy of the parton shower is guaranteed. This means that the logarithmic structure of
the evolution is ensured, or, in other words, the matrix elements do not introduce new logarithms at
an accuracy level maintained by the parton shower.

To be more concrete, let us assume in the following that m next-to-leading order predictions are merged,
starting with an n-particle final state, and that p leading-order predictions are added on top. We consider
an observable which is sensitive to at least (n+ k) partons. This observable is determined as

〈O〉 =
∞∑
j=0

〈Oj〉 =
∞∑
i=0

〈On+k+i〉 , i.e. 〈Oj〉 ≡ 0 ∀j < n+ k , (2.12)

where 〈Oj〉 are the contributions from j-parton final states. The respective partons can be generated through
either the parton-level matrix elements or the shower algorithm. We will not explicitly mention any parton-
shower emissions beyond those also described by the fixed-order calculations whose accuracy we intend to
maintain. For simplicity we assume that the (n+k)-particle final state is always described at next-to-leading
order in the strong coupling, i.e. k ≤ m. Thus, for the observable O above, we have to trace up to three
terms in the case that (n + k + 1)-particle final states are generated at next-to-leading order (k < m) and
up to two terms in the case that they are generated at leading order (k = m). The latter case was analysed
extensively in [39] and shall not be reviewed here. In the following we will focus solely on the scenario that
the (n+ k+ 1)-particle final state (and the corresponding (n+ k+ 2)-particle real-emission contribution) is
simulated with an NLO parton-level generator.
It is important to distinguish between partons and parton-level jets. We do not consider jets as defined
experimentally, using any existing jet algorithm, but introduce a separate parton-level definition which is
needed simply to separate parts of our inclusive event samples. To this end, we use the hardness measure
Qn+k of item a) Sec. 2.1 as a jet criterion. This value can be below or above the merging scale Qcut, where
for Qn+k > Qcut, Φn+k is called an (n+ k)-jet configuration.
In the context of next-to-leading order calculations, one also needs to define a criterion for the corresponding
real-emission configuration to be of (n + k)-jet type. To this end, we reduce the (n + k + 1)-parton final
state to an (n+ k)-parton final state by backward clustering according to the kinematics of the D̃(A)

n+k. The
pair of partons to be clustered and the corresponding spectator parton are identified to be the ones leading
to the smallest jet measure.
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To simplify our notation, we define the j-jet inclusive and exclusive expectation values

〈O〉incl
j =

∞∑
l=0

〈Oj+l Θ(Qj −Qcut)〉 ,

〈O〉excl
j =

∞∑
l=0

〈Oj+l Θ(Qj −Qcut) Θ(Qcut −Qj+1)〉 .
(2.13)

They include contributions from all final states with at least j partons, which must form j (but not j + 1 in
the case of 〈O〉excl

j ) parton-level jets according to the definition of Q. The j+l-parton configuration is reduced
to a j-parton configuration for the purpose of jet identification by an exact inverse parton shower [35].
With these definitions at hand, the MEPS@NLO method can be formulated in terms of (n+ k)-jet exclusive
expectation values of generic infrared safe observables. To O(αs) it reads

〈O〉excl
n+k =

∫
dΦn+k Θ(Qn+k −Qcut) B̃(A)

n+k

×
[

∆̃(A)
n+k(tc, µ2

Q) On+k

+
∫ tn+k

tc

dΦ1

D̃(A)
n+k

Bn+k
∆̃(A)
n+k(tn+k+1, µ

2
Q) Θ(Qcut −Qn+k+1) On+k+1

]

+
∫

dΦn+k+1 Θ(Qn+k −Qcut) H̃(A)
n+k ∆̃(PS)

n+k (tn+k+1, µ
2
Q;>Qcut) Θ(Qcut −Qn+k+1) On+k+1 ,

(2.14)

where tc is the infrared cutoff of the parton shower and tn+k is the starting scale on the n + k parton
ensemble. Hence tn = µ2

Q and tn+k (k > 1) is the smallest phase space distance in the parton shower
evolution variable t, i.e. the emission scale of the (n+ k)th parton on the n+ k− 1 parton ensemble. tn+k+1

then is the emission scale of the (n+k+1)th parton. Phase space configurations breaking the scale hierarchy
tn > tn+1 > . . . tn+k−1 > tn+k are described by the so-called hard events implemented in the second term.
In this case no resummation of emission scales is effected.
Note that there is a slight mismatch between the terms D̃(A)

n+k in the NLO-weighted Born-level cross section

and hard remainder on one hand and the actual emission terms B̃(A)
n+k · D̃(A)

n+k/Bn+k on the other hand. It
generates corrections of higher order in αs, and thus can safely be ignored. This is the same reasoning as in
the MC@NLO method [17].
Eq. (2.14) can be written in a more suitable form by factorising the compound Sudakov factors in analogy
to Eq. (2.11)

〈O〉excl
n+k =

∫
dΦn+k Θ(Qn+k −Qcut) B̃(A)

n+k ∆̃(A)
n+k(tc, µ2

Q;>Qcut)

×
[

∆̃(A)
n+k(tc, µ2

Q;<Qcut) On+k

+
∫ tn+k

tc

dΦ1

D̃(A)
n+k

Bn+k
∆̃(A)
n+k(tn+k+1, µ

2
Q;<Qcut) Θ(Qcut −Qn+k+1) On+k+1

]

+
∫

dΦn+k+1 Θ(Qn+k −Qcut) H̃(A)
n+k ∆̃(PS)

n+k (tn+k+1, µ
2
Q;>Qcut) Θ(Qcut −Qn+k+1) On+k+1 .

(2.15)

It is now explicit that the Sudakov form factor on the first line accounts for a veto on emissions with
Q > Qcut. This is completely equivalent to the MEPS method [35]. If the definition of hardness, Q, and the
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evolution parameter of the parton shower, t, coincide, we obtain in the same manner

〈O〉excl
n+k =

∫
dΦn+k Θ(tn+k − tcut) B̃(A)

n+k

(
n+k−1∏
i=n

∆(PS)
i (ti+1, ti)

)

×
[

∆(A)
n+k(tc, tn+k) On+k

+
∫ tn+k

tc

dΦ1

D(A)
n+k

Bn+k
∆(A)
n+k(tn+k+1, tn+k) Θ(tcut − tn+k+1) On+k+1

]

+
∫

dΦn+k+1 Θ(tn+k − tcut) H(A)
n+k

(
n+k∏
i=n

∆(PS)
i (ti+1, ti)

)
Θ(tcut − tn+k+1) On+k+1 ,

(2.16)

where tcut = Qcut, reproducing the expressions of [43]. At the same time, H̃(A)
n+k has been replaced by H(A)

n+k,
since the two coincide if tn+k > tcut and tn+k+1 < tcut, which is enforced by the two Θ-functions on the last
line. Further, combining the additional terms of the B̃(A)

n+k function, cf. Eq. (2.6), with the Sudakov factor
implementing vetoed emissions on the first line renders the form of the O(αs) correction more explicit

〈O〉excl
n+k =

∫
dΦn+k Θ(tn+k − tcut) B̄(A)

n+k

[
n+k−1∏
i=n

∆(PS)
i (ti+1, ti)

(
1 +

Bn+k

B̄(A)
n+k

ti∫
ti+1

dΦ1 Ki

)]

×
[

∆(A)
n+k(tc, tn+k) On+k

+
∫ tn+k

tc

dΦ1

D(A)
n+k

Bn+k
∆(A)
n+k(tn+k+1, tn+k) Θ(tcut − tn+k+1) On+k+1

]

+
∫

dΦn+k+1 Θ(tn+k − tcut) H(A)
n+k

(
n+k∏
i=n

∆(PS)
i (ti+1, ti)

)
Θ(tcut − tn+k+1) On+k+1 .

(2.17)

Note that we have added arbitrary higher-order terms, which allow to include the sum over truncated shower
subtractions in B̄(A)

n+k in the product in line one.
The various terms are interpreted easily. The products in the square brackets on the first line constitute
truncated vetoed parton showers, with their O(αs) terms partially subtracted. In practice, these expressions
can be generated by running a truncated vetoed shower and skipping/reweighting the first veto, depending
on Bn+k/B̄

(A)
n+k. The remainder of the expression corresponds to an ordinary MC@NLO simulation, consisting

of standard (S) and hard (H) events. This scheme is particularly easy to implement in practice, because no
emissions need to be generated in the truncated shower. This version of the method has been explained in
detail in [43].

2.3 Fixed-order and logarithmic accuracy

The proof of next-to-leading order and logarithmic accuracy of the above described MEPS@NLO method in
e+e−-collisions was presented in [43], for the simpler case where truncated shower emissions are absent. The
proof presented here extends to the case where they are included.
Proving fixed order accuracy is a fairly straightforward exercise. For this it is sufficient to expand Eq. (2.14)
to the first order in αs. By construction, this yields exactly the same result as is obtained in MC@NLO for
Qn+k+1 < Qcut, i.e. 〈O〉excl

n+k. The effects of Sudakov suppression and modified subtraction cancel to first
order in αs, and the correct fixed-order radiation pattern is recovered.
The proof of logarithmic accuracy inherent to the parton shower is a bit more cumbersome as inclusive
observables have to be considered. It proceeds as follows:

1) Below Qcut the method proposed here reproduces the formal accuracy of a corresponding MC@NLO
approach for (n+ k) jets. MC@NLO guarantees that the first emission follows the corresponding tree-
level matrix element for (n+ k+ 1) final state particles and that tn+k+1 is resummed according to the
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modified Sudakov factor ∆(A)
n+k(tn+k+1, tn+k). Further emissions of course are generated by the parton

shower and therefore, by construction, exhibit the correct behaviour.

2) One needs to show that above Qcut the combination of the (n + k)-jet and (n + k + 1)-jet exclusive
samples does not generate unwanted terms in the (n + k + 1)-parton ensemble. As explained in 1),
in the (n + k)-jet contribution the second emission is generated by the parton shower and therefore
correct by construction. It remains to show that the (n+k+ 1)-jet contribution does not generate any
logarithmic corrections beyond the formal accuracy of the parton shower. This is guaranteed since the
(n+k+2)th parton is generated through MC@NLO techniques, which, again by construction, maintain
the logarithmic accuracy of the parton shower.

3) Within the (n+ k+ 1)-jet exclusive sample the same considerations as for 1) apply. Thus, the correct
resummation of scale hierarchies is achieved. The subsequent merging of the (n+ k + 2)-jet exclusive
sample proceeds as in 2).

To formally prove 1) and 2) we decompose the contribution to the generic (n + k)-jet inclusive observable
as follows

〈O〉incl
n+k = 〈O〉MC@NLO

n+k + 〈O〉corrn+k . (2.18)

The MC@NLO result 〈O〉MC@NLO
n+k is obtained by dropping the constraint Θ(Qcut −Qn+k+1) in Eq. (2.14).

〈O〉MC@NLO
n+k =

∫
dΦn+k Θ(Qn+k −Qcut) B̃(A)

n+k

×
[

∆̃(A)
n+k(tc, µ2

Q) On+k +

µ2
Q∫

tc

dΦ1

D̃(A)
n+k

Bn+k
∆̃(A)
n+k(t, µ2

Q) On+k+1

]

+
∫

dΦn+k+1 Θ(Qn+k −Qcut) H̃(A)
n+k ∆̃(PS)

n+k (tn+k+1, µ
2
Q;>Qcut) On+k+1 .

(2.19)

Thus, 〈O〉MC@NLO is indeed the MC@NLO result for the n+k-parton final state, up to a product of Sudakov
form factors, cf. Sec. 2.1 items f)-h), which describe the implementation of truncated vetoed parton showers
on the underlying Born configurations, starting from the n-particle final state.
From Eq. (2.14), the correction term 〈O〉corrn+k for the (n+k+1)-parton vanishes below Qcut, completing part
1) of the proof. Above the merging cut, up to contributions of order α2

s, and ignoring the effect of emissions
below tn+k+1, it reads

〈O〉corrn+k =
∫

dΦn+k+1 Θ(Qn+k+1 −Qcut) ∆̃(PS)
n+k+1(tc, µ2

Q) On+k+1

×
{

D̃(A)
n+k

[
1− B̃(A)

n+k

Bn+k

∆(A)
n+k(tn+k+1, tn+k)

∆(PS)
n+k (tn+k+1, tn+k)

]

− Bn+k+1

[
1− B̃(A)

n+k+1

Bn+k+1

∆(A)
n+k+1(tc, tn+k+1)

∆(PS)
n+k+1(tc, tn+k+1)

]}
.

(2.20)

The relevant terms to consider are the ones in the curly bracket. They must not upset the resummation
properties of the 〈O〉MC@NLO. Both terms consist of one factor directly responsible for the emission of an extra
particle, D̃(A)

n+k and Bn+k+1, respectively, which will eventually yield a contribution of O(αsL2). Analysing
the factors multiplying these emission terms, reveals that each of them is at most of O(αsL). However,
these logarithms, if present, are associated with a factor of 1

NC
, they arise from the difference between the

evolution kernels in D(A) and D(PS) = B · K. Clearly, the combined virtual and real contributions to B̃(A)
n+k

do not exhibit any logarithms that could upset the accuracy of the parton shower, because the phase space
integrals over the real terms in Eq. (2.6) are unrestricted. Taken together, this shows that the correction
term does not upset the formal logarithmic accuracy of the parton shower for part 2) of the proof.
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2.4 Renormalisation and factorisation scale uncertainties

The key aim of the MEPS@NLO approach presented here is to reduce the dependence of the merged prediction
on the renormalisation scale µR and the factorisation scale µF , which are employed in the computation of
hard matrix elements. These scales have not been made explicit so far.
Note that only the dependence on renormalisation and factorisation scales are reduced compared to the
MEPS method, while the dependence on the resummation scale, µQ, remains identical. This is a direct
consequence of the fact that the parton-shower evolution is unchanged in our prescription. The resummation
scale dependence was analysed in detail in [40].
Following the MEPS strategy, the renormalisation scale should be determined by analogy of the leading-
order matrix element with the respective parton shower branching history [35]. In next-to-leading order
calculations, however, one needs a definition which is independent of the parton multiplicity. The same scale
should be used in Born matrix elements and real-emission matrix elements if they have similar kinematics,
and in particular when the additional parton of the real-emission correction becomes soft or collinear. This
can be achieved if we define the renormalisation scale for a process of O(αns ) as

αs(µ2
R)n =

n∏
i=1

αs(µ2
i ) . (2.21)

Here, µ2
i are the respective scales defined by analogy of the Born configuration1 with a parton-shower

branching history.
The renormalisation scale uncertainty in the MEPS@NLO approach is then determined by varying µR → µ̃R,
while simultaneously correcting for the one-loop effects induced by a redefinition in Eq. (2.21). That is, the
Born matrix element is multiplied by

αs(µ̃2
R)n

(
1− αs(µ̃2

R)
2π

β0

n∑
i=1

log
µ2
i

µ̃2
R

)
, (2.22)

to generate the one-loop counterterm, while higher-order contributions remain the same.
Similar reasoning holds for the collinear mass factorisation counterterms. Given µF as determined by the
MEPS algorithm, a different factorisation scale µ̃F can be chosen, which leads to the O(αs) counterterm

Bn(Φn)
αs(µ̃2

R)
2π

log
µ2
F

µ̃2
F

(
n∑

c=q,g

∫ 1

xa

dz
z
Pac(z) fc(xa/z, µ̃2

F ) +
n∑

d=q,g

∫ 1

xb

dz
z
Pbd(z) fd(xb/z, µ̃2

F )

)
, (2.23)

where a and b denote the parton flavours of the initial state. The sums run over all parton flavours and P (z)
denote the regularised Altarelli-Parisi splitting kernels. In the case of only one hadronic initial state, one of
the sums would be absent.

3 Monte-Carlo implementation

In this section we describe the Monte Carlo implementation of the merging formula Eq. (2.14) in SHERPA. The
techniques needed to combine leading-order matrix elements with parton showers are given elsewhere [35,37].
The algorithm reads as follows:

• Draw an event according to the total cross section of the inclusive NLO-expression, effectively a sum
over B̄(A) and Hn+k.

• According to the absolute value of the relative contributions, select a standard (S) or hard (H) event.
Select flavours and momenta accordingly.

• Reconstruct a parton shower history over tree-level like configurations.
1 In the case of the real-emission correction and the corresponding dipole subtraction terms we consider the underlying Born

configuration instead
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• Start the parton shower, which will work out differently for S and H events.

For the latter, perform a truncated and vetoed shower in the spirit of the LO MEPS method, cf. [35,37].
If the matrix element level configuration could not be reached through standard parton showering (like,
e.g. in the case of uū→W+sc̄) skip this step.

For the former, perform an MC@NLO step, i.e. generate an extra emission tn+k+1 through the D(A)
n+k

terms. Perform a truncated and NLO-vetoed shower between tn and tn+k. In contrast to a regular
vetoed shower, in this NLO-vetoed shower, the first trial emission per cluster step, which is above
Qcut will not lead to vetoing the event, but will be ignored, depending on the weight Bn+k/B̄

(A)
n+k.

This corresponds to the finite correction, i.e. the sum over the splitting kernels in (2.7). In [43], this
corresponds to the correction term in the second line of Eq. (3.5). There, we also described in more
detail some of the implementation details.

For both types of events continue with a vetoed parton shower, as in the MEPS case.

4 Results

In this section we present results generated with the previously described merging method. We employ the
leading-order matrix element generators AMEGIC++ [51] and COMIX [52] in conjunction with the automated
dipole subtraction provided in SHERPA [53] and the implementation of the Binoth–Les Houches interface
[54] to obtain parton-level events at next-to-leading order. Virtual matrix elements for W + n jets are
provided by the BLACKHAT library [6, 9, 55, 56]. We employ a parton shower based on Catani-Seymour
dipole factorisation [57] and the related MC@NLO generator [40] to generate events at the parton shower
level. In contrast to the other MC@NLO implementations, no leading colour approximation is made. Our
generator therefore recovers the full next-to-leading order accuracy of the fixed-order result throughout the
phase space, to all orders in the colour expansion.
We compare our predictions to a recent measurement [58] of W+jets events by the ATLAS collaboration.
The analysis is used as implemented in the Rivet [59] framework and selects events containing a lepton
within |η| < 2.5 with p⊥ > 20 GeV and Emiss

T > 25 GeV. From the lepton and neutrino a transverse mass
variable is calculated and required to fulfil mW

T > 40 GeV. Jets are clustered using the anti-kt algorithm [60]
in the implementation of FastJet [61] with R = 0.4. We use the CT10 PDF set [62].
Effects from hadronisation and multiple parton interactions are not taken into account in the scope of this
publication but can easily be enabled on top of the parton shower level studies pursued here. This is also
justified by the fact that the two effects happen to compensate each other to a large extent in this analysis.
SHERPA predictions are made in three different approaches:

MC@NLO

NLO+PS matched sample for the W +0-jet process using the MC@NLO-like implementation described
in [40].

MENLOPS
The MENLOPS method described in [39] is used to merge an NLO+PS sample for the W+0-jet process
with tree-level matrix elements for the higher multiplicity W + 1, 2, 3, 4-jet processes. Here we use this
method on top of the W + 0-jet MC@NLO sample, as described in more detail in [43].

MEPS@NLO

The MEPS@NLO method was described in Sec. 2 and is used here for the W + 0, 1, 2-jet processes
at NLO. In addition, the W + 3, 4-jet processes are merged using tree-level matrix elements via the
MENLOPS technique.

For the two latter approaches the jet criterion Qij , separating matrix element and parton shower regions, is
defined as

Q2
ij = 2 pipj min

k 6=i,j

2
Cki,j + Ckj,i

where Cki,j =
pipk

(pi + pk)pj
, (4.1)

using Qcut = 30 GeV as default. In Fig. 1 the stability of the simulation under a variation of the merging cut
Qcut is studied. Predictions are displayed for the two hardest splitting scales in a kT cluster sequence, which
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Figure 1: Stability of the predictions for the two hardest splitting scales in the kT cluster algorithm under
variation of the merging cut Qcut from 30 GeV to 20 GeV. The statistical errors are indicated.

provides a very sensitive probe of merging-related artefacts. We compare here two MEPS@NLO samples with
W + 0, 1-jet production at NLO and the merging separation criterion set to Qcut = 15, 20, 30 GeV to assess
the size of the unwanted terms of higher logarithmic order in Eq. (2.20). The event samples are statistically
compatible, with merging-related effects up to approximately 5% in the vicinity of Qcut.
We now turn to study perturbative uncertainties stemming from variations of the factorisation and renormal-
isation scale in the matrix elements. The scales are chosen by clustering the 2→ n parton level kinematics
onto a core 2 → 2 configuration using a kT -type algorithm with recombination into on-shell particles. The
central scale µF = µR = µ is then defined as the lowest invariant mass or virtuality in the core process. For
core interactions which are pure QCD processes scales are set to the maximum transverse mass squared of
the outgoing particles. A variation by a factor of two in each direction as µF = µR = µ

2 . . . 2 · µ generates
the uncertainty bands of the predictions in the following.
We start by looking at the cross section as a function of the inclusive jet multiplicity, Fig. 2. While the
“pure” MC@NLO approach is able to describe the inclusive cross section at NLO in good agreement with
data, it fails to provide a good description of the number of additional jets. This is to be expected, since
the first jet is only described at leading-order accuracy, and any further jet even only in the parton-shower
approximation. The MENLOPS method improves that prediction by including higher-multiplicity tree-level
matrix elements, which can be seen to lead to a better agreement with data. It becomes obvious though that
scale variations within those tree-level matrix elements lead to rather large uncertainties in all jet bins. This
is significantly improved in the first two jet bins by the MEPS@NLO method, which has NLO accuracy in
these observables and demonstrates the expected reduction in perturbative uncertainties. With the reduced
uncertainty comes a near-perfect agreement with experimental data. For the higher jet multiplicities Njet ≥ 3
one recovers the tree-level picture with its larger uncertainties as expected.
The picture is very similar when requiring jets with either p⊥ > 20 GeV or p⊥ > 30 GeV, also for all other
observables we have studied. We thus restrict the plots in the following to the p⊥ > 30 GeV case.
In Fig. 3 the transverse momenta of jets in the different event categories of W+ ≥ 1, 2, 3-jets are displayed.
The inclusive statements from the previous paragraphs translate directly onto these differential distributions:
When sensitive to the W +1- or W +2-jet processes only, the perturbative uncertainties become significantly
smaller in the MEPS@NLO method leading to a much better agreement with data.
A similar observation is made in Fig. 4 for the scalar sum of the transverse momenta of the lepton and jets
and Emiss

T . The inclusiveness of this observable makes the hard tail susceptible to contributions from high
jet multiplicities, which are only described at leading-order accuracy and thus cause a larger uncertainty
band. In the low-HT region for W + 1- or W + 2-jet events on the other hand one can see the reduced scale
band in MEPS@NLO.
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Figure 2: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in W+jets
events measured by ATLAS [58].

As a final comparison, the separation between the two leading jets is studied in the ∆R and ∆φ variables.
It is clear that the pure MC@NLO approach can not be expected to give a good description of such angular
correlations due to its parton shower approximation for the second jet. For the MEPS@NLO method it is
impressive to see how the reduced scale uncertainty leads to very good agreement with the data also in these
observables.
Let us note that here we have analysed perturbative uncertainties stemming from the matrix element part
of the calculation. While the inclusion of next-to leading order accuracy definitely reduces the related
uncertainties, it is important to note that another source of theory ambiguities has not been discussed here.
It is related to the effect of varying the resummation scale, here realised by the introduction of µQ, in a
way similar to the one performed in corresponding analytical calculations. It can be expected, though, that
these uncertainties are fairly consistent between the MENLOPS approach and the new MEPS@NLO method
presented here. While they certainly deserve further studies, we restricted our discussion here to the effect
of theory uncertainties in the matrix element region, where we actually achieved a dramatic improvement
over existing methods.

5 Conclusions

In this publication we have introduced a new method to consistently combine towers of matrix elements, at
next-to leading order, with increasing jet multiplicity into one inclusive sample. Our method respects, at
the same time, the fixed order accuracy of the matrix elements in their respective section of phase space
and the logarithmic accuracy of the parton shower. The analysis of scale dependencies allows for a solid
understanding of the corresponding theory uncertainties in the merged samples. Employing next-to leading
order matrix elements leads, of course, to a dramatic reduction of the dependence on the renormalisation
and factorisation scale and a much improved description of data. The same findings also apply to the case
of e−e+ annihilations into hadrons, cf. [43].
This allows, for the first time, to use Monte Carlo tools to generate inclusive multijet samples and analyse
their uncertainty due to the truncation of the perturbative series in the matrix elements in a systematic and
meaningful way.
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Figure 3: Differential cross section as a function of
the transverse momentum of the first, sec-
ond and third jet. All distributions are
displayed for events selected to contain at
least one, two or three jets.
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Figure 4: Differential cross section as a function of the scalar transverse momentum sum HT (left) and
ratios to data from ATLAS [58] (right). Displayed are again contributions from events with at
least one, two or three jets.
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Figure 5: Differential cross section of W+2 jets events as a function of the jet separation in R (left) and φ
(right). The predictions are compared to experimental data from ATLAS [58].
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[39] S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated showers, JHEP
08 (2011), 123, [arXiv:1009.1127 [hep-ph]].
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