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Abstract

Autoencoder networks, trained only on QCD jets, can be used to search for anomalies

in jet-substructure. We show how, based either on images or on 4-vectors, they iden-

tify jets from decays of arbitrary heavy resonances. To control the backgrounds and the

underlying systematics we can de-correlate the jet mass using an adversarial network.

Such an adversarial autoencoder allows for a general and at the same time easily con-

trollable search for new physics. Ideally, it can be trained and applied to data in the same

phase space region, allowing us to efficiently search for new physics using un-supervised

learning.
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1 Introduction

Since the start of the LHC, jets have turned from an experimental annoyance to the most

interesting and powerful analysis objects. Together with a vastly improved understanding of

multi-jet kinematics, we have learned how to use jet constituents to identify LHC signals [1–

3]. This way, jets no longer serve as universal analysis objects, but merely separate jet-level

observables from subjet observables [4–9]. A second development in LHC analyses is that

we compare simulated and observed jet events at the detector level, instead of first-principles

theory and data [10–15]. This raises the question why we still rely on intermediate high-level

observables rather than low-level observables like 4-momenta of particle flow objects. The

latter are driving deep learning applications at the LHC, where the term deep learning really

describes the shift from high-level to low-level input observables [16–31]. In this paper we

show how this new approach allows us to tackle the basic question:

Do our observed jets really look like QCD jets?

In addition to testing well-defined hypotheses, neural networks also allow us to search for

anomalies without ever defining a signal. We can just study QCD jets in data and use machine

learning techniques to search for non-QCD patterns. The appropriate network architecture

are autoencoders [32–37], networks which compress their information to search for patterns

which are no longer described by the compressed representation.

Once we abandon high-level subjet observables we can choose our input format to deep

learning analysis tools. This allows us to pick a data format that is best suited to a given prob-

lem. The most frequently used format are jet images, calorimeter entries in the azimuthal

angle vs rapidity plane, analyzed through image recognition [38]. They can be used to iden-

tify hadronic decays of weak bosons [16–18, 25, 26] or top quarks [27, 28], or to distinguish

quark-like from gluon-like jets [30,31]. A limiting factor for jet images are measurements with

vastly different angular resolution, like calorimeter and tracker measurement [29–31]. For

example in this case we can directly use 4-momenta [19–24] and, inspired by graph convolu-

tional networks, analyze them efficiently using the Minkowski metric [29]. These approaches

can also be generalized to search for new physics at the event level [39–43]. For all network

setups we can visualize their behavior based on truth-level information in Monte Carlo simu-

lations [27,30,31,44].

Deep learning applications to jet physics at the LHC face three key limitations:

1. the availability of training data;

2. systematic uncertainties in our understanding of the training data;

3. control over the exact physics question which the network answers.

While most available studies answer well-defined physics questions based on labelled or simu-

lation data, the first limitation can be tackled by switching to weakly supervised learning [45–

49]. In this paper we will go even further and show how autoencoders work in the absence

of a signal sample. The second challenge can for example be addressed with adversarial net-

works, de-correlating for example kinematic information or theory assumptions [50–57]. Al-

ternatively, refiner networks [84] can be used to improve the quality of simulation. For our

autoencoder we will de-correlate kinematic information like the jet mass, generating experi-

mental control regions and controlling systematics related to the composition of the training

sample. This way, the autoencoder can be trained and applied on the same phase space and

avoid systematic uncertainties from relating simulation to data or background to signal phase

space regions. The same de-correlation technique also allows us to tackle the third challenge.

A promising approach in this direction is to combine well-understood features like mass peaks
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with implicit, orthogonal information [58]. More generally, we will show how any well-defined

physics effect can be de-correlated from the autoencoder analysis, allowing us to construct con-

trol regions, side bands, or a flat or smoothly falling spectrum suitable for a bump hunt in any

observable needed for a given analysis.

A set of events flagged by the autoencoder as anomalies does not automatically qualify as

a signal of new physics. It is standard experimental procedure to test whether any signal could

be caused by detector effects. Typical tests include checks whether events cluster geometrically

(all jets originate from a specific region in the η−φ plane, hinting at a misbehaving region of

the calorimeter) or temporally (from a specific run or run-period, hinting at problematic LHC

or detector conditions). In the case of autoencoding jet images, an additional test would be an

analysis of the correlation with well-understood substructure variables such as n-subjettiness,

which is opportune to understand the topology of the identified signal. Finally, mis-calibrations

of the jet-energy that cause an artificial mass peak can be taken care of using control regions

— if the mass peak is present in sidebands as well, it is likely a miscalibration. All of these are

relevant experimental considerations and should be included in any concrete study. However,

autoencoding is no more susceptible (and arguably less so) than traditional techniques based

on MC simulation.

In Sec.2.1 we will start by constructing an autoencoder [32–37] based on a convolutional

network [59], in our case the image-based DEEPTOP tagger [27, 28]. Alternatively, we can

analyze 4-vectors in an autoencoder version of the DEEPTOPLOLA tagger, as shown in Sec. 2.2.

Next, we will control what kind of information the network uses by taking out the jet mass

distribution through an adversarial network in Sec. 2.3. This allows us to devise a convincing

side band analysis on the jet mass for the anomaly search [58]. With the help of these side-

bands we can study the stability of the autoencoder network trained on not fully controlled,

impure QCD samples in Sec. 2.4. After establishing our new methods using top tagging we

will test them on scalar decays to four jets in Sec. 3.1 and on non-QCD showers in Sec. 3.2.

2 Autoencoded QCD vs tops

The aim of our study is to identify jets with an exotic, non-QCD origin using a neural network

that is only trained on QCD jets. This can be done with autoencoder networks, which are stacks

of networks layers with an intermediate set of bottleneck layers with a strongly reduced num-

ber of units, corresponding to a latent space with reduced dimensionality. Such a bottleneck

can be added to convolutional networks [59], but it can also be added to a LOLA-like network

working on constituent 4-vectors. The main structural change is that autoencoders do not

work towards an output value which, assuming the right loss function, gives a probability for

a jet being either signal or background. Instead, the network on both sides of the bottleneck

is approximately symmetric, and the loss function is the difference between the input and the

output. Once we run such a trained network on a test sample the loss function will tell us how

well the network with its bottleneck encodes the features of the test sample.

An established, albeit non-glamorous benchmark for subjet studies are boosted hadronic

top decays. This is why we first test our new autoencoder setup, trained on QCD jets, for

anomalous top jets. After we benchmark autoencoders for image-based and 4-vector-based

architectures, we will introduce a de-correlation with the jet mass. This approach can be

immediately generalized to any other variable, defining plenty of control regions and side

bands to control the autoencoder in an experimental reality.
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2.1 Jet images

As long as we focus on the pixellated energy, we can analyze jets using a convolutional neural

network (CNN) to learn jet images. Our autoencoder architecture is based on the DEEPTOP

tagger [27], with significant improvements especially to the image pre-processing, developed

in Ref. [28].

Our top and QCD samples are similar to the sample used in our DEEPTOP studies [27,29].

We simulate top pair and di-jet production with PYTHIA8.2.15 [60] and DELPHES3.3.2 [61] for

a collider energy of 14 TeV. For the QCD sample we do not distinguish between hard quarks

and gluons. While the simulation used for these studies did not include effects of multi-parton

interaction and pile-up, this is not a fundamental limitation of the proposed approach. Au-

toencoders can also be applied to the constituents of a jet after applying standard experimental

techniques for the removal of pile-up [62–65]. A combination with grooming algorithms is pos-

sible as well, but would potentially limit the sensitivity as grooming makes explicit assumptions

on how a shower ought to unfold.

Similarly, no detailed detector simulation was included. We expect the autoencoder to

learn novel jet-shape variables from the distributions of constituents. There is no a-priori

reason why these jet shapes would suffer from larger effects due to the detector simulation than

widely used variables like groomed mass, n-subjettiness or energy correlation functions. For

the practical application of the autoencoder we foresee training on data, making this technique

even less subject to differences between data and simulation than ordinary approaches.

The substructure containers are fat anti-kT jets [66] with distance parameter R = 0.8,

defined by FASTJET3.1.3 [67, 68]. They are required to have a transverse momentum in the

range

pT, j = 550 ... 650 GeV . (1)

In addition they must be central, |η j | < 2. For all signal jets we require both the truth-level

partonic top and its decay products to be within the area of the fat jet. The inputs of the

subjet analysis are particle flow objects [69] from the DELPHES E-flow. In the left panel of

Fig. 1 we show the number of particle flow constituents for signal and background jets. The

main feature is that already based on the larger number of constituents we could identify the

hadronic top decays.

Following Ref. [28] we employ an improved pre-processing of the jet images, most notably

applied before pixelization. This approach is directly motivated by the particle flow approach,

which combines the coarse calorimeter information with the high-resolution tracker and pro-

vides us with a set of high-resolution 4-vectors. The center of the image is not defined by the

hardest object, but by the kT -weighted centroid of the fat jet constituents. The major principle

axis is then turned to 12 o’clock. Finally, the image is flipped along the x-axis and y-axis, to

ensure that the hardest constituent is located in the upper right quadrant. Only after this pre-

processing we pixelize the images into a 40×40-pixel image, covering η = −0.57 ... 0.57 and

φ = −0.69 ... 0.69 around the center of the fat jet. The entries of the calorimeter images are

given by the transverse momentum entering the detector cell, i.e. the sum of the transverse

momenta of all particle flow objects covered by a pixel. Also in the left panel of Fig. 1 we

show the number of non-zero pixels per image. The full image with its 1600 pixels is indeed

sparsely filled. Each of the pixels is finally normalized to the sum of all pixels in the jet image.

These images define the input and the output format of the autoencoder network.

The architecture of the autoencoder network is shown in Fig. 2. We use KERAS [70] com-

bined with TENSORFLOW [71] to build our network. It is almost symmetric between the input
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Figure 1: Left: numbers of constituents and of non-zero pixels for tops and QCD jets,

400,000 jets in total. Right: ROC curves for the image-based autoencoder identifying

anomalous top jets for different bottleneck sizes.

and the output. The loss function is simply

Lauto =
∑

1600 pixels

�
k

norm,in
T − kauto

T

�2
(2)

in terms of the normalized input image and the autoencoder output image. We use the PReLU

activation function throughout the network, to avoid a zero pseudo-solution, except for a linear

activation function in the last layer. We use the ADAM optimizer [72] for training the network.

The autoencoder is trained on 100,000 QCD or background jets for up to 100 epochs

and allow for an early stopping after ten epochs with stable loss. Our test sample consists

of 200,000 top jets and 200,000 QCD jets. The large test sample allows for a study of the

performance on several independent samples, confirming that our ROC curves are stable. For

a variable cut in the loss function we can evaluate the composition of the signal-like jets in

terms of true top and true QCD jets. These two fractions define a ROC curve, as shown in the

right panel of Fig. 1. For these curves we vary the size of the bottleneck from 6 to 34 units in

the smallest dense layer shown in Fig 2. We see a sizeable variation with the bottleneck size,

developing a stable high-performance plateau between 20 and 34. It gives a stable area under

curve (AUC) around 0.89 with a loss around 10−5 per pixel. The size of the bottleneck has to

be compared with the initially 1600 pixels, of which 10 to 70 are non-zero, and which the CNN

pools to 400 combined pixels. This large bottleneck size indicate that the image architecture

is not perfectly adapted to encode the relevant QCD vs tops information in a small network

layer.

The large size of the test sample allows us to evaluate our autoencoder on separate, statis-

tically independent test samples. While the corresponding spread does not account for system-

Figure 2: Architecture of the image-based autoencoder network. The 40×40 images

are average-pooled to 20×20 images before entering the bottleneck. The dense units

are first reduced from 400 to 100, the minimum size at the bottleneck is variable.
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atics uncertainties related to the training, especially the training on data, it defines a statistical

uncertainty of the autoencoder. It is shown as widths of the ROC curves, which are generated

by evaluating the network on ten independent test samples with 20,000 QCD jets and 20,000

top jets each.

2.2 LoLa

When we want to include information beyond the calorimeter output, we can for example

use the neural network based on the constituent 4-vectors developed for the DEEPTOPLOLA

tagger [29]. It starts from a set of measured 4-vectors sorted by transverse momentum

(kµ,i) =





k0,1 k0,2 · · · k0,N

k1,1 k1,2 · · · k1,N

k2,1 k2,2 · · · k2,N

k3,1 k3,2 · · · k3,N



 . (3)

Following the left panel of Fig. 1 we use N = 40 constituents, after checking that an increase to

N = 120 does not make a measurable difference. For jets with fewer constituents we naturally

fill the entries remaining in the soft regime with zeros.

To remove all information from the jet-level kinematics we boost all 4-momenta into the

rest frame of the fat jet. This also improves the performance of our network. Inspired by re-

combination jet algorithms we can add linear combinations of these 4-vectors with a trainable

matrix Ci j , defining a combination layer

kµ,i

CoLa
−→ ekµ, j = kµ,i Ci j with C =





1 1 0 · · · 0 C1,N+2 · · · C1,M... 0 1
... C2,N+2 · · · C2,M...

...
...

. . . 0
...

...

1 0 0 · · · 1 CN ,N+2 · · · CN ,M



 . (4)

We allow for M = 10 trainable linear combinations. These combined 4-vectors carry informa-

tion on the hadronically decaying massive particles. In the original LOLA approach we map

the momenta k̃ j onto observable Lorentz scalars and related observables [29]. Because this

mapping is not easily invertible we do not use it for the autoencoder. Instead, we extend the

4-vectors by another component containing the invariant mass,

k̃ j =





k̃0, j

k̃1, j

k̃2, j

k̃3, j




LoLa
−→





k̃0, j

k̃1, j

k̃2, j

k̃3, jÇ
k̃2

j




. (5)

Figure 3: Architecture of the 4-vector-based autoencoder network. The 255 input

units correspond to 55 LOLA-vectors with 4 + 1 entries each. The output only con-

sists of 160 units, because the extended 4-vectors only carry four independent ob-

servables.
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Figure 4: Left: ROC curves for the 4-vector-based or LOLA autoencoder identifying

anomalous top jets for different bottleneck sizes. Right: comparison of the ROC

curves for the image-based and the 4-vector-based autoencoders. The widths of the

lines show the variation based on ten independent test samples for fixed training.

This defines a set of 51 extended 4-vectors, which form the input to our neural network. Again,

we use KERAS [70] combined with TENSORFLOW [71]. Its architecture is shown in Fig. 3. The

layer immediately after the LOLA contains 51× (4+1) = 255 units. Between the second layer

after LOLA and the last layer, the autoencoder network is symmetric. The final output consist

of 40 4-vector-like objects, which can be compared with the corresponding second layer. The

loss function is

Lauto =

40∑

j=1

3∑

i=0

�
k̃in

i, j − k̃auto
i, j

�2
. (6)

As for the images we use the PReLU activation function, except for the last layer with its linear

activation function, and the ADAM optimizer for the learning rate [72].

In the left panel of Fig. 4 we show the ROC curves for the 4-vector-based tagger for different

choices of the bottleneck size. We now find the best result for a very small bottleneck with

at most 10 units. The stable AUC value is around 0.92 with a loss around 10−5 per pixel.

Such small functional bottlenecks reflect the fact that with the COLA/LOLA structure we have

encoded a lot of the relevant information in appropriate physics terms [29].

Finally, in the right panel of Fig. 4 we compare the best-performing image-based and 4-

momentum-based autoencoders. The widths of the lines are again generated by evaluating

the network on ten independent test samples. The main feature in this plot is that the LOLA-

autoencoder does better than the image-based autoencoder. This is a result of the smaller

possible bottleneck size, because the LOLA architecture is optimized to extract the leading

discriminating features most efficiently. While this gives an advantage to the pure autoencoder,

we will see the other side of the same medal in the next section.

2.3 De-correlating the mass

Neural networks separating signal and background jets after fully supervised training on la-

belled data are, in theory, straightforward to calibrate and understand. The problem at the

LHC is that we hardly ever have enough labelled data to train such networks for relevant new

physics searches — especially when the goal is to tag new resonances. Our autoencoder re-

sponds to this problem by limiting the training to QCD jets only and by only asking if a given
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data set is described well by QCD or any other standard assumption. On the other hand, the

more weakly the question is defined, the more important it is to control what the neural net-

work actually learns. This is especially true when we use the network on low-level information

rather then established high-level kinematic observables [73–79].

An established way to test a network is to exclude known, well-defined pieces of infor-

mation from it through adversarial networks [51–57]. They consist of two networks playing

against each other. Similar to generative adversarial networks, they can be used to train a

network as an equivalent replacement for another data generator. In our application the ad-

ditional adversary is trained to extract for instance the jet mass from the autoencoder output

described in Eq.(2). In this image-based case a naive adversary loss function would read

Ladv(M) =

h
eM
����kadv

T,i − kauto
T,i

���
�
−M

i2
, (7)

with the inputs kauto
T,i

, the outputs kadv
T,i

, the given jet mass M , and the trained proxy to the jet

mass eM . As we will discuss below, for our study we replace the exact function eM with a binned

determination of the jet mass [52]. The combined loss function which replaces Eq.(2) for the

autoencoder can be written in terms of a Lagrangian multiplier [51,52]

L = Lauto −λ Ladv(M) . (8)

The Lagrangian multiplier λ introduces a boundary condition, Ladv→ 0, in case the adversary

learns the mass perfectly. The value of λ determines the balance between the two networks.

While the task of the autoencoder network is to describe the QCD training data, the adversary

extracts the jet mass from the autoencoder output. Playing against each other and minimizing

the combined loss function with the relative sign, the combined network wants the adversary

to be as unsuccessful as possible. The adversarial autoencoder will hence avoid all information

on the jet mass or any other boundary condition. Note that at least for the top jets this only

affects the fat jet mass and still leaves us with the W -mass in the clustering history.

As a starting point, we show the jet mass distribution after applying the image-based au-

toencoder. We know from many studies that the jet mass is a powerful observable in separating

QCD jets from hadronically decaying heavy states. On the other hand, since we also know that

a small fraction of QCD jets will feature large jet masses, we expect to see a top signal as a jet

mass peak over a smooth QCD jet background.

In the left panel of Fig. 5 we show jet mass distributions for QCD jets in slices of the

autoencoder loss function. The per-centile ranges from all QCD jets to the 5% least QCD-like

of all QCD jets. For the full jet sample we see the expected peak at small m j ≈ 50 GeV with a

long tail extending beyond 300 GeV. For the least QCD-like jets in the pure QCD sample a peak

at m j ≈ 200 GeV appears. This means that the cut on the autoencoder output badly shapes the

background and makes it signal-like. This defines the task of the adversarial network: provide

a smooth jet mass distribution for QCD jets, independent of the value of the autoencoder loss

function; or in other words, de-correlate the jet mass from the autoencoder.

Again, we use KERAS [70] and TENSORFLOW [71] with the ADAM [72] optimizer for the

combined adversarial network. The image-based autoencoder part of the network is described

in Fig. 2; the adversarial part consists of eight dense layers with 800, 400, 200, 100, 50, 25, 10,

and 12 units. We now train this network on 600,000 QCD jets. The output layer corresponds to

10 pre-defined slices in the jet mass, binned such that they are populated by the same number

of QCD jets. On each side we add overflow bins which are not populated by QCD jets. The task

of the adversary is not to extract the exact jet mass value, but to determine the probabilities

for the jet mass to fall into each bin. This statistical interpretation requires a multi-label cross
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Figure 5: Left: jet mass distributions from the image-based autoencoder applied to

QCD jets. The different lines show the full sample up to the 5% least QCD-like jets,

defined by the autoencoder loss function. Right: the same jet mass distributions, but

for the QCD-trained adversarial autoencoder network.

entropy as the adversary loss function [52]. All layers use the ReLU activation function except

for the last layer, where a SoftMax activation function guarantees that all 12 probabilities sum

to one. When training on the combined loss function, each epoch is split into batches of size

128. For each batch we first train the autoencoder using the combined loss function of Eq.(8)

and then train the adversary with only the adversary loss function. The size of the Lagrangian

multiplier is chosen such that the two contributions to the loss function are of similar size,

i.e. it balances the de-correlation vs the discrimination power of the network. For instance,

the jet mass distribution for λ = 5 · 10−4, shown in the right panel of Fig. 5, indicates that the

background shaping is indeed largely gone.

To study the interplay of the mass de-correlation with the performance of the adversarial

autoencoder we show results for three values of λ in Fig. 6. For increasing values of λ the

background shaping indeed improves. On the other hand, we can illustrate the performance

of the network by testing on QCD data with 3% top jets injected. For the full sample we indeed

see a hint of top jets around m j = mt in all three panels of Fig. 6. We can then extract the

5% least QCD-like jets, which should include most of the top jets. What we find is that the

number of top jets in this selection is diluted from the maximum expected 3/5 of the 5% least

QCD-like jets. This dilution grows with λ, because it is an effect of taking out the jet mass as

the strongest discriminator from the network. The performance drop is given as AUC values

and detailed in the right panel of Fig. 6, where we show the ROC curves for the adversarial

autoencoder. As before, we evaluate the network on 10 independent test samples of 20,000

QCD jets and 20,000 top jets.

For the interplay between the mass de-correlation and the performance of the network

the ROC curves are not the final word, though. Because the jet mass is removed from the

autoencoder, we now see a clear top mass peak in the least QCD-like selection. This peak can

be extracted using a shape analysis of the jet mass distribution with fully controlled side bands.

This feature makes a huge experimental difference and clearly shows how the adversary in the

jet mass promotes the autoencoder to a powerful experimental discriminator.

Finally, we can combine the same adversary part of the network with the 4-vector-based

autoencoder described in Sec. 2.2. The combined loss function is now given by Eq. 8, but

including the 4-vector-based loss function of Eq.(6). The ROC curve for a background shaping

similar to the choice λ = 5 · 10−4 for the images shows that in the LoLa setup it is much
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Figure 6: First three panels: jet mass distributions from the adversarial autoencoder

with different values for λ, trained on pure QCD, and tested on pure QCD and a

sample with 3% top jets. Lower right: ROC curves for the image-based and 4-vector-

based adversarial autoencoders. The widths of the lines show the variation based on

ten independent test samples for fixed training.

harder to de-correlate the jet mass. Correspondingly, the networks are less stable and have a

worse performance. This is because the LOLA architecture in Eq.(5) focuses the network on

learning the jet mass, which should then not be the one observable we de-correlate through the

adversarial network. For that reason, we will focus on image-based adversarial autoencoders

for the rest of this paper.

2.4 Realistic analysis setup

The problem in an actual analysis based on fully un-supervised learning on QCD jets will be

that we cannot avoid a certain signal contamination of the training data. If the QCD training

sample includes a small fraction of non-QCD, or in our case top jet, the autoencoder will

accommodate top jets as QCD-like more easily. With the adversarial autoencoder we have

developed an approach that can identify anomalous jets uncorrelated from any variable of

choice.

In Fig. 7 we show the usual jet mass distribution for the image-based network, but trained

on a QCD sample contaminated by 3% top jets. We keep λ = 5 · 10−4, but choose a much

smaller bottleneck of 10 because the network now tends to accept tops as QCD-like jets, so

we need to squeeze it harder in extracting non-QCD features. The performance with these
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Figure 7: Jet mass distributions from the adversarial autoencoder trained on a mixed

sample with 3% top jets using λ = 5 · 10−4, and tested on a QCD sample or on the

same mixed sample.

settings is almost the same as for the adversarial training on QCD jets only, shown in Fig. 6,

with an AUC of 0.65 instead of 0.70. This loss in performance can largely be recovered by

a small change in the Lagrangian multiplier to λ = 3 · 10−4. Also the remaining background

shaping in Fig. 7 is similar to the pure QCD case shown in Fig. 6. As hoped for, the top jets in

the test sample are still collected as part of the least QCD-like jets, and they retain a distinctive

mass peak which the squeezed adversarial network does not flatten.

This behavior opens the door to new strategies searching for physics beyond the Standard

Model. We briefly sketch the application to a bump hunt using the invariant jet mass [58].

First, we define a region of phase space and an analysis variable. While our method can be

applied to the inclusive QCD jet distribution, we focus on a search in jets with large transverse

momentum as motivated by possible signals for hadronic decays of massive particles. Given a

phase space region we use simulated QCD jets to set the hyper-parameters of the adversarial

network, including the Lagrange multiplier. The three figures of merit are: flatness of the mass

response, ability to identify a benchmark signal, and stability of the training.

Crucially, the actual training of the network already uses data from the same sample as we

want to analyze. This means that we split the full data sample into statistically independent

training and analysis samples. The key distribution is the jet mass for increasingly anomalous

jets. It can be evaluated using standard bump-hunting techniques to extract a new physics

signal. The signal jets can then be further dissected using orthogonal analysis techniques.

Because the training and the search rely on data in the same phase space region, the

usually leading systematics do not enter. The remaining key uncertainty is the propensity of

the network to induce a fake bump despite adversarial training. It can be reduced through

a proper tuning of the hyper-parameters on simulation and verified using additional control

regions in data. In case we see no signal, the network response can be used to set exclusion

limits for arbitrary signal models. Compared to usual new physics searches the tables are

turned: instead of training the network on simulation and applying it to data, we now train the

autoencoder on data and apply it to simulation. In turn, the related systematic uncertainties

have to be considered for exclusion limits.
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3 Exotics in jets

While top decay jets are a great tool to test and benchmark our autoencoder, they are clearly

not the most attractive application as the top is a known particle. Instead, we need to show

how the autoencoder works in extracting other, exotic jets from a QCD sample where the

parameters might not a priori be known. We will rely on two examples for this purpose:

first we will test the autoencoder on a sample which includes a Higgs-like scalar decaying to

four jets. It replaces the second, W -mass handle in the top jet by an increase in the subjet

multiplicity. Second, we will use a modified, dark shower with QCD radiation as well as dark

radiation off heavy dark quarks. The dark radiation produces missing energy and modifies the

jet mass distribution, while leaving two hard jets with anomalous radiation patterns. For both

of these models we show how the autoencoder with and without adversary can be used for a

signal-independent LHC search.

3.1 Scalar decay to jets

As an alternative to the massive top jets we study a toy model with a Higgs-like scalar decaying

to four charm jets through two light pseudoscalars,

pp→ (φ→ aa→ cc̄ cc̄)+jets . (9)

The particle masses are mφ = mt = 175 GeV and ma = 4 GeV. We are not concerned with

constraints on this toy model and choose the scalar mass such that we can easily compare our

results with the top jet case and the pseudoscalar mass such that it decays to, for example,

charm jets.

The light pseudoscalar are will be strongly boosted, and its decays should lead to four jets

without a strong hierarchy in energy and without a distinctive mass scale aside from the jet

mass. We simulate the signal with PYTHIA8.2.30 [60] and DELPHES3.3.3 [61], as usual ignoring

multi-parton interaction and pile-up. The fat jets are anti-kT jets [66]with size R= 0.8, defined

by FASTJET3.2.2 [67,68] with

pT, j = 475 ... 525 GeV . (10)

As before, the objects of the subjet analysis are particle flow objects [69] from the DELPHES

E-flow. The leptons from the charm decays are taken into account for the calorimeter. For the

pre-processing we center the jets in the kT -weighted centroid before pixelization and use a

range of −0.75 ...0.75 for the azimuthal angle and for the rapidity.

In Fig. 8 we show the main physics patterns of the scalar decay jets compared to the QCD

background. In the left panel we see the number of constituents. Comparing to Fig. 1 we

see that the general patterns are very similar, with the color-charged top leading to a slightly

larger number of constituents. In the right panel we show the jet masses for the signal and the

background. Both plots indicate that the heavy scalar signal is very similar to the top signal,

but without the intermediate mass drop from the W -decay. This will force the de-correlated

network to discriminate signal and background just based on the number of properties of the

constituents from the scalar decay vs QCD radiation. In principle, we could increase the reach

for this model by applying c-tagging, but for our toy model we explicitly do not want to use

this additional information.

The setup of the autoencoder network with and without adversary is exactly the same as

for the top case, including a bottleneck size of 32 units. The total size of the generated sample

was 800,000 jets for training, and ≈ 250,000 jets each for validation and final testing. In the

left panel of Fig. 9 we include a ROC curve for the image-based autoencoder network without
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Figure 8: Left: numbers of constituents and of non-zero pixels for scalar decay jets

and QCD. Right: truth-level jet mass distributions for the signal and the QCD back-

ground.

adversary, trained on QCD jets only. It corresponds to an AUC value of 0.90, comparable to the

top case. As before, we can add an adversary to the autoencoder, to remove the information

on the jet mass from the network and to generate control samples. This leads to a weaker

performance of the network. For the same bottleneck of 32 units and a Lagrangian multiplier

λ = 10−3 we find the ROC curve given in Fig. 9 with an AUC value of 0.60. As mentioned

before, this is significantly worse than for the top case, because the scalar is missing a second

mass drop at intermediate masses.

To see the effect of the adversarial, we show the performance after training on pure QCD

jets and evaluated on a sample including 3% signal jets in analogy to Fig. 6. Two sets of curves

include all jets or the 5% least QCD-like jets in the right panel of Fig. 9. First, we indeed observe

a small enhancement around m j = mt . While for our choice of the Lagrangian multiplier there

remains a small background shaping, we also observe a clear signal enhancement for the least

QCD-like events. However, the scalar example also shows the limitations of a subjet analysis

where we cannot apply a mass drop and have to rely on difference similar to quark-gluon

discrimination.

3.2 Dark showers

We use modified, dark showers [80,81] as another benchmark scenario, independent of their

new physics motivation through hidden valley models [82]. We assume that the model in-

cludes a heavy dark quark qv which can be pair-produced at the LHC. It undergoes showering

in the dark and SM sectors and eventually decays to its SM-partner and a light dark boson,

bv , which is uncharged under all SM-gauge groups. This dark boson hadronizes into scalar

and pseudoscalar dark meson states, collectively labelled as πv and assumed to have identical

masses mπv
= 2mbv

. Depending on the model parameters the dark mesons can decay back to

SM particles via a reverse of the production process, or leave the detector unobserved. The

visible signature is therefore di-jets plus a variable amount of missing energy

pp→ qv q̄v → qq̄+ /ET . (11)

However, the exotic production mechanism through a heavy color-charged dark quark leads

to a sizeable amount of QCD radiation together with the dominant jets. It generates a jet

mass spectrum with an upper edge at the dark quark mass. For our study we use a range of
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Figure 9: Left: ROC curves for the image-based autoencoders with and without ad-

versary. Right: jet mass distributions from the adversarial autoencoder trained on

pure QCD.

dark quark and dark boson masses. The dark gauge interaction we consider is SU(3)v with

αv = 0.1, which is a PYTHIA default model.

The generation setup of for the dark showers is the same as for the heavy scalar in Sec. 3.1,

only with a slightly higher pT range,

pT, j = 575 ... 625 GeV . (12)

The image preprocessing is identical to the scalar case with minimal pre-processing before

pixelization.

For the dark shower model parameters we again ignore current experimental constraints

and choose scenarios which best test and illustrate the behavior of our adversarial autoencoder.

Similar to the top and heavy scalar cases we use a dark quark with mass mqv
= 200 GeV. For

a small meson mass of mπv
= 10 GeV we see in the upper panels of Fig. 10 that the number

of constituents and the jet mass are similar to the other new physics scenarios in the paper.

In addition, we choose a more mass-degenerate case of mqv
= 200 GeV and mπv

= 100 GeV

to test what happens in the absence of a peak in the jet mass altogether. For the dark shower

samples we used 800000 training, 260000 validation and 280000 testing samples.

In the lower panels of Fig. 10 we first show the performance of the autoencoder without

adversary. For both models we find excellent performance with AUC values of 0.78 ... 0.79. In

the direct comparison, the autoencoder can more easily reject the peaked jet mass distribution,

but at high efficiencies it is hard to separate the low-mass peak from QCD. For the adversarial

network with λ = 10−2 we now use 50 jet mass bins instead of the 10 used before. We find

that the performance drops to a level comparable with the heavy scalar case with AUC value

around 0.6, but with better jet mass de-correlation. As expected, the mass peak for the 5%

least QCD-like events is broader and less pronounced for the mass-degenerate model. As for

the scalar case, we clearly see that the autoencoder strategy works, but also that most of the

relevant information is included in the jet mass distribution. In return, de-correlating this key

observable for background control leads to a significant drop in performance.
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Figure 10: Autoencoder applied to a set of dark shower signals. Upper left: num-

bers of constituents for the dark shower models. Upper right: truth-level jet mass

distributions for the different models. Lower left: ROC curves for the autoencoders

with and without adversary. Lower right: jet mass distributions from the adversarial

autoencoder trained on pure QCD.

4 Outlook

Anomalies in jets at the LHC can be extracted with the help of an autoencoder, a neural net-

work based on low-level data and trained on QCD or other background samples only. We have

shown that such a network extracts boosted hadronic top decays based on jet images or based

on 4-vectors with a simplified LOLA structure. This technique is also compatible with other jet

representations and network architectures. Its reduced performance as compared to special-

ized taggers is balanced by reduced systematic uncertainties in the absence of a well-defined

signal model. Moreover, one autoencoder network realizing un-supervised learning for a given

phase space region can be used to search for many different signals at the same time.

To further reduce experimental systematics, we propose to train and use an autoencoder

network in the same phase space region. This requires full control of the background shaping.

We extend our approach to an adversarial autoencoder based on jet images, de-correlating for

example the jet mass from the training. This allows us to sort a jet sample by the loss function

describing how QCD-like the jet is. We find (essentially) the same jet mass distribution for each

slice in the loss function. For instance top decay jets are now collected in the least QCD-like
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Figure 11: Illustration of our network setup.

slices and lead to a distinct peak in the jet mass.

Next, we have shown how to train the adversarial autoencoder on data with a signal con-

tamination. In that case we typically make the autoencoder more restrictive and still find that

the top jets are classified as the least QCD-like jets. We can still select them based on the

network output and search for their distinctive peak in the jet mass distribution for non-QCD

slices.

Finally, we have shown how the (adversarial) autoencoder can be used to not only extract

top decay jets, but also decays of a heavy scalar to four quarks, or dark showers. Both of these

models are significantly harder to extract than tops at the LHC. After de-correlating the jet

mass, the different signals retain different amounts of information, allowing us to separate

them from the QCD background. Given the universal structure of the autoencoder network

this means that the experimental LHC collaborations could make their networks, trained on

data, public and allow external groups to test if specific models would indeed be flagged as

anomalies and are hence excluded.

While finishing this paper we heard of a similar, independent study, which is published in

parallel to our work [83].
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