
QCD phenomenology of static sources and gluonic excitations at short distances

Gunnar S. Bali*
Department of Physics & Astronomy, The University of Glasgow, Glasgow G12 8QQ, Scotland

Antonio Pineda†
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New lattice data for the Pu and Su
2 potentials at short distances are presented. We compare perturbation

theory to the lower static hybrid potentials and find good agreement at short distances, once the renormalon

ambiguities are accounted for. We use the nonperturbatively determined continuum-limit static hybrid and

ground state potentials at short distances to determine the gluelump energies. The result is consistent with an

estimate obtained from the gluelump data at finite lattice spacings. For the lightest gluelump, we obtain

LB
RS(n f52.5r0

21)5@2.2560.10(latt.)60.21(th.)60.08(LMS)#r0
21 in the quenched approximation with r0

21

'400 MeV. We show that, to quote sensible numbers for the absolute values of the gluelump energies, it is

necessary to handle the singularities of the singlet and octet potentials in the Borel plane. We propose to

subtract the renormalons of the short-distance matching coefficients, the potentials in this case. For the singlet

potential the leading renormalon is already known and related to that of the pole mass; for the octet potential

a new renormalon appears, which we approximately evaluate. We also apply our methods to heavy-light

mesons in the static limit and from the lattice simulations available in the literature we obtain the quenched

result L̄RS(n f52.5r0
21)5@1.1760.08(latt.)60.13(th.)60.09(LMS)#r0

21. We calculate mb ,MS(mb ,MS) and ap-

ply our methods to gluinonia whose dynamics are governed by the singlet potential between adjoint sources.

We can exclude nonstandard linear short-distance contributions to the static potentials, with good accuracy.
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I. INTRODUCTION

In recent years, we have witnessed growing interest in the
physics of gluelumps and static hybrid potentials. In many
cases this has been driven by increasingly reliable lattice
simulations of their properties @1–7#. These results expose
models of low energy QCD to stringent tests and therefore
enhance our understanding of the underlying dynamics. The
short distance physics of the static hybrid potentials is of
particular importance. In this region, hybrids and gluelumps
are intimately related and well suited to investigate the inter-
play between perturbative and non-perturbative physics. At
short distances r, one is faced with widely separated scales:
1/r@LQCD . In such situations, effective field theories
~EFTs! are particularly useful since they enable the physics
associated with the different scales to be factorized in a very
efficient and model independent way. One EFT designed to
deal with the kinematical case of interest to us corresponds
to potential nonrelativistic QCD ~pNRQCD! @8# in the static
limit @9#.

In Ref. @9# the gluelumps and the short distance regime of
the static hybrids were studied within this EFT framework
and general features identified. Some results known from the
past @5,10–13# were recovered within a unified framework
and in some cases extended.

One can go beyond this analysis and use lattice data plus
the knowledge of the ~perturbative! octet potential to obtain
numerical values for gluelump masses in a particular

scheme. However, analogously to the situation with the static
singlet potential, the convergence of the perturbative series
of the octet potential does not appear very promising. This is
a general problem when different scales are factorized, and
in particular perturbative from non-perturbative ones. The
bad convergence is also related to the problem of factorizing
non-perturbative quantities, without defining their perturba-
tive counterparts @14#, and is usually believed to be due to
the existence of singularities in the Borel transform of the
perturbative quantity. These singularities appear to be due to
scales of order e2n

3 ~the typical scale of the perturbative
quantity! in an n-loop calculation. In Ref. @15# one of the
present authors proposed that, since these singularities are
related to energy scales much lower than the ones that are
supposedly included in the perturbative object, they should
be subtracted from it and introduced in the matrix elements
of the effective theory. This program has been worked out for
the pole mass and the static singlet potential @15,16#. Here
we apply the same approach to the static octet potential. This
will allow us to determine absolute values for the gluelump
masses from the spectrum of the static hybrids, as well as to
study up to which scale one can use perturbation theory to
describe hybrid potentials.

This paper is organized as follows. In Sec. II we will work
out the role of gluelumps in pNRQCD, and how gluelumps
and hybrid potentials are interrelated. In Sec. III we will then
sketch how our lattice data have been obtained, before dis-
cussing and classifying renormalons and power corrections

in the continuum MS scheme as well as in a lattice scheme in
Sec. IV. In the same section we will also generalize the
renormalon subtracted (RS) scheme of Ref. @15# to the case
of the octet potential and discuss the scale dependence. In
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Sec. V we will obtain the gluelump masses in the RS scheme
and relate these results to the lattice scheme. We will com-
pare to previous literature and predict the gluelump spec-
trum. In Sec. VI we will determine the binding energy of
static-light mesons as well as the bottom mass, before we
discuss generalizations to and relations with adjoint poten-
tials, gluinonium and other objects with relevance to short-
distance QCD in Sec. VII.

II. HYBRID POTENTIALS AND GLUELUMPS

We discuss the relationship between hybrid potentials and
gluelumps at short distances. First we consider the EFT pic-
ture, before we discuss the symmetries that are relevant in
the non-perturbative case. Finally we compare these expec-
tations to lattice data.

A. pNRQCD and gluelumps

The pNRQCD Lagrangian at leading order in 1/m and in
the multipole expansion reads @8,9#

LpNRQCD5E d3r d3R Tr@S†~ i]02Vs!S1O†~ iD02Vo!O#

2E d3R
1

4
Fmn

a Fmna
1O~r !. ~1!

All the gauge fields in Eq. ~1! are evaluated in R and t, in
particular Fmna[Fmna(R,t) and iD0O[i]0O
2g@A0(R,t),O# . The singlet and octet potentials V i , i

5s ,o are to be regarded as matching coefficients, which de-
pend on the scale nus separating soft gluons from ultrasoft
ones. In the static limit ‘‘soft’’ energies are of O(1/r) and
‘‘ultrasoft’’ energies are of O(as /r). Notice that the hard
scale m plays no role in this limit. The only assumption made
so far concerns the size of r, i.e. 1/r@LQCD , such that the
potentials can be computed in perturbation theory. Also note
that throughout this paper we will adopt a Minkowski space-
time notation.

The spectrum of the singlet state reads

Es~r !52mOS1Vs~r !1O~r2!, ~2!

where mOS denotes an on-shell ~OS! mass. One would nor-
mally apply pNRQCD to quarkonia and in this case mOS

represents the heavy quark pole mass. For the static hybrids,
the spectrum reads

EH~r !52mOS1Vo~r !1LH
OS

1O~r2!, ~3!

where

LH
OS[ lim

T→`

i
]

]T
ln^Ha~T/2!f~T/2,2T/2!Hb~2T/2!& .

~4!

f~T/2,2T/2![f~T/2,R,2T/2,R!

5P expH 2igE
2T/2

T/2

dtA0~R,t !J ~5!

denotes the Schwinger line in the adjoint representation, H

represents some gluonic field, and P represents the path or-
dering prescription; for examples see Table IV in Sec. V C.

Equation ~3! allows us to relate the energies of the static
hybrids EH to the energies of the gluelumps,

LH
OS

5@EH~r !2Es~r !#2@Vo~r !2Vs~r !#1O~r2!. ~6!

This equation encapsulates one of the central ideas of this
paper. The combination EH2Es is renormalon-free in pertur-
bation theory @up to possible O(r2) effects#, and can be cal-
culated unambiguously non-perturbatively: the ultraviolet
~UV! renormalons related to the infrared ~IR! renormalons of
twice the pole mass cancel each other. However, LH contains
an UV renormalon that corresponds to the leading IR renor-
malon of Vo .

The shapes ~of some! of the EH(r) have been computed
on the lattice, for instance, in Refs. @1–6#. On the other hand,
the values of ~some! LH have also been computed within a
variety of models as well as in lattice simulations @12,17#.
Consistency would require that the values of LH obtained
from EH2Es and the values of LH directly obtained from
gluelump computations should agree. This will be checked in
Sec. V B.

Gluelump states are created by a static source in the octet
~adjoint! representation attached to some gluonic content ~H!
such that the state becomes a singlet under gauge transfor-
mations. This is what would happen to heavy gluinos in the
static approximation. Hence sometimes gluelumps are also
referred to as gluinoballs or glueballinos in the literature.
Without further information, their energy is only fixed up to
a global constant. Only the energy splittings between differ-
ent states have well defined continuum limits in lattice simu-
lations. In lattice regularization at a lattice spacing a the
normalization ambiguity is reflected in a linear divergence
}a21 while in dimensional regularization one encounters an
UV renormalon. In the HQET ~heavy quark effective
theory!, picture of a heavy-light meson one faces a similar
problem. In this situation one also has a static source ~in the
fundamental representation in this case!, which has to be
attached to some light-quark ~and gluonic! content to be-
come a singlet under gauge transformations. The binding en-

ergy L̄ is again only defined up to a global constant @18# and
only its sum with the pole mass is unambiguous:

M B5mb ,OS1L̄OS
1O~1/mb!. ~7!

We will investigate this situation in Sec. VI.

B. Symmetries of hybrid potentials and gluelumps

The spectrum of open QCD string states can be com-
pletely classified by the quantum numbers associated with
the underlying symmetry group, up to radial excitations. In
this case, these are the distance between the end points, the
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gauge group representation under which these end points

transform ~in what follows we consider the fundamental rep-

resentation!, and the symmetry group of cylindrical rotations

with reflections D`h . The irreducible representations of the

latter group are conventionally labeled by the spin along the

axis L , where S ,P ,D refer to L50,1,2, respectively, with a

subscript h5g for gerade ~even! PC51 or h5u for un-

gerade ~odd! PC52 transformation properties. All L>1

representations are two dimensional. The one-dimensional S
representations have, in addition to the h quantum number, a

s
v

parity with respect to reflections on a plane that includes

the two end points. This is reflected in an additional 6 su-

perscript. The state associated with the static singlet potential

transforms according to the representation Sg
1 while the two

lowest-lying hybrid potentials are within the Pu and Su
2 rep-

resentations, respectively.

In contrast, point-like QCD states are characterized by the

JPC of the usual O(3) ^ C rotation group as well as by the
gauge group representation of the source. In the pure gauge
sector, gauge invariance requires this representation to have
vanishing triality, such that the source can be screened to a
singlet by the glue. States created by operators in the singlet
representation are known as glueballs, octet states as glue-
lumps. In contrast to gluelump states, where the octet source
propagates through the gluonic background, the normaliza-
tion of glueball states with respect to the vacuum energy is
unambiguous.

Since D`h,O(3) ^ C, in the limit r→0 certain hybrid
levels must become degenerate. For instance, in this limit,

the Su
2 state corresponds to a JPC

5112 state with Jz50

while the Pu doublet corresponds to its Jz561 partners.
The gauge transformation property of the hybrid potential
creation operator will also change in this limit, 3^ 3*51

% 8, such that hybrids will either approach gluelumps @cf.
Eq. ~3!# or glueballs, in an appropriate normalization. In the
case of glueballs the correct normalization can be obtained
by considering the difference EH(r)2Es(r) from which the
pole mass cancels. We will discuss the situation with respect
to gluelumps in detail in Sec. IV.

In perturbation theory, the ground state potential corre-
sponds to the singlet potential while hybrid potentials will
have the perturbative expansion of the octet potential.

Recently, Philipsen @19# suggested to non-perturbatively
generalize the octet potential, employing a definition that re-
sembles the perturbative one, after gauge fixing to the La-
placian Coulomb gauge. He proved that this construction is
equivalent to a gauge invariant correlation function whose
eigenvalues will resemble masses of physical states. In the
limit r→0 the suggested operator will be an adjoint temporal
Schwinger line, dressed with a non-local but symmetric
gluon cloud, with the JPC quantum numbers of the vacuum.
A similar construction is mentioned in the second paragraph
of Sec. VI, as a possible non-perturbative normalization
point for gluelump energies. The static ‘‘octet’’ potential sug-

gested in Ref. @19# will have the Sg
1 symmetry and, up to a

different non-perturbative offset, the same perturbative ex-
pansion and power term/renormalon structure as the hybrid
potentials discussed below. Due to the nature of its creation

operator which is non-local, even in the r50 limit, at present
it is not obvious to us how this non-perturbative state can be
interpreted in terms of the local states we are considering in
this paper, certainly an open question that should be ad-
dressed in the future.

C. Hybrid and gluelump mass splittings

We would like to establish if lattice data on hybrid poten-
tials reproduces the degeneracies expected from the above
discussion in the short distance region. In the limit r→0, any
given L>1 hybrid potential can be subduced from any JPC

state with J>L and PC51 for h5g or PC52 for h
5u representations. For instance the Pu is embedded in
112,121,212,221,••• . The situation is somewhat different

for L50 states, which have the additional s
v

parity: the Sg
1

representation can be obtained from 011,122,211,••• ,Sg
2

from 022,111,••• ,Su
1 from 012,121,••• and Su

2 from

021,112,••• . We list all combinations of interest to us in
Table I. The ordering of low-lying gluelumps has been es-
tablished in Ref. @12# and reads with increasing mass:
112,122,222,212,312,011,422,121, with a 322 state in
the region of the 422 and 121. The 212 and 312 as well
as the 422 and 121 states are degenerate within present
statistical uncertainties.1 The continuum limit gluelump
masses are displayed as circles at the left of Fig. 1, where we
have added the ~arbitrary! overall constant 2.26/r0 to the
gluelump splittings to match the hybrid potentials. The simi-
larity of this value to our estimate of the gluelump energy in
Sec. V A is purely accidental.

Juge, Kuti and Morningstar @1# have, for the first time,
comprehensively determined the spectrum of hybrid poten-
tials. We convert their data, computed at their smallest lattice
spacing as'0.2 fm, into units of r0'0.5 fm @20#. Since the
results have been obtained with an improved action and on

1The splittings between all states with respect to the 112 ground

state have been extrapolated to the continuum limit in Ref. @12# and

we add our own extrapolations for the 422 and 121 states to these,

based on the tables of this reference.

TABLE I. Expected degeneracies of hybrid potentials at short

distance, based on the level ordering of the gluelump spectrum.

Note that if the 312 gluelump turned out to be lighter than the 212

then the Su
28 ,Pu8 ,Du ,Fu potentials would approach the 312 state

while the Su
1 ,Pu9 ,Du8 potentials would approach the 212 instead.

Point particle JPC
Open string Lh

s
v

112 Su
2 ,Pu

122

Sg
18 ,Pg

222 Sg
2 ,Pg8 ,Dg

212 Su
1 ,Pu8 ,Du

312

Su
28 ,Pu9 ,Du8 ,Fu

011

Sg
19

422

Sg
28 ,Pg9 ,Dg8 ,Fg ,Gg

121

Su
18 ,Pu-
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anisotropic lattices with at'as/4, one might expect lattice
artifacts to be small,2 at least for the lower-lying potentials.
Hence we compare these data, normalized to ES

g
1(r0), with

the continuum expectations of the gluelumps @12#. The full
lines are cubic splines to guide the eye while the dashed lines
indicate the gluelumps towards which we would expect the
respective potentials to converge.

The first seven hybrid potentials are compatible with the
degeneracies suggested by Table I. The next state is trickier
since it is not clear whether 212 or 312 is lighter. In the
figure we depict the case for a light 212. This would mean

that (Su
1 ,Pu8 ,Du) approach the 212 while

(Su
28 ,Pu9 ,Du8 ,Fu) approach the 312. Note that of the latter

four potentials only data for Pu9 and Fu are available. Also

note that the continuum states Pu8 , Pu9 and Fu are all ob-

tained from the same Eu lattice representation. For the pur-
pose of the figure we make an arbitrary choice to distribute

the former three states among the Eu8 ,Eu9 and Eu- lattice po-

tentials. To firmly establish their ordering one would have to
investigate radial excitations in additional lattice hybrid
channels and/or clarify the gluelump spectrum in more de-
tail. Should the 212 and 312 hybrid levels be inverted then

(Su
28 ,Pu8 ,Du ,Fu) will converge to the 312 while

(Su
1 ,Pu9 ,Du8) will approach the 212. We note that the or-

dering of the hybrid potentials, with a low Su
1 , makes the

first interpretation more suggestive.

Finally the Sg
19 potential seems to head towards the 011

gluelump but suddenly turns downward, approaching the
~lighter! sum of the ground state potential and scalar glueball
@21,22# instead. The latter type of decay will eventually hap-
pen for all lattice potentials but only at extremely short dis-
tances. We also remark that all potentials will diverge as r

→0. This does not affect our comparison with the gluelump

results, since we have normalized them to the Pu /Su
2 poten-

tials at the shortest distance available. ~The gluelump values
are plotted at r50 to simplify the figure.!

On a qualitative level the short-distance data are very con-
sistent with the expected degeneracies. From the figure we
see that at r'2r0'1 fm the spectrum of hybrid potentials
displays the equi-distant band structure one would qualita-
tively expect from a string picture. Clearly this region, as
well as the crossover region to the short-distance behavior
r0,r,2r0 , cannot be expected to be within the perturbative
domain: at best one can possibly imagine perturbation theory
to be valid for the left-most two data points. With the excep-

tion of the Pu , Pu8 and Fu potentials there are also no clear

signs for the onset of the short distance 1/r behavior with a
positive coefficient as expected from perturbation theory.
Furthermore, most of the gaps within multiplets of hybrid
potentials, that are to leading order indicative of the size of
the non-perturbative r2 term, are still quite significant, even

at r50.4r0 ; for instance the difference between the Su
2 and

Pu potentials at this smallest distance is about 0.28r0
21

'110 MeV.

D. The difference between the Pu and S
u

À hybrids

From the above considerations it is clear that for a more
quantitative study we need lattice data at shorter distances. In
this paper we have obtained these for the lowest two gluonic

excitations, Pu and Su
2 ~see Sec. III!. We display their dif-

ferences in the continuum limit in Fig. 2. We see how these
approach zero at small r, as expected from the short distance
expansion. pNRQCD predicts that the next effects should be
of O(r2) ~and renormalon-free!. In fact, we can fit the lattice
data rather well with a DEPu2S

g
15APu2S

u
2r2 ansatz for

short distances, with slope ~see Fig. 2!,

APu2S
u
250.92

20.52
10.53r0

23 , ~8!

where the error is purely statistical ~lattice!. This fit has been
done using points r&0.5r0 . By increasing the fit range to
r&0.8r0 the following result is obtained:

APu2S
u
25~0.8360.29!r0

23 , ~9!

2On the lattice the relevant symmetry group is D4h rather than

D`h ~see, e.g., Ref. @23#!. In the continuum limit the A1h potentials

will correspond to Sh
1 , the A2h potentials to Sh

2 and the Eh poten-

tials to Ph , where h5u ,g . The radial excitations could in principal

correspond to higher spin potentials and in fact one of the three

observed excitations of Eu will correspond to the Fu ground state.

In all other cases, associating the lowest possible continuum spin to

a given lattice potential seems to agree with the ordering suggested

by the gluelump spectrum ~as well as in the large distance string

limit @1#!. B1h and B2h both correspond to Dh . In either case ~as

well as for Dg8), at the short distances displayed in the figure, the

two lattice representations agree with each other, supporting the

view that violations of rotational symmetry are small. In this case

we only display the lattice representations with better statistical

accuracy, i.e. the B1h
(8)s.

FIG. 1. Different hybrid potentials @1# at a lattice spacing as

'0.2 fm'0.4r0 , where r0'0.5 fm, in comparison with the glue-

lump spectrum, extrapolated to the continuum limit @12# ~circles,

left-most data points!. The gluelump spectrum has been shifted by

an arbitrary constant to adjust the 112 state with the Pu and Su
2

potentials at a short distance. In addition, we include the sum of the

ground state (Sg
1) potential and the scalar glueball mass m011

@21,22#. The lines are drawn to guide the eye.
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indicating stability of the result of Eq. ~8!.
In order to estimate systematic errors one can add a quar-

tic term: br4 ~only even powers of r appear in the multipole
expansion of this quantity!. If the result is stable, our deter-
mination of APu2S

u
2 should not change much. Actually this

is what happens. If we fit up to r&0.5r0 , we obtain the

central value APu2Su
r0

3
50.93 with a very small quartic co-

efficient, br0
5
520.05. If we increase the range to r

&0.8r0 , we obtain the same central value, APu2S
u
2r0

3

50.93, but with a slightly bigger quartic term, br0
5

520.18. Introducing the quartic term enhances the stability
of APu2S

u
2 under variations of the fit range. From this dis-

cussion we conclude that the systematic error is negligible,
in comparison to the error displayed in our result Eq. ~8!.

We remark that within the framework of static pNRQCD
and to second order in the multipole expansion, one can re-
late the slope APu2S

u
2 to gluonic correlators of QCD.

III. LATTICE DETERMINATION OF HYBRID

POTENTIALS

We extract the hybrid potentials in two sets of simula-
tions, using the Wilson gauge action on an isotropic lattice
with volume 243

348 at b56.2 (a'0.14r0) as well as on
three anisotropic lattices with spatial lattice spacings as

'0.33,0.23,0.16r0 , respectively, with anisotropy as'4at .
The former result has been obtained in the context of the
study of Ref. @4# ~and has been published in Ref. @3#! while
the simulation parameters, statistics and smearing of the lat-
ter runs are identical to those of Ref. @24#: (b ,j0)
5(5.8,3.1),(6.0,3.2),(6.2,3.25). The isotropic data are used
as a consistency check and in Sec. IV D, while we extrapo-
late the data obtained on the anisotropic lattices to the con-
tinuum limit.

Some time was spent on improving the shape of the hy-

brid creation operators to optimize the overlap with the
ground state @4#. The Pu potential has been determined on
axis as well as along a plane diagonal, r/as}(1,1,0), while

the Su
2 potential has only been obtained on axis. Typically

we achieved ground state overlaps of around 65% for both
potentials at b55.8 and between 85% and 90% at the larger
two b values. Typical fit ranges for one-exponential fits to

correlation functions for the Pu(Su
2) potential were 8

<t/at<18 (9<t/at<14) at b55.8, 9<t/at<24 (11
<t/at<21) at b56.0 and 13<t/at<30 (15<t/at<25) at
b56.2. For all further details of the analysis we refer to Ref.
@24# where potentials between sources in non-fundamental
representations of SU(3) were extracted using exactly the
same methods.

Subsequently, the potentials as well as the differences be-
tween potentials have been extrapolated to the continuum
limit. As one such example we display the difference be-
tween the Pu and the singlet potential in Fig. 3 for distances
r<r0 . In this extrapolation we somewhat deviate from Ref.
@24#: we follow Ref. @25# in removing the lattice artifacts to
leading order in as , by plotting the data as a function of the
inverse lattice Coulomb propagator,

r̄5asF 1

R
G

L

21

, ~10!

rather than of r. The lattice Coulomb propagator for the Wil-
son gauge action is given by

F 1

R
G

L

54pE
2p

p d3Q

~2p !3

cos~QR!

4(
i

sinS Q i

2
D

, ~11!

and agrees with the continuum 1/R function up to O(a2/r2)
lattice artifacts. R5r/a denotes an integer-valued three-
vector and the Q i5q ias are dimensionless. For the Pu po-

FIG. 2. Splitting between the Su
2 and the Pu potentials, extrapo-

lated to the continuum limit, and the comparison with a quadratic fit

to the r&0.5r0 data points (r0
21'0.4 GeV). The big circles corre-

spond to the data of Juge et al. @1#, obtained at finite lattice spacing

as'0.39r0 . The errors in this case are smaller than the symbols.

FIG. 3. Continuum limit extrapolation of the difference between

the Pu and the Sg
1 potentials vs r̄5r@11O(a2/r2)# as described in

the text @Eqs. ~10! and ~11!#. The Juge et al. data are from Ref. @1#.
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tential this procedure removes violations of rotational sym-
metry within the statistical errors and brings the plane-
diagonal points in line with the on-axis data. Unfortunately,

we cannot perform a similar internal test for the Su
2 potential

which we only determined for on-axis separations.
The next step involved fitting differences between hybrid

potentials and Sg
1 , DEH5EH2ES

g
1, for r>2a to the phe-

nomenological interpolation,

DEH~r !5c11

c21c3ln~r !

r
1c4r2, ~12!

with parameters c i . We then extrapolated these interpolating

curves to the continuum limit, assuming the leading order as
2

dependence. This was done separately for different pairs of
two lattice spacings. The central value of the extrapolation is
given by the result obtained from the as'0.33r0 and as

'0.16r0 data sets. The error is estimated by the squared sum
of the statistical error of the fine lattice data set and the
difference between the above extrapolation and an extrapo-
lation obtained from the as'0.23r0 and as'0.16r0 data
sets. With decreasing r the interpolating fits become less well
constrained and hence the latter systematic uncertainty in-
creases. The resulting error band is depicted in Fig. 3. Reas-
suringly, the as'0.16r0 data are already in agreement with
the continuum limit and the as'0.23r0 data agree within
errors: the fine lattice data set effectively already corresponds
to the continuum limit. The more precise isotropic reference
data (a'0.14r0) are also close to the continuum limit. We
also notice that the first three data points of the coarse lattice
data by Juge et al. @1# (as'0.39r0) are compatible with our

extrapolation. The same observations hold true for the Su
2

potentials.
Rather than representing the continuum limit extrapolated

potentials by error bands, in the remaining parts of this paper
we add the difference between ~finite a) interpolation and
~continuum limit! extrapolation to the fine lattice data points
and increase their errors by the systematic uncertainty in-
volved in the extrapolation.

IV. STATIC OCTET POTENTIAL

We will discuss the octet potential in the OS (5 ‘‘pole
mass’’! scheme, compute the normalization constant of the
renormalon and generalize the RS renormalon subtracted
scheme @15# to this case. We will also discuss the structure of

power divergences on the lattice and the analogous lattice
scheme. Finally we discuss the running of the gluelump mass
from one scale to another.

A. OS scheme for the octet potential

The octet potential in the case 1/r@LQCD can be com-
puted order by order in perturbation theory. Nevertheless, it
is not an IR safe object @26#. Its perturbative expansion reads

Vo~r;nus!. (
n50

`

Vo ,nas
n11, ~13!

where we have made explicit its dependence on the IR cutoff
nus and as5as(n), where we define

n
das

dn
522asFb0

as

4p
1b1S as

4p D 2

1•••G .

In what follows we will always identify as with aMS . The
first two coefficients Vo ,0 , Vo ,1 are known, as well as the
leading-logarithm terms of Vo ,3 @26# ~for the
renormalization-group improved expression see Ref. @27#!.
Note, however, that these leading logarithms are not associ-
ated with to the first IR renormalon. For Vo ,2 there exists a
preliminary computation @28#,

Vo ,252

1

Nc
2
21

Vs ,21dVo ,2 , ~14!

dVo ,2'2

1

2Nc

1

~4p !2
21CA

2
1

r
, ~15!

which we will use in what follows. Vs ,2 has been computed
in Ref. @29#. For Vo ,3 , we will use the renormalon-based
estimate that we obtain in Sec. IV B ~Table II!.

Studying the convergence of perturbation theory of the
octet potential in the OS scheme, conclusions similar to
those in Ref. @16# are obtained. The poor convergence is
demonstrated in Fig. 4, where we try two choices of the scale
n . In part ~a! we use n5n i , where

n i5r8
21

56.604r0
21'2.6 GeV ~16!

corresponds to the shortest distance r8 for which the con-
tinuum limit extrapolated lattice potentials are available. In

TABLE II. Values of Vo ,n with n51/r: exact result ~where available! and the estimate using Eq. ~19!. We

also display the estimates of Vs ,n with n51/r ~extracted from Ref. @15#!.

Ṽo ,n5rVo ,n Ṽo ,0 Ṽo ,1 Ṽo ,2 Ṽo ,3 Ṽo ,4

exact (n f50) 0.166667 0.305472 1.27419

Eq. ~19! (n f50) 0.110552 0.244266 1.14193 6.97413 54.4562

Ṽs ,n5rVs ,n Ṽs ,0 Ṽs ,1 Ṽs ,2 Ṽs ,3 Ṽs ,4

exact (n f50) 21.33333 22.44378 211.7893

estimate (n f50) 21.20643 22.66564 212.4616 276.1075 2594.2718
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part ~b! we vary n51/r . Obviously the curves depicted in
the two parts of the figure agree with each other at r5r8

'0.15r0 . Note the difference in the vertical scale.

B. Static octet potential normalization constant

We define the Borel transform of the octet potential as
follows:

Vo5E
0

`

dte2t/asB@Vo#~ t !, B@Vo#~ t ![ (
n50

`

Vo ,n

tn

n!
.

~17!

The behavior of the perturbative expansion Eq. ~13! at large
orders is dictated by the closest singularity to the origin of its
Borel transform, which happens to be located at t52p/b0 .
This singularity has two sources: one is a UV renormalon
which cancels with the renormalon of twice the pole mass,
the other is an IR renormalon that cancels with the UV renor-
malon of the gluelump energy. This result follows from the
structure of the effective theory and the consequent factor-
ization of the different scales in Eq. ~3!. Being more precise,
the behavior of the Borel transform of the static octet poten-
tial near the closest singularity to the origin @u51/2 where
we define u5b0t/(4p)] reads

B@Vo#„t~u !…5NVo
n

1

~122u !11b
@11c1~122u !

1c2~122u !2
1•••#1~analytic term!,

~18!

where by analytic term, we mean a function that is analytic
up to the next IR renormalon at u53/2. This dictates the
behavior of the perturbative expansion at large orders to be

Vo ,n 5

n→`

NVo
nS b0

2p D n G~n111b !

G~11b !
F11

b

~n1b !
c1

1

b~b21 !

~n1b !~n1b21 !
c21•••G . ~19!

The structure of the renormalon is equal to the singlet one.
This is due to the fact that the number of octet fields is
conserved at leading order in the multipole expansion and
that the mass ~potential! does not renormalize at this order.
Therefore the values of the coefficients b ,c1 ,c2 , . . . above
are the same as for the case of the static potential and the
pole mass and can be found in Refs. @15,30,31#. We display
them here for ease of reference:

b5

b1

2b0
2

, ~20!

c15

1

4bb0
3 S b1

2

b0

2b2D , ~21!

and

c25

1

b~b21 !

1

32b0
3

@b1
4
14b0

3b1b222b0b1
2b2

1b0
2~22b1

3
1b2

2!22b0
4b3# . ~22!

The only difference with respect to the static singlet potential
is the value of NVo

. The cancellation of the renormalon in

Eq. ~3! requires

2Nm1NVo
1NL50, ~23!

where NL is the normalization constant of the renormalon of
the gluelump mass (B@L# reads the same as Eq. ~18!, with
the replacement NVo

°NL). Therefore, unlike in the static

singlet potential case, we cannot fix NVo
from the knowledge

of Nm alone. Yet we will ~approximately! determine NVo

from low orders in perturbation theory of the octet potential.
Note also that NL is independent of H, the specific gluonic
content of the gluelump, since it only depends on the high
energy behavior, which is universal. To leading non-trivial
order one obtains, NVo

5CA/22C f ,NL52CA/2.

In analogy to Refs. @15,16,32# we define the new function,

FIG. 4. r0Vo(r) ~the octet potential in the OS scheme! at tree level ~dashed lines!, one loop ~dashed-dotted lines!, two loops ~dotted lines!
and three loops ~estimate! plus the leading single ultrasoft logarithm ~solid lines!. ~a! corresponds to the scale n5n i @cf. Eq. ~16!# and ~b!

to n51/r . In both cases, nus52.5r0
21. Only the solid curves depend on this choice.
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DVo
~u !5 (

n50

`

DVo

(n)un
5~122u !11bB@Vo

(0)#„t~u !…

5NVo
n@11c1~122u !1c2~122u !2

1•••#

1~122u !11b
3~analytic term!, ~24!

and try to approximately determine NVo
by using the first

three coefficients of this series. In analogy to Refs. @15,16#,
we fix n51/r and obtain @up to O(u3)uu51/2],

NVo
50.16666720.062429210.0097633350.114001.

~25!

The convergence is rather good and, moreover, we have a
sign alternating series. In fact, the scale dependence is be-
coming milder when we go to higher orders ~see Fig. 5!.
Note that if the two-loop coefficient Vo ,2 had been equal to
that of the singlet case @29# ~with color factor C f°CA/2
2C f), we would have obtained NVo

50.146542.

We can now compute estimates for Vo ,n by using Eq.
~19!. These, as well as estimates for Vs ,n , are displayed in
Table II for n f50. We can see that the exact results are
reasonably well reproduced. Hence we feel confident that we
are near the asymptotic regime dominated by the first IR
renormalon and that for higher n our predictions will accu-
rately approximate the exact results.

In order to avoid large corrections from terms depending
on nus , the predictions should be understood with nus51/r
and later on one can use the renormalization group equations
for the static potential @27# to keep track of the nus depen-
dence.

C. RS scheme for the octet potential

In Sec. IV A we have demonstrated the poor convergence
of the perturbative expansion of the octet potential in the OS
scheme. This bad behavior is usually believed to be due to
the singularities in the Borel transform of the perturbative
expansion. Nevertheless, these singularities are fake since
they cancel with singularities in the matrix elements. On the
other hand, this lack of convergence of perturbation theory
arises because at higher orders in perturbation theory smaller
and smaller momenta contribute to the short-distance match-

ing coefficients of the effective theory. This clashes with the
logic of scale separation in the EFT formalism. The solution
advocated in Ref. @15# was to subtract this behavior from the
matching coefficients. At the practical level this was imple-
mented by subtracting the Borel plane singularities of the
matching coefficients. In Refs. @15,16# this has been worked
out for the pole mass and the static singlet potential and we
refer to these references for the definitions and further de-
tails. In particular Eq. ~2! reads

Es~r !52mRS~n f !1Vs ,RS~r;n f !1O~r2!, ~26!

where

mRS~n f !5mOS2dmRS~n f !, ~27!

Vs ,RS~r;n f !5Vs~r !12dmRS~n f !, ~28!

and ~in the above equation we have already used the fact that
the renormalon of the singlet potential cancels with the one
of minus twice the pole mass!,3

dmRS~n f !

5 (
n51

`

Nmn f S b0

2p D n

as
n11~n f !(

k50

`

ck

G~n111b2k !

G~11b2k !
.

~29!

For the static hybrids, the spectrum reads

EH~r !52mRS~n f !1Vo ,RS~r;n f !1LH
RS~n f !1O~r2!.

~30!

Obviously, we have to define the octet potential and the glue-
lump mass above. In the RS scheme the octet potential reads

Vo ,RS~n f !5Vo2dVo ,RS5 (
n50

`

Vo ,n
RS as

n11 , ~31!

where

dVo ,RS5 (
n51

`

NVo
n f S b0

2p D n

as
n11~n f !(

k50

`

ck

G~n111b2k !

G~11b2k !
.

~32!

This specifies the gluelump mass which reads

LH
RS~n f !5LH2dLRS~n f !, ~33!

where

3Actually, throughout this paper we use the RS’ scheme as defined

in Ref. @15# instead of the RS scheme, since we believe this to have

a more physical interpretation. For simplicity of notation we will,

however, refer to this modified scheme as the ‘‘RS scheme,’’ omit-

ting the ‘‘prime.’’

FIG. 5. x[nr dependence of NVo
for n f50 at LO ~dashed-

dotted line!, NLO ~dotted line! and NNLO ~dashed line!.
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dLRS~n f !

5 (
n51

`

NLH
n f S b0

2p D n

as
n11~n f !(

k50

`

ck

G~n111b2k !

G~11b2k !
.

~34!

Note that the potentials and LH
RS depend on n f which, in the

context of pNRQCD, can be thought of as a matching scale
between ultrasoft and soft physics. In what follows, we will

set n f52.5r0
21. Results for different values of n f can be

obtained using the running on n f , which is renormalon in-
dependent.

Analogously to the discussion of Ref. @16#, we can study
the convergence of the perturbative expansion in the RS
scheme. In Fig. 6 we can see that the stability is greatly
improved, compared to the OS scheme discussed in the pre-
vious section. No matter whether we choose to work with
as(n i) or as(1/r), the expansions converge towards the same
curve. In Fig. 7 we can also see that they agree with the
continuum limit lattice data ~we have to subtract an unknown

constant for this comparison!. In this figure the errors of
EPu

(r)2EPu
(r8) for r.r8 are purely statistical while the

~strongly correlated! systematic error of the continuum limit
extrapolation is only displayed for the first data point
@EPu

(r8)2EPu
(r8)50# , where it is largest.

The price we pay to obtain convergent expansions in as

for the potentials is the introduction of power-like terms
~proportional to n f , with logarithmic corrections!. This be-
havior very much resembles that of lattice regularization
with a hard cutoff which we discuss below.

D. Lattice scheme for the octet potential

It is conceptionally illuminating also to consider the situ-
ation in lattice regularization. In this case, the inverse lattice
spacing a21 results in a hard UV cutoff of the gluon mo-
menta. Feynman diagrams are UV finite and EFT matrix el-
ements are manifestly renormalon-free as long as they are
obtained in non-perturbative numerical simulations. The
price paid is the existence of power divergences }a21,
which cannot be eliminated in the continuum limit.

The analogy with the previous sections can be made quite
evident. In particular, all the quantities that we have defined
in the OS and RS schemes can also be defined in a lattice
scheme. There are some differences, however. The lattice
gluelump LH

L (a) has a power divergence to start with ~which
can be traded in for a renormalon ambiguity when subtracted
in perturbation theory!. In this sense it is similar to LH

RS(n f).
While formally many expressions resemble those of the RS
case, a21 plays a slightly different role than n f that separates
soft from ultrasoft scales since a!r!n f

21 . Another differ-
ence is that at finite lattice spacings the potentials remain
finite as r→0. In particular, we will see that gluelumps are
the r→0 limits of hybrid potentials ~at finite lattice spacing!,
in perturbation theory as well as non-perturbatively. This
should not be surprising since the r→0 limit at finite lattice
spacing corresponds to the situation r!a . This means that
the ultraviolet cutoff ;a21 is much smaller than r21 and
that the dynamical degrees of freedom are only the ultrasoft
ones. Actually, in this situation, n f and 1/a play an analogous
role.

Let us illustrate the above by first considering perturba-
tion theory, before discussing the scale separation and how
the lattice scheme translates into other schemes, at finite lat-
tice spacings as well as in the continuum limit.

For simplicity we will consider the Wilson discretization
of the continuum action. In this case the ‘‘lattice Coulomb
term’’ @1/R#L takes the form Eq. ~11!. For instance, one can
calculate the finite value, @1/0#L53.17 . . . . Using this nota-
tion, one finds the lattice results

Vs ,L~r;a !52dmstat
L ~a !2C faLa21F 1

R
G

L

@11O~aL!#

~35!

Vo ,L~r;a !52dmstat
L ~a !

1S CA

2
2C f DaLa21F 1

R
G

L

@11O~aL!# ,

~36!

FIG. 6. r0Vo ,RS at tree level ~dashed lines!, one loop ~dashed-

dotted lines!, two loops ~dotted lines! and three loops ~estimate!
plus the leading single ultrasoft logarithm ~solid lines!. For the scale

of as(n), we set n5n i ~stable behavior at large distances! or n
51/r ~diverging at large distances!. We kept n f52.5r0

21 fixed.

FIG. 7. r0@Vo ,RS(r)2Vo ,RS(r8)#1C at tree level ~dashed lines!,
one loop ~dashed-dotted lines!, two loops ~dotted lines! and three

loops ~estimate! plus the leading single ultrasoft logarithm ~solid

lines! compared with the non-perturbative continuum-limit results

for EPu
(r)2EPu

(r8) ~symbols with error bars!. For the scale of

as(n), we set n5n i51/r8 ~stable behavior at large distances! or

n51/r ~diverging at large distances!. A ~small! constant C is arbi-

trarily adjusted to show agreement with the lattice data.
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where the ‘‘self-energy’’ is given by

admstat
L ~a !5

C f

2
aLF1

0
G

L

1•••

5

C f

2
aLS v11v2

aL

4p
1v3

aL
2

~4p !2
1••• D .

~37!

Note that unlike in dimensional regularization, by using a
hard cutoff, such power divergencies appear naturally as part
of the perturbative expansion. Equations ~35! and ~36! are

both known to O(as
2) and Eq. ~35! ~as well as the difference

Vo2Vs) is also known approximately to O(as
3), up to

O(as
3a2/r2) lattice corrections @33#. In pure gauge theory

with Wilson action, the coefficients of the expansion of

dmstat
L read @18,33–35#

v153.1759115 . . . , ~38!

v250.21003~5 !3103, ~39!

v3520.4~3 !3103. ~40!

aL53/(2pb) denotes the lattice coupling at a scale a21

which can be translated into other schemes such as MS by
means of a perturbative computation,

aL5as~a21!F 12b1

as~a21!

4p
2~b222b1

2!
as

2~a21!

~4p !2
1•••G

~41!

with @36#

b1'73.93539066, ~42!

b2'b1
2
11388.1645. ~43!

Let us now consider the singlet case. We have

E
S

g
1

L
~r;a !5Vs ,L~r;a !1LQCD@O~LQCD

2 r2,LQCD
2 a2,a2/r2!# ,

~44!

where LQCD represents a generic non-perturbative scale like

r0
21. The last two terms account for possible non-

perturbative lattice artifacts, which vanish as a→0. From the
quarkonium energy Es(r) at r@a , we can non-
perturbatively obtain the heavy quark mass in a lattice
scheme

mL~a !5

1

2
@Es~r !2E

S
g
1

L
~r;a !#1O~a2/r2!. ~45!

By redefining

V̄s ,L~r;a !5Vs ,L~r;a !22dmstat
L ~a !, ~46!

we can then achieve formal correspondence to Eqs. ~26! and
~2!, respectively,

Es~r !52mL~a !1Vs ,L~r;a !1O~r2! ~47!

52mOS1V̄s ,L~r;a !1O~r2!, ~48!

where the above two equations are correct up to O(LQCD
2 a2)

and O(a2/r2) lattice corrections.
We can relate the heavy quark mass in the lattice scheme

to the OS scheme,

mL~a !5mOS2dmstat
L ~a !. ~49!

dmstat
L (a) contains the same renormalon as mOS , such that

Eq. ~49! has good convergence properties when expanded in
terms of as . mL(a) is proportional to a21, with logarithmic
as well as O(a2) lattice corrections. One can convert mL(a)
order by order in perturbation theory into say mMS(n), with-
out renormalon ambiguity.

In the lattice scheme we also have E
S

g
1

L
(0;a)

5Vs ,L(0;a)50: the sources are ‘‘smeared out’’ on a scale a

since the gluon, due to the UV cutoff, cannot resolve struc-
tures smaller than the lattice spacing. Consequently, the Cou-
lomb term does not diverge as r→0 but approaches a finite
value in units of a. In perturbation theory, in the limit r

→0, the lattice @1/R#L term exactly cancels with 2dmstat
L :

the perturbative expansion of Vs ,L(r;a), Eq. ~35! above,
does not contain the renormalon associated with the pole
mass. Non-perturbatively, in the limit r→0 the Wilson loop

becomes a time independent constant, such that E
S

g
1

L
(0;a)

50 too. As r.0 the perturbative Vs ,L acquires a power
term.

Next we consider the hybrid case. We can calculate the
gluelump mass in perturbation theory,4

adLL~a !5

CA

2
aLF1

0
G

L

1•••

5

CA

2
aLS v11v2

aL

4p D1••• , ~50!

where v1 and v2 are the same as for the case of dmstat
L and

can be found in Eqs. ~38! and ~39! above. Note that the

O(as
3) term is expected to be different and is not known at

present. However, LH is related to the difference between Vo

and Vs , such that any difference with respect to the v3 of Eq.

~40! above will be suppressed by a color factor 1/Nc
2 .

The tree level expression for Vo ,L is displayed in Eq. ~36!.
While the perturbative expansion of Vs ,L was unaffected by
the renormalon of the pole mass, the one of Vo ,L contains the
same renormalon as the expansion of dLL . For r@a the
renormalon-free combination Vo ,L(r;a)2dLL(a) plays the

4In the context of perturbation theory we do not distinguish be-

tween different gluelumps since the mass splittings have an entirely

non-perturbative origin.
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role of Vo ,RS(r;n f) in Eq. ~30!. At r50 we have,
Vo ,L(0;a)5dLL(a) as well as the non-perturbative equality,

EPu

L ~0;a !5E
S

u
2

L
~0;a !5LB

L~a !. ~51!

We redefine

V̄o ,L~r;a !5Vo ,L~r;a !2dLL~a !22dmstat
L ~a !, ~52!

to achieve formal correspondence with Eqs. ~3! and ~6!:

EH
L ~r;a !2E

S
g
1

L
~r;a !

5LH
L ~a !1@ V̄o ,L~r;a !2V̄s ,L~r;a !#1O~r2!.

~53!

Note that EH
L (r;a)5EH(r)22mL(a)1O(a2/r2), in analogy

to Eq. ~45!. The combination

V̄o ,L~r;a !2V̄s ,L~r;a !5

CA

2
aLa21S F 1

R
G

L

2F1

0
G

L
D 1O~a2!,

~54!

vanishes for r50 and is renormalon-free. The same holds

true for EH
L (0;a)2E

S
g
1

L
(0;a)2LH

L (a)50: Eq. ~53! is not

only valid for r.a but also for5 r50. We have

LH
L ~a !5LH

OS
1dLL~a !. ~55!

Note that the above equation is only correct up to non-

perturbative O(LQCD
2 a2) contributions to LH

L r0 . Again LH
L

is renormalon-free but has a power divergence. By subtract-
ing dLL(a) order by order in perturbation theory one can

obtain an on shell LH
OS , but at the price of a renormalon

ambiguity. Note the similarity between the above equation
and Eq. ~33!.

In Fig. 8 we compare non-perturbative data on the split-
ting between hybrid potentials with respect to the ground
state potential with the perturbative expectation. The data
have been obtained by us on an isotropic lattice at b56.2

with lattice spacing a'0.137r0 . Both gaps, EPu

L
2E

S
g
1

L

~squares! and E
S

u
2

L
2E

S
g
1

L
~pentagons! are plotted as a func-

tion of r̄/a @see Eq. ~10!#. The differences are indicative of
the size of the expected non-perturbative O(r2) contribu-
tions. We compare the non-perturbative data to the perturba-

tive expectation for Vo ,L(r;a)2Vs ,L(r;a). The latter pertur-
bation theory will suffer from the same renormalon
ambiguity as dLL(a) and the difference between perturba-

tion theory and non-perturbative data corresponds to LB
OS .

The left-most points ~open symbols! correspond to the LB

gluelump, plotted at r̄/a5@1/0#L'0.315.
The evaluation was done both in terms of as(a21) and

as(n f) where n f52.5r0
21'0.34a21. To simplify the figure

we disregard the uncertainty in the determination of LMS

50.602(48)r0
21 @37#. At leading order ~LO! and next-to

leading order ~NLO! lattice perturbation theory results are
available @33# ~diamonds and squares!. Since everything is

plotted as a function of r̄/a5@1/R#L
21 all diamonds lie ex-

actly on top of the dashed continuous r@a curves while at
small distances there are differences between the dashed-
dotted NLO curves and the exact NLO results ~circles!. In
addition we plot the r@a limits to next-to-next-to leading
order ~NNLO! ~dotted curves!. The shapes of the perturba-
tive curves remain qualitatively stable while the normaliza-
tion is not convergent as the order of the expansion is in-
creased and is also strongly affected by the scale of as(n).
This behavior reflects the presence of the renormalon of

LB
OS , quite similar to what we can see in Fig. 4~a!.
By comparing with the renormalon-free right-hand side

~rhs! of Eq. ~53! a better convergence can be achieved. How-

ever, such a comparison is only possible up to O(as
2) as we

do not exactly know the O(as
3) contribution to the counter-

term dLL(a) in the lattice scheme. Instead we choose to
demonstrate the quality of the perturbative expansion in Fig.
9 by adding global normalization constants to all curves in

such a way that agreement is produced at r/a5A2. ~We
shall return to the question of renormalon cancellation in

5Based on the results of Sec. V B below as well as of Ref. @21#,
we know that the 112 glueball will become lighter than the glue-

lump LB
L(a) around a,rc'r0/7, when using the Wilson action. In

fact we discussed a similar situation in Sec. II C, for the Sg
18 po-

tential. This limit is not yet relevant for the Pu and Su
2 potentials at

the lattice spacings covered in this paper. In the case a,rc , Eq.

~53! will still apply for rc
21

@r21
@LQCD ; however, Eq. ~51! will

become modified; it would apply to the first radial excitations in the

hybrid channels rather than to the ground states, until finally around

a'r0/12 a continuum of two-glueball states is encountered.

FIG. 8. Splitting between the lowest two hybrids and the Sg
1

potentials ~pentagons and squares! as a function of r̄/a @see Eq.

~10!# at a fixed lattice spacing, a'0.137r0 , in comparison to

Vo ,L(r;a)2Vs ,L(r;a)5V̄o ,L(r;a)2V̄o ,L(r;a)1dLL(a) at tree

level ~dashed lines, diamonds!, one loop ~dashed-dotted lines,

circles! and two loops ~dotted lines, r@a estimates!. The open sym-

bols correspond to the respective gluelumps, non-perturbatively

~square with pentagon! and in lattice perturbation theory ~diamonds

and circles!.

QCD PHENOMENOLOGY OF STATIC SOURCES AND . . . PHYSICAL REVIEW D 69, 094001 ~2004!

094001-11



LH
L (a) in Sec. V B.! Indeed the differences between NNLO

and NLO are smaller than those between NLO and LO.
Moreover, at higher orders the scale dependence is reduced.
The n5a21 curves seem to describe the data better at small
r while the n5n f curves seem to work better at larger r. Up

to distances as big as r̄5r0'7.3a the perturbative curves
seem to have an accuracy better than the non-perturbative
uncertainties, estimated by the difference ES

u
2(r)2EPu

(r).

We mentioned above that while formally the lattice spac-
ing a21 appears in the same places in the lattice scheme as
the scale n f did in the RS scheme of Sec. IV C, these two
scales should not be confused with each other as a21

.r21

.n f.LQCD . Conceptionally we have been discussing the
situation in which the potentials are evaluated in perturbation

theory at scales n.n f while LH
RS is an ultrasoft matrix ele-

ments, associated with physics at scales smaller than n f . The
lattice encapsulates the same physical picture. For instance,
to each finite order in perturbation theory,6 Vs/o ,L(r;a)

→
r→` 2dmstat

L (a) and Vo ,L(0,a)5dLL(a): the power contri-

bution to the lattice mass dmstat
L ~whose perturbation theory is

affected by the IR renormalon of the on-shell mass! corre-
sponds to the UV behavior of the potentials while the power

contribution to LH
L ~whose perturbative expansion has the

UV renormalon of LH
OS) is associated with the low energy

behavior of Vo ,L . This is the same renormalon/power term
structure as in the continuum OS/RS schemes.

For a!r,LQCD
21 lattice effects become invisible and the

formulas elaborated above apply under the replacement
RS°L . To illustrate this quasi-continuum limit, we elimi-
nate the a21 dependence from the expressions altogether,
which is straightforward:

Es~r !52mL~a !1E
S

g
1

L
~r;a ! ~56!

52mL~n f
21!1Vs ,L~r;n f

21!1O~r2!,
~57!

where

Vs ,L~r;n f
21!5Vs ,L~r;a !22dmstat

L ~a !12dmstat
L ~n f

21!,
~58!

mL~n f
21!5mL~a !1dmstat

L ~a !2dmstat
L ~n f

21!.
~59!

Note that the running from one scale to another is
renormalon-free. For the hybrid case we can directly write

EH~r !52mL~n f
21!1@Vo ,L~r;n f

21!2dLL~n f
21!#

1LH~n f
21!1O~r2!, ~60!

where the combination Vo ,L2dLL replaces the Vo ,RS of Eq.
~30!.

Finally, we mention that the situation r50 on the lattice

resembles the r!n f
21 continuum situation. Unlike in the

continuum, however, on the lattice, even at r50, all observ-
ables remain finite as a21 provides us with a hard UV cutoff.

E. Scale dependence

As we have mentioned in the previous sections, the run-
ning of pole mass and gluelump energies with n f , in the RS
scheme, and with a, in the lattice scheme, is renormalon-free.
Therefore, the functional dependence can be described by a
convergent expansion in perturbation theory. Nevertheless, in
order to achieve the renormalon cancellation, the same scale
n has to be used in the perturbative expansion. This produces

large logarithms if the scales n f and n f8 are widely separated

and, eventually, some errors, if one works to finite order in
perturbation theory. In the RS scheme, there exists a solution
to this problem. Even though dmRS(n f) suffers from the

renormalon ambiguity, the difference dmRS(n f)2dmRS(n f8)

is renormalon-free. We can perform a resummation of
dmRS(n f) with any prescription to avoid the singularity in
the Borel plane since it will cancel in the difference. We will
take here the principal value ~PV! prescription, which yields

dmRS
PV~n f !5Nmn fas~n f !(

s50

`

csFDb2sS 2

2p

b0as
D21G ,

~61!

where

Db~x !5xex$cos~pb !G~2b !2xb@G~2b !2G~2b ,x !#%
~62!

and

6In fact this is one way to define 2dmstat
L in perturbation theory:

the r-independent part of the Fourier transform of the momentum

space lattice potential @33#.

FIG. 9. Splitting between the lowest two hybrids and the Sg
1

potentials ~pentagons and squares! as a function of r̄/a @see Eq.

~10!# at a fixed lattice spacing, a'0.137r0 , in comparison with

V̄o ,L(r;a)2V̄o ,L(r;a)1C at tree level ~dashed lines, diamonds!,
one loop ~dashed-dotted lines, circles! and two loops ~dotted lines,

r@a estimates!. The vertical normalization C has been adjusted to

produce agreement at r/a5A2. The open symbols correspond to

the respective gluelumps, non-perturbatively ~square with penta-

gon! and in lattice perturbation theory ~diamond and circles!.
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G~b ,x !5E
x

`

dttb21e2t ~63!

denotes the incomplete G function.
The first term in Eq. ~62! corresponds to LMS , once in-

troduced in the sum of Eq. ~61!. It cancels from the

combination,7 dmRS
PV(n f)2dmRS

PV(n f8), and we will not con-

sider it any longer. The sum of Eq. ~61! represents softer and
softer singularities in the Borel plane. Therefore, we expect

at least the difference dmRS
PV(n f)2dmRS

PV(n f8) to converge ~al-

though, obviously, we have no mathematical proof of this!.
Since the first three terms are known we can check if this
actually happens. We can see that this is so with a high
degree of confidence in Fig. 10.

We can also compare 2dmRS
PV(n f)1dmRS

PV(n f8) with the

corresponding difference, calculated at finite order in pertur-
bation theory:

2dmRS~n f !1dmRS~n f8!

52

n f82n f

2
Ṽs ,1as

2~n !2H n f82n f

2
Ṽs ,2

1Fn f

2

b0

p
lnS n f

n D2

n f8

2

b0

p
lnS n f8

n
D G Ṽs ,1J as

3~n !1••• .

~64!

We depict this comparison in Fig. 11, where we take n5n f

to minimize one of the logarithms. We see how the finite
order results approach the PV curve,8 which we will use in
what follows wherever we need the running.

A similar behavior holds if, instead of dmRS , we study
dLRS .

For the lattice scheme we cannot perform an analytical
resummation as higher order terms are unknown. On the
other hand, there exist non-perturbative lattice determina-

tions of the static masses @LH
L (a) and E(a)5L̄L(a)] for

different lattice spacings. They provide us with non-
perturbative measurements of the running against which the
finite order results can be tested. It is also possible to relate
results in both schemes by perturbative renormalon-free ex-
pressions. We will investigate both the running within the
lattice scheme and the translation between both schemes in
Secs. V B, VI A and VI C below.

V. PHENOMENOLOGICAL ANALYSIS

OF THE GLUELUMP SPECTRUM

We will determine the lowest gluelump energy LB from
two different observables in two different schemes: from the
non-perturbative difference EPu

(r)2ES
g
1(r) in the con-

tinuum limit in the RS scheme as well as from gluelump

energies LB
L(a) obtained at finite lattice spacings in a lattice

scheme. The lattice and RS schemes can be translated into
each other and we find internal consistency. We finally
present results on the whole gluelump spectrum and compare
our findings to previous literature.

The situation discussed here is similar to the one encoun-
tered in the ‘‘binding energy’’ in static-light systems which
we will address in Sec. VI. These mesons very much re-
semble gluelumps, with the only difference that the source is
in the fundamental representation and screened by a light
quark rather than by a gluonic operator.

A. Determination of L
B

RS from the static potentials

We intend to determine LB from the hybrid potentials.
For this purpose we will use our n f50 lattice continuum
limit data on DEPu

(r)5EPu
(r)2ES

g
1(r) as obtained in Sec.

III. Using this difference allows us to eliminate the power
divergence that appears in lattice simulations of the poten-
tials ~or, in the continuum OS scheme, the renormalon asso-
ciated with the pole mass!. Note that the difference has a

7One may wonder if this cancellation materializes itself in practice

since we only know the first three terms of the series. However, we

checked this numerically and the results turned out to be virtually

indistinguishable.
8For finite order computations we take as with one, two, three,

etc. loop running according to the order in as at which we work. If

instead, we use as with four-loop running ~the highest accuracy

known until now! the convergence to the PV result is accelerated.

FIG. 10. 2dmRS
PV(n f)1dmRS

PV(n f8) at LO ~dashed line!, NLO

~dashed-dotted line! and NNLO ~dotted line! according to the sum

in Eq. ~61!. We take n f859.76r0
21 .

FIG. 11. 2dmRS(n f)1dmRS(n f8) at LO ~dashed line!, NLO

~dashed-dotted line! and NNLO ~dotted line! in perturbation theory

@see Eq. ~64! with n5n f] versus the principal value result ~solid

line!. We take n f859.76r0
21 .
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well defined continuum limit. It is also interesting to see that
the large distance linear term is cancelled as well. At the
same time, LB will still additively contribute to this combi-
nation, see Eq. ~6!. In order to extract this non-perturbative
constant, the perturbative difference between octet and sin-
glet potentials has to be subtracted. For a reliable determina-
tion, the perturbative series has to be well defined and show
convergence. However, this is complicated by the contribu-
tion from the renormalon discussed above and can only be
achieved in a scheme where such renormalon singularities
are taken into account. We have worked out the RS scheme
in Sec. IV C, which is well suited for this purpose.

We fit LB using the following equality ~see Figs. 12 and
13 for the quality of the fit!:

EPu
~r !2ES

g
1~r !5LB

RS~n f !1Vo ,RS~r;n f !2Vs ,RS~r;n f !,

~65!

where the non-perturbatively obtained left-hand side ~lhs! is
renormalon-free but on the rhs the renormalon can be shifted

between the two contributions, the ultrasoft matrix element
LB and the soft Wilson coefficient Vo2Vs , at a given order
of perturbation theory. This is why we have to specify the
scheme, the RS scheme in our case, which we use to elimi-
nate ~or to reduce! this ambiguity.

Obviously, LB is a function of the scale n f . We fix n f

52.5r0
21 and the final result at this scale reads

LB
RS

5@2.2560.10~ latt.!60.21~ th.!60.08~LMS!#r0
21 .

~66!

Note that LB is the only fit parameter. Also note that the
above value corresponds to the n f50 case. The errors of this
determination stem from several sources ~for the above fit we
use lattice data up to distances of around 0.5 r0):

~1! ‘‘latt.’’ denotes the statistical error of the fit: 60.10.
~2! ‘‘th.’’ stands for the theoretical errors.
We first consider the error due to the truncation of the

perturbative series ~higher orders in perturbation theory/scale
dependence!. We obtain a first estimate by performing the
perturbative expansion in as(n i) or in as(1/r). This provides
us with an estimate of neglected subleading logarithms. Ac-

tually, in both cases one and the same number, LB
RS

'2.25r0
21 , is obtained, which we take as our central value.

The effects of higher orders in perturbation theory are esti-
mated by considering the convergence of the determination

of LB
RS at each order in perturbation theory. Working with

as(n i), the series $2.43,2.37,2.28,2.25% is obtained. This se-
ries seems to show convergence for the last terms. In any
case, the corrections are small. Working with as(1/r), the
series $2.00,2.40,2.31,2.25% is obtained. This series is clearly
convergent although the corrections are larger than when us-
ing as(n i) as the expansion parameter. To be conservative
we will take the difference between the last two terms as the
error made by truncating the perturbative series: 60.06.
There is also some source of error from the normalization
constant of the renormalon of the singlet and octet potential.
For the singlet potential ~following Ref. @15#! we estimate a
10% error in NVs

, which produces a 60.10 error. For the

octet potential, the error is very small compared with other
sources of error. Even if, conservatively, we consider the
general shift produced by setting dVo ,250 ~note that this
also accounts for the error in perturbation theory of the octet
static potential! our result only changes by '0.01/0.02. We
will neglect this error to avoid double counting. In the above
analysis we have neglected non-perturbative effects. On gen-
eral grounds they have the short-distance structure,

dnp~EPu
2ES

g
1!.r2FS Vo

RS
2Vs

RS

LQCD
D 1Br2. ~67!

The Br2 term is due to r•O†EO type contributions in the
pNRQCD Lagrangian ~see Ref. @9# for details!. The other
term in Eq. ~67! is due to r•O†ES type contributions. This
produces a perturbative mass gap. F is the convolution of a
short distance and a long distance piece, depending on the

ratio of Vo
RS

2Vs
RS over the masses of the gluelumps. For the

purpose of estimating the uncertainty it seems reasonable to

FIG. 12. Splitting between the Pu and the Sg
1 potentials and the

comparison with Eq. ~65! for n5n i @see Eq. ~16!# at n f52.5r0
21.

r0@(Vo ,RS2Vs ,RS)(r)1LB
RS# is plotted at tree level ~dashed line!,

one loop ~dashed-dotted line!, two loops ~dotted line! and three

loops ~estimate! plus the leading single ultrasoft logarithm ~solid

line!.

FIG. 13. Splitting between the Pu and the Sg
1 potentials and the

comparison with Eq. ~65! with n51/r for n f52.5r0
21. r0@(Vo ,RS

2Vs ,RS)(r)1LB
RS# is plotted versus r at tree level ~dashed line!,

one loop ~dashed-dotted line!, two loops ~dotted line! and three

loops ~estimate! plus the RG expression for the ultrasoft logarithms

~solid line!.
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keep only the leading term in this expansion. This is equiva-
lent to having a quadratic contribution,

dnp~EPu
2ES

g
1!.APu2S

g
1r2. ~68!

If we introduce this term into the fit, we obtain r0LB'2.30

@working with as(1/r)] with APu2S
g
1.20.4r0

23 . We take

the difference as an indication of the error due to non-
perturbative effects. By summing linearly all the above er-
rors we obtain 60.21.

~3! ‘‘LMS’’: this error is due to the uncertainty in LMS

5@0.60260.48#r0
21 @37#: 60.08.

We have performed the fit using lattice data within a win-
dow of inverse distances ranging from about n i'2.6 GeV
down to n f'1 GeV. From the plots ~see Figs. 12 and 13!
one can actually see that the curves follow the lattice data up
to values r&r0 . This corresponds to very low energies
(,500 MeV). Being conservative, we will not use data de-
termined at these low energies without a better understanding
of the dynamics. Nonetheless, such a fit would actually pro-
duce very similar numbers to the ones quoted above. This is
even more so if a quadratic term is included. In general,
introducing more lattice points reduces the statistical errors
~‘‘latt.’’!. Including a quadratic term will reduce the theoret-
ical error on LB since some of the changes that occur when
altering the order of perturbation theory can be absorbed into
a variation of APu2S

g
1. However, the addition of a second fit

parameter increases the statistical error and also the uncer-
tainty due to LMS . We conclude that while the individual
errors depend on the precise fitting details the total error
remains remarkably stable.

One might ask whether, in addition to LB , a reliable
value of APu2S

g
1 can be obtained. This, however, would re-

quire more lattice data at short distances as well as a more
detailed understanding of the r2 renormalon of the static sin-
glet potential.

We do not consider the Su
2 data in this section as we have

already established in Sec. II D that the difference with re-
spect to the Pu potential is proportional to r2 to leading
order. Hence we cannot obtain any independent new infor-
mation on LB from these data that have larger statistical
errors.

B. Determination of L
B

RS from L
B

L

There exists a direct determination of LB
L(a) ~the 112 or

B gluelump! by Foster and Michael @12#. The numerical val-
ues are displayed in Table III, where we used the same r0 /a
values as were used in this reference. It is clear from the
discussion in Sec. IV D that these are perfectly sensible num-
bers if incorporated into a global scheme with renormalon
cancellation, for instance, with the potentials also defined in
the lattice scheme as in Sec. IV D. In doing this we are able
to independently determine LB in a different scheme. Con-
sistency would require that after translating the lattice into
the RS scheme the results should agree with each other. We
will check this in this section.

The master formula that relates the lattice and the RS
scheme reads ~known up to NNLO!

LH
RS~n f !5LH

L ~a !2@dLH
L ~a !1dLH

RS~n f !# . ~69!

Both LH
RS and LH

L have a power-like dependency on n f and

a21, respectively, but are renormalon-free, LH
L exactly and

LH
RS within the precision of our estimation of the renormalon

contribution. This implies that the combination dLL1dLRS

does not contain a renormalon either if calculated in a con-
sistent way: dLL(a) and dLRS(n f) contain one and the very
same renormalon contribution ~with negative relative sign!.
The sum of both terms, expanded in terms of as has good
convergence properties ~using the same normalization point
to enforce the renormalon cancellation at each order in per-
turbation theory!. The explicit expression at NNLO reads

dLL~a !1dLRS~n f !

5

CA

2
v1a21as~n !

1H CA

2

a21

4p
$v21v1@2b112b0ln~na !#%

1n f~ Ṽs ,12Ṽo ,1!J as
2~n !1••• , ~70!

where the v i can be found in Eqs. ~38! and ~39!, b1 in Eq.

~42! and Ṽo ,1 and Ṽs ,1 in Table II. An estimate of the O(as
3)

term can be obtained from Eq. ~78! below, under the replace-

TABLE III. The inverse lattice spacing, the mass of the 112 gluelump LB
L in the lattice scheme, as well

as its conversion to the RS scheme to different orders in perturbation theory. NNNLO* stands for an estimate

obtained neglecting 1/Nc
2 corrections, for details see the text. In the last column, we state the values of

LB
RS(a21) using Eq. ~66! and the running according to the PV prescription, Eq. ~61!. The errors only

incorporate the statistical uncertainties as well as the 8% uncertainty in LMSr0 , added in quadrature, but no

estimates of ‘‘theoretical’’ errors.

a21r0 LB
Lr05LB

RSr0(LO) LB
RSr0(NLO) LB

RSr0(NNLO) LB
RSr0(NNNLO*) LB

RSr0

2.94 5.33~10! 1.59~19! 2.82~12! 2.37~15! 2.41~10!

5.27 6.99~05! 1.97~17! 3.20~10! 2.88~12! 2.89~13!

7.32 8.36~05! 2.21~17! 3.55~10! 3.25~13! 3.16~13!
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ments, C f°CA and Ṽs ,i°2(Ṽs ,i2Ṽo ,i). This estimate will

be subject to O(1/Nc
2) corrections to the coefficient v3 .

In principle, n f and a21 need not be equal but we will
take them similar to avoid large logarithms. The large nu-
merical values of v2 and b1 are mainly due to contributions
from lattice-specific tadpole diagrams that arise because the
breaking of Lorentz symmetry becomes particularly evident
at UV scales .a21. This often results in badly convergent
perturbative series when expanded in terms of aL(a). How-
ever, the convergence is vastly improved, once the series is
reexpressed in terms of a more ‘‘physical’’ coupling like

as(a21)5aL@12b1aL
2 /(4p)1•••# ~see, e.g. Refs.

@33,38#!. This is also evident from Eq. ~70! as v1'3.17,
(v22b1v1)/(4p)'21.97 „and @v322b1v22(b2

22b1
2)v1#/(4p)2'14.5….

We can now translate the LB
L values obtained by Foster

and Michael @12# into the RS scheme. The results are shown
in Table III and are also displayed in Fig. 14. ‘‘NLO’’ and
‘‘NNLO’’ refer to translating from the lattice scheme to the

RS scheme via Eq. ~70! to O(as) and O(as
2), respectively.9

Obviously, to leading order, LB is scheme independent.
‘‘NNNLO*’’ stands for an estimate obtained assuming that
the next-to-next-to-next-to leading order ~NNNLO! contribu-
tion to dLL is equal to the NNNLO contribution to dmL with
the replacement of the overall factor C f°CA . This is correct

up to O(1/Nc
2) effects. Finally, the conversion from the lat-

tice to the RS scheme has been performed using the four-
loop running of as at n5a21

5n f . This accelerates the con-
vergence to the RS results. If, instead, we use the n-loop
running of as that is consistent with the order of the calcu-
lation, we still see convergence but with, in the NLO and

NNLO cases, larger corrections. This is mainly due to the
fact that within the present window of energies the values
obtained for as(n) from LMS from a one- or two-loop run-
ning are significantly different from those from the three-
loop running ~which is close to four loop!. The lattice pre-
diction of LMS that we use as an input applies to very high
energies, such that it is important to run as down to n
>2.5r0

21 as precisely as possible.

Within present errors we can fit the data with straight lines
but there will be logarithmic corrections and, in the gluelump

data LB
Lr0 , additional O(a2)5O(n f

22) lattice artifacts. The

figure reveals that at the lattice spacings investigated these
are tiny, relative to the linear slope. Except for these lattice

corrections the running of LB
L is non-perturbatively accurate.

Needless to say that the power dependence on a21 is univer-
sal for all gluelumps, such that gluelump mass splittings
have a well defined continuum limit, which is also confirmed
in Ref. @12#.

In lattice perturbation theory we can calculate the ‘‘run-

ning’’ of the gluelump data to O(as
2) @and up to O(as

3) if we

neglect O(1/Nc
2) effects#. There is a renormalon ambiguity in

the absolute value. However, the slope is not affected by this.

If we take the value LH
L (7.32r0

21)'8.36r0
21 from Table III

and perform the running with NNNLO* accuracy, we obtain
the dashed line that joins the ‘‘LO’’ RS(5L) points. We can
see that this parametrization is quite close to the non-
perturbatively evaluated data. Moreover, there is overall con-
vergence, with higher order terms being numerically smaller
in the lattice scheme. We will discuss this in more detail in

Sec. VI, in the context of the static-light binding energy L̄L,
which has a similar perturbative expansion, up to an overall
factor C f /CA , see Fig. 15.

In Fig. 14 we also compare the value obtained in Sec. V A
above @Eq. ~66!#, with running according to the PV prescrip-
tion Eq. ~61!, with the results obtained directly from the
lattice determination of the gluelump mass via Eq. ~70!. We
see clear convergence with alternating signs from LO ~dia-
monds!, NLO ~squares!, NNLO ~pentagons! and NNNLO*

9Note that the counting here differs from that used in Fig. 11, in

the RS scheme, where we labeled O(as
2) as ‘‘LO.’’

FIG. 14. The lowest gluelump mass LB
L as obtained on the lat-

tice ~diamonds!, as well as converted into the RS scheme at NLO

~squares!, NNLO ~pentagons! and NNNLO* ~NNNLO estimate,

circles!. The error band corresponds to the result for LB
RS of Eq.

~66!, without the ‘‘theoretical’’ error, run to different scales, accord-

ing to the PV prescription, Eq. ~61!. The dashed lines, drawn to

guide the eye, are explained in the text.

FIG. 15. Perturbative running of the binding energy L̄ in the

lattice scheme, in comparison with lattice data, starting at the small-

est available lattice spacing. The NNNLO error band incorporates

the error due to the uncertainty in LMS @37#, and the statistical error.
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~circles! towards the result calculated from the Pu and Sg
1

potentials in the previous section and its running ~error
band!. Our NNNLO* estimates already agree with this error
band. The dashed lines connecting the NLO, NNLO and
NNNLO* points are the corresponding transformations of
the curve through the LO points and just drawn to guide the
eye. All errors displayed in Fig. 14 are statistical only, plus
the uncertainty on LMS . Within the theoretical errors of Eq.

~66! (60.21r0
21), in fact we already find agreement at the

NNLO level. In Secs. VI A and, in particular, Sec. VI C, we
will analyze the running of the binding energy of static-light
mesons in more detail; see also Fig. 18.

We obtain an independent second prediction for LB
RS from

the gluelump data. The statistical errors are smaller in the
gluelump case than those we encountered from the con-
tinuum potentials. In a first step we obtain the fit parameter,

LB
RS~7.32r0

21!5@3.2160.04~ latt.!60.42~ th.!

60.10~LMS!#r0
21 , ~71!

from a global NNNLO* fit,

LH
L ~a !5LH

RS~n f !1@dLH
L ~a !1dLH

RS~n f !# , ~72!

where we have chosen n5n f57.32r0
21. We can then convert

this result into

LB
RS

5@2.3160.04~ latt.!60.33~ th.!
20.19
10.18~LMS!#r0

21 ,
~73!

for n f52.5r0
21, using the PV running in the RS scheme. This

compares well with the result from the potentials, Eq. ~66!.
The errors displayed in Eq. ~71! above are due to the

following sources:
~1! ‘‘latt.’’ is the sum of the statistical error (60.03) and

the error encountered when varying the fit range ~i.e. exclud-
ing the left-most data point!: 60.01.

~2! ‘‘th.’’ is the sum of perturbative and non-perturbative
errors. As perturbative errors we take the difference between
NNLO and NNNLO* results (60.20) as well as a 10% un-
certainty in NVs

2NVo
(60.18). To investigate possible non-

perturbative effects we include an a2 term into the fit. We
estimate an additional 60.04 uncertainty from this source.
Adding these three errors linearly results in 60.42.

~3! ‘‘LMS’’ stands for the uncertainty due to the error of
LMSr0 @37#: 60.10.

Whereas the statistical error is smaller in this determina-
tion than the one of Eq. ~66! and the uncertainty due to the
error of LMS is comparable in size, the systematics are less
well under control, which is reflected in the large theoretical
error. First of all, for the lattice gluelumps we only have the

perturbative result to O(as
2) with an estimate of the O(as

3)

term while in Sec. V A we knew the O(as
3) results and have

an estimate of the O(as
4) terms. Furthermore, as the previous

analysis was based on observables with a well defined con-
tinuum limit, we circumvented the problem of disentangling

the a21 ‘‘running’’ of LBr0 from O(LQCD
2 a2) lattice arti-

facts. With gluelump data on more and, in particular, finer

lattice spacings the latter disadvantage ~which at present is,
however, not the dominant one! can in principle be over-
come. In conclusion, it is nice to observe perfect agreement
between the two predictions, which enhances our confidence
in the methods applied and adds further credibility to our
error estimates.

C. Higher gluelump excitations

Now that we have fixed the energy of the lightest glue-
lump, we can quote absolute values for the remaining glue-
lump spectrum using the results of Foster and Michael @12#.
We display our predictions in Table IV where the errors cor-
respond to the sum of the individual uncertainties, added
linearly. The dominant uncertainty is that of LB , as the mass
differences between the different gluelumps have been deter-
mined with very good accuracy. Needless to say that these
results are scheme and scale dependent. The quoted numbers

refer to the RS scheme with n f52.5r0
21'1 GeV. With the

information presented in this paper they can be run to differ-
ent scales. For ease of reference we also converted these

values into GeV units ~using r0
21

5394 MeV). However, we

note that one should add a scale uncertainty of about 10% to
them to account for the fact that all results have only been
obtained in the quenched approximation.

Note that the gluelump operators can be represented in
terms of gluonic fields @9,39#. In general one and the same
gluelump can be created by infinitely many different adjoint
operators H. Within each channel we display ~one of! the
lowest dimensional such choice~s! in the table. The basic
building blocks are the covariant derivative D i ~with JPC

5121, dimension 1!, the chromomagnetic field B i (112,
dimension 2! and the chromoelectric field E i (122, dimen-
sion 2!. The curl of the electric field has the quantum num-
bers of the magnetic field, such that on the lattice all states
can be created by operators that are local in time. Further-
more, D•B and D•E can be eliminated, the first because it is
identically zero, using the Jacobi identity, the second by ap-
plying the equations of motion. One example: the lowest
dimensional operator that creates the 312 state is D $iD jBk% ,

TABLE IV. Absolute values for the gluelump masses in the

continuum limit in the RS scheme at n f52.5r0
21'1 GeV, in r0

units and in GeV. Note that an additional uncertainty of about 10%

should be added to the last column to account for the quenched

approximation. We also display examples of creation operators H

for these states. The curly braces denote complete symmetrization

of the indices.

JPC H LH
RSr0 LH

RS/GeV

112 B i 2.25~39! 0.87~15!

122 E i 3.18~41! 1.25~16!

222 D $iB j% 3.69~42! 1.45~17!

212 D $iE j% 4.72~48! 1.86~19!

312 D $iD jBk% 4.72~45! 1.86~18!

011 B2 5.02~46! 1.98~18!

422 D $iD jDkB l% 5.41~46! 2.13~18!

121 (B`E) i 5.45~51! 2.15~20!
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where the curly braces denote the sum over all 10 symmetric

permutations of the indices. This includes three terms

D i( jD jB j50 such that indeed there remain only seven in-

dependent operators to create this seven-dimensional repre-

sentation. Also note that D $iB j% and D $iE j% each only contain

five independent operators, consistent with J52, etc.

It is interesting to see that the level ordering roughly cor-

responds to the lowest dimension of the creation operator,

once the equations of motion are used to eliminate the E field

@9#. This makes the E field ‘‘heavier’’ than a B field, increas-

ing its dimension by one. The 322 gluelump ~two deriva-

tives and one E which corresponds to dimension five, after

substituting E) is not included into the table as no controlled

continuum limit extrapolation was possible. However, its
mass at fixed finite lattice spacing is in the same ball park as
that of the other dimension five states, 422 and 121, in
support of this naı̈ve operator counting picture.

D. Comparison with previous results

We shall relate our results to previous determinations of
the gluelump masses. All these suffer from the problem of
obtaining the global constant and, in none of these, the
scheme was clearly defined, such that they need not yield the
same results that we obtain.

In Ref. @39# the gluelumps were studied within a string
model. One general feature of this approach is the excess of
predicted states. This seems to be a problem of this model
since it does not appear to be compatible with QCD, or more
precisely with its realization for this kinematical regime: pN-
RQCD @9# ~see also the discussion in Ref. @40#!. The predic-
tion of this model, LB(n f50)51.87 GeV, is by a factor of
two larger than our result.

In Ref. @41#, the same value for the electric and magnetic
correlation length is obtained: LE(n f50)5LB(n f50)
50.90(5)(10) GeV, from lattice simulations using the cool-
ing method. The number for LB coincides with ours. How-
ever, the splitting between chromoelectric and chromomag-
netic correlators is unaccounted for. From the results of
Foster and Michael one would then assign a systematic error
of the order of this splitting '400 MeV: clearly a better
conceptional understanding of how ‘‘cooling’’ removes short
distance fluctuations, without destroying essential infrared
physics, would be useful. On the other hand, it is comforting
that numbers similar to our results are obtained in this ap-
proach, which is also meant to subtract the perturbative con-
tributions from the low energy matrix element.

In Ref. @42# a sum rule analysis of the electric and mag-
netic correlator was made. The main result was LE(n f50)
5(1.960.5) GeV. It should be noted that the value of LMS

on the lattice is now smaller by 5%, compared to the value
used in this analysis. Taking this into account we find this
result compatible with ours @1.25~16! GeV#, within errors.
Moreover, in this analysis, evidence for LE.LB was re-
ported.

In Ref. @43#, an MIT bag model calculation was used to
obtain the gluelump spectrum. No errors were assigned to
this evaluation. The value of LB is about 500 MeV larger
than ours and quite consistent with the sum rules evaluation.

The same holds true for LE ; however, for the higher excita-
tions the agreement with the results of Foster and Michael is
less convincing.

In Ref. @11#, lattice correlation functions that are needed
to calculate relativistic corrections to the static potential were
used in order to check the validity of the stochastic vacuum
model in the Gaussian approximation. Under this assump-
tion, which was to some extent tested in this reference, these
correlation functions could be related to gluonic field
strength correlators and upper limits for the gluelump masses
were obtained: LB(n f50)<1.64(16) GeV and LE(n f50)
<1.04(15) GeV, respectively: the ordering of the gluelumps
is wrong, however; the upper limits quoted are in no contra-
diction to our results ~or indeed to a different ordering!.

In Ref. @44# a constituent quark model was used. The
results roughly agree ~within a 200–300 MeV error! with the
splittings predicted by Michael and Foster and the hybrid
spectrum at short distances ~see Ref. @40# for some criticism
of this evaluation!. For the lightest gluelump they obtain
LB'1.4 GeV.

We have seen how different determinations of LB result
in values ranging from less than 1 GeV up to nearly 2 GeV.
These numbers are all scheme dependent. This may explain
the huge differences between different results. Our result
provides strong constraints on vacuum models. Furthermore,
the RS scheme provides a unified framework to study the
non-perturbative effects in an unambiguous and model inde-
pendent way.

VI. STATIC-LIGHT SYSTEMS

The situation discussed above very much resembles the
one that one encounters in heavy-light mesons in the static
limit. In this case, the adjoint source is replaced by a funda-
mental source which is not screened by gluonic fields but by
a light Dirac quark instead. ~A light Higgs scalar in the fun-
damental representation would be an alternative possibility.!

In these systems the binding energy L̄ of the 1
2

2 state ~which
will correspond to pseudoscalar and vector heavy-light me-
sons, once 1/mb corrections and the spin of the heavy quark
are taken into account! plays a role similar to that of the LB

discussed above. The experimental mass of the B meson M B

can be factorized into

M B5L̄1mb1O~1/mb!, ~74!

where both L̄ and mb depend on scheme and scale. In the
literature ~see, e.g. Ref. @18#! the binding energy in the lattice

scheme is referred to as E(a)5L̄L(a), which is renormalon-
free but has an a21 power divergence. For the Wilson action

and n f50 this dmstat
L (a) power term is known to O(as

3) in

perturbation theory @Eqs. ~37!–~40!#. Subtracting this pertur-
bative result introduces renormalons.

It is also possible to define the binding energy in an en-
tirely non-perturbative renormalon-free and power-term free
way, for instance by subtracting the energy of a temporal
Schwinger line in Coulomb or Landau gauge @45#. In fact the
same can be achieved in the case of the lowest gluelump
mass, either by subtracting the energy of an adjoint
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Schwinger line in a fixed gauge ~see also Ref. @19#! or by
subtracting the on-shell mass of an adjoint Polyakov-Wilson
line, encircling a compactified lattice dimension. From an
EFT point of view, however, one would like to combine a
non-perturbative low energy result with a perturbative calcu-
lation at high energies. For instance, to quote a value for the

b quark mass in the MS scheme, the UV renormalon of the
binding energy is required to cancel the IR renormalon of the
OS mass and hence a perturbative subtraction is essential:
the renormalon of the expansion of the power divergence is
the same as the one that is encountered in the conversion

from the OS mass into the MS mass. This procedure has
been implemented in the past in calculations of the b quark
mass from lattice simulations in the static limit @18#.

The b quark mass has also been obtained in perturbative
QCD in the RS scheme at n f52 GeV from the Y(1S) sys-
tem using EFTs @15#. Subtracting this value from the spin-
averaged mass of the B meson yields

L̄RS~n f51 GeV!5@0.36560.085~ th.!
20.061
10.045~LMS!# GeV.

~75!

This number is different from the value quoted in Ref. @15#,10

since here we have performed the running to n f51 GeV us-
ing the PV prescription and not included O(1/mb) correc-
tions into the fit ~these two effects partially compensate each
other!. Using the PV prescription allows us to perform the
logarithm resummation for the renormalon related terms.
However, the result strongly depends on the value of LMS .

Equation ~75! has been obtained from the physical Y and
B systems, not in the quenched approximation. The scale

r0
21

5394620 MeV @20,46,47# is also obtained from Y phe-

nomenology. Reexpressed in terms of r0 we get

L̄RS~n f52.5r0
21!5@0.9260.22~ th.!

20.11
10.15~LMS!#r0

21 .
~76!

In what follows we will extract L̄RS from lattice data of
static-light mesons. After addressing the b quark mass we
will conclude with a more detailed study of the running in
the lattice and RS schemes, using precision data from the
static potential within an energy range, 2&r0n f5r0 /a
&15.

A. Determination of L̄RS

We will use Eq. ~76! as our starting point for the n f50
situation. In order to compare with lattice results in the
quenched approximation we will employ the n f50 running

of L̄RS(n f) and keep in mind that on top of the errors stated
above one might expect an additional 10% quenching error.

L̄L(a) has been calculated on a variety of lattice spacings
by different collaborations @34,48–50#. The main source of
uncertainty in these determinations is the extrapolation to
zero light quark mass. We used the r0 /a values from the
interpolation of Ref. @51# to assign the scale.11 The results are
displayed in Table V and are roughly consistent with each
other, with the exception of the coarsest lattice point r0

'2.93a that corresponds to b55.7. Here the raw data of
Ref. @50# are more accurate but the chiral extrapolation of
Ref. @34# should be better controlled.

We multiply the values obtained for LB
Lr0 of Ref. @12#

~that are displayed in Table III! by the color factor C f /CA .
At b55.7,6.0 and 6.2, respectively, we obtain the numerical
values 2.37~4!, 3.11~2! and 3.72~2!. The corresponding val-
ues in Table V read 2.45(6)u2.22(4), 3.28~6! and
3.83(8)u3.87(11) where for both b55.7 and b56.2, two

10Again, note that what we call the RS scheme here corresponds

to the RS8 scheme of Ref. @15#.

11These values slightly differ from those quoted in Ref. @12# used

in Table III, which cover a smaller window of lattice resolutions.

TABLE V. The inverse lattice spacing @51#, the static-light binding energy L̄L
5E @34,48–50# in the lattice scheme, as well as its

conversion to the RS scheme to different orders in perturbation theory. In the last column, we state the values of LB
RS(a21) using the PV

running, Eq. ~61!, of the result, Eq. ~76!, in the RS scheme. The errors only incorporate the statistical uncertainties as well as the 8%

uncertainty in LMSr0 @37#, added in quadrature. The values in the last column, which have been obtained from the physical Y(1S) and B

meson masses, have additional errors inherited from Eq. ~76!, which, however, will only result in an overall upward or downward shift and

will not affect their differences.

Ref. a21r0 L̄Lr0 L̄RSr0(NLO) L̄RSr0(NNLO) L̄RSr0(NNNLO) L̄RSr0

@50# 2.93 2.45~ 6! 0.79~10! 1.34~ 7! 1.16~ 8! 0.99~1!

@34# 2.93 2.22~ 4! 0.56~ 9! 1.11~ 5! 0.93~ 6! 0.99~1!

@34# 4.48 2.86~ 4! 0.83~ 8! 1.37~ 6! 1.23~ 6! 1.16~3!

@48# 5.37 3.28~ 6! 1.03~ 9! 1.59~ 7! 1.45~ 8! 1.22~4!

@34# 6.32 3.44~ 8! 0.96~11! 1.53~ 9! 1.40~ 9! 1.28~4!

@48# 7.36 3.83~ 8! 1.10~11! 1.70~ 9! 1.57~10! 1.34~4!

@49# 7.36 3.87~11! 1.14~13! 1.74~12! 1.61~12! 1.34~4!

@34# 8.49 4.24~ 8! 1.24~11! 1.87~ 9! 1.74~10! 1.40~4!

@48# 9.76 4.49~10! 1.20~13! 1.85~11! 1.72~12! 1.45~5!
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independent determinations exist. The qualitative agreement
is remarkable: not only the perturbative expansions of dL
and dmstat are dominated by terms that are proportional to
the respective Casimirs of the gauge group representation of
the static source but also the non-perturbative values them-
selves. In fact also in the RS scheme the result Eq. ~66! is
close to the value displayed in Eq. ~76!, multiplied by
CA /C f59/4.

Similar to the discussion in Sec. V B, we can translate the
results from the lattice scheme into the RS scheme. The mas-
ter formula in this case is very similar to Eq. ~69! and reads
~known to NNNLO!,

L̄RS~n f !5L̄L~a !2@dmstat
L ~a !2dmRS~n f !# , ~77!

with

dmstat
L ~a !2dmRS~n f !5

C f

2
v1a21as~n !1H C f

2

a21

4p
@v21v1B1~na !#1

n f

2
Ṽs ,1J as

2~n !

1H C f

2

a21

~4p !2
$v312v2B1~na !1v1@B2~na !1B1

2~na !1b1
2#%1

n f

2
F Ṽs ,22Ṽs ,1

b0

p
lnS n f

n
D GJ as

3~n !

1••• , ~78!

where

B i~x !52b i12b i21ln~x !, i51,2, ~79!

and the coefficients Ṽs ,1 and Ṽs ,2 can be found in Table II.
The coefficients v i and b i can be found in Eqs. ~38!–~40!
and Eqs. ~42! and ~43!, respectively.

Equations ~77! and ~78! also relate results obtained at dif-
ferent lattice spacings to each other,

L̄L~a8!5L̄L~a !2@dmstat
L ~a !2dmstat

L ~a8!# . ~80!

To illustrate this we display the LL(a) values of Table V in
Fig. 15, together with the expected running, starting at the
finest, i.e. rightmost, lattice point at LO, NLO, NNLO and
NNNLO. The NNNLO error band contains both the statisti-
cal error and that due to the uncertainty in as(a). The run-
ning is done in each order in a self-consistent way to the

given order in as , according to Eq. ~78! ~without the Ṽs ,i

terms!. We used n59.76r0
21 and the initial value as(n) was

calculated from LMSr0 using the four loop running. We ob-
serve convergence and, moreover, the series is sign alternat-
ing. To NNNLO, except for the lower lying of the two
r0 /a'2.93 data points, there is no contradiction between
data and the expectation. However, the points of Ref. @34#
have a slightly more pronounced slope such that the r0 /a
'2.9,4.5 and 6.3 points (b55.7,5.9 and 6.1! lie below the
curve while the r0 /a'8.5 point (b56.3) lies somewhat
above.

We also display the data of the table in Fig. 16, in analogy
to Fig. 14, but we disregard the LO result that is already

displayed in Fig. 15. The size of dmstat
L (a)2dmRS(a21) in-

creases linearly in a21, with logarithmic corrections: at
coarse lattice spacings there might be significant perturbative

O(as
4) and non-perturbative O(a2/r0

2) corrections affecting

the slope of this function while at fine lattice spacings the
slope can be determined accurately but the dm difference

itself becomes large. An accurate conversion between the

two schemes can therefore neither be obtained at extremely

fine nor at very coarse lattice spacings. Setting n5n f , the

difference between NLO and NNLO translation is minimized

for 3&r0n f&4 while that between NNLO and NNNLO is

minimal for 7.5&r0n f&9, where the widths of these bands

are determined by our uncertainty in the value of LMSr0 .

We choose to translate the lattice scheme results into the

RS scheme by means of a global NNNLO fit to the r0 /a

.5, i.e. b>6.0 data, expanded in terms of as(n

59.76r0
21), where we set n f5n . The result reads

L̄RS~9.76r0
21!5@1.760.08~ latt.!60.18~ th.!

60.04~LMS!#r0
21 . ~81!

Note that L̄RS is the only fit parameter.

The dashed curves in Fig. 16 correspond to such a

NNNLO fit to the LO results, subsequently transformed in

the same way as the data points to NLO, NNLO and
NNNLO. The error band corresponds to the result of Eq.
~81!, without the theoretical error, run to different energies,
using the PV prescription, of Eq. ~61!: unlike the band dis-
played in Fig. 14 above, this is not the result of an indepen-
dent determination. We would also have found agreement
with the result of Eq. ~76!, but only within the large theoret-
ical errors of this un-quenched determination.

At high order in the perturbative expansion and at high
energies one would expect the slope of the non-perturbative
running in the lattice scheme, translated into the RS scheme,
to approach that of the running within the RS scheme. Dis-
carding the four data points of Ref. @34#, Fig. 16 nicely con-
firms this expectation. We will investigate this running with
higher accuracy in Sec. VI C.
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The errors of the determination Eq. ~81! above stem from
the following sources:

~1! ‘‘latt.’’ is the sum of the statistical error (60.03) and

the error encountered when varying the fit range amin
21 r0

54.48,5.37,6.32 (60.05): 60.08.
~2! ‘‘th.’’ is the sum of perturbative and non-perturbative

errors. As the perturbative error we take the difference be-
tween NNLO and NNNLO results. Varying the fit range as
above this difference never exceeds 60.04. We also study
the error due to the uncertainty of NVs

obtaining 60.06. To

investigate possible non-perturbative effects we include an
a2 term into the fit. We estimate an additional 60.08 uncer-
tainty. Adding these three errors linearly results in 60.18.

~3! ‘‘LMS’’ stands for the uncertainty in the determination
of LMSr0 @37#: 60.04.

Using the running in the RS scheme ~we note that the
error due to the uncertainty of NVs

almost cancels in the

running!, we obtain

L̄RS~2.5r0
21!5@1.1760.08~ latt.!60.13~ th.!

60.09~LMS!#r0
21 ~82!

from the value of Eq. ~81!. This n f50 result compares rea-
sonably well with the phenomenological n f54 value of Eq.
~76! and its error is of a comparable size.

B. Comment on the b quark mass

We cannot resist the temptation to obtain a value for the
RS scheme bottom quark mass, using Eq. ~74! and our
quenched result, Eq. ~82!. We obtain

mb ,RS~1 GeV!5@4849632~ latt.!660~ th.!

635~LMS!# MeV, ~83!

where we have translated Eq. ~82! into physical units for
n f51 GeV and also added an extra theoretical error of
630 MeV, due to 1/mb corrections, combined quadratically
with the theoretical error inherited from the lattice determi-

nation of L̄RS. From this number we can compute the MS
scheme result,

mb ,MS~mb ,MS!5@4191629~ latt.!647~ th.!61~LMS!# MeV,
~84!

where we have performed any running and manipulation
with n f54 and used the PV prescription to run mb ,RS from 1

GeV up to the bottom MS mass.12 In this way higher order

terms in the relation between the MS and the RS mass are
minimized. If instead one determines mb ,MS(mb ,MS) directly
from its perturbative relation with mb ,RS(1 GeV) one obtains
a somewhat larger result, but with sizable higher order terms.
Note that some of the theoretical errors, such as the uncer-
tainty of NVs

, are correlated with the running of as .

Obviously one has to allow for quenching errors. Naı̈vely
one might assume an O(10%) effect on the binding energy
which amounts to 50 MeV in Eq. ~83!. However, this might
be an underestimate since the running of the mass with the
scale in the n f50 case is very different from that for n f

54 and the relative effect on L̄!mb , due to a different
running, is larger than that on the quark mass. To illustrate
this we also work consistently with n f50 and obtain

mb ,MS~mb ,MS!5@4339629~ latt.!649~ th.!69~LMS!# MeV.
~85!

This differs from the value of Eq. ~84! by almost 150 MeV.

Note that we have used the n f50 value LMS50.602r0
21 to

obtain the above results. Using the n f55 QCD world aver-
age as(M z)50.118 instead ~running it across the bottom fla-
vor threshold down to 1 GeV!, the central value of Eq. ~84!
would read, mb ,MS(mb ,MS)54113 MeV. The difference be-
tween these two values may also be indicative of the typical
size of the error due to quenching.

We feel that 1 GeV might be a more natural scale to
obtain an n f54 prediction from the quenched model than 4
GeV and hence we prefer the central value of Eq. ~84!. After
all, the quenched model has been adjusted to reproduce low
energy QCD phenomenology and indeed Eqs. ~76! and ~82!
agree with each other within errors. However, as discussed
above and as indicated by the 150 MeV difference from us-
ing a different perturbative running, such predictions have to
be consumed with some caution. Equation ~84! demonstrates
the precision that can be achieved in lattice simulations of
static-light mesons with sea quarks to NNNLO. Obviously,
the ‘‘latt.’’ error can systematically be reduced. Note that,

12We ignore the charm mass threshold. Since the charm quark

mass is not much heavier than 1 GeV this is a small effect anyhow,

completely paled by our dominant source of uncertainty, the n f

50 approximation.

FIG. 16. The binding energy L̄ , obtained on the lattice and

converted into the RS scheme at NLO ~squares!, NNLO ~penta-

gons!, NNNLO ~circles! and the result of Eq. ~81!, run to different

scales using the PV prescription ~neglecting the ‘‘theoretical’’ er-

rors!. The dashed lines are explained in the text.
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with NNNLO perturbative results, the dominant theoretical
uncertainty ~apart from the sea quark content! is due to 1/mb

corrections.

C. The running of L̄ from the static lattice potential

To leading order, the singlet static energy Es is the sum of
twice the heavy quark mass and the singlet potential, Eq. ~2!,
while M B is the sum of the quark mass and the binding

energy L̄ , Eq. ~7!. Consequently, in the OS (RS) schemes Vs

contains twice the leading renormalon ~power term! of L̄ . In
QCD with sea quarks this is also evident from the large
distance behavior, where Es(r) will approach 2M B .

In the lattice scheme, the non-perturbative energy E
S

g
1

L

differs from Es by twice the quark mass, Eq. ~45!, and con-

tains the same power term as the static-light energy L̄L

~times two!. One can explicitly verify this in perturbation

theory. In QCD with sea quarks E
S

g
1

L
(r) will approach 2L̄L

for r*rc , where rc denotes the distance associated with
‘‘string breaking’’ and is implicitly defined by Es(rc)
52M B . We find the static potential @46,52# ES

g
1 to exceed

the values of 2L̄L of Ref. @48# at r.rc5(2.2560.15)r0 , a
distance that is statistically indistinguishable from the value
rc'2.3r0 , obtained in simulations with n f52 light sea
quarks @3,13#.

The difference 2L̄L
2E

S
g
1

L
(r0)5E

S
g
1

L
(rc)2E

S
g
1

L
(r0) is a

constant, up to O(a2) lattice artifacts. In what follows we
will investigate the running of

L̄pot
L ~a !5

1

2
E

S
g
1

L
~r0 ;a !1D , ~86!

as a function of a21. The static lattice potential ES
g
1(r0)/2

can be determined more precisely than L̄L: in terms of com-
puter time it is cheaper to obtain with the same statistical

error and, since no chiral extrapolation is involved, with vir-
tually no systematic uncertainties. However, we do not know
the absolute normalization D . We reanalyze the lattice poten-
tials of Refs. @46,52# to correctly account for the propagation
of the uncertainty of r0 into the combination r0ES

g
1(r0). By

matching the lattice potential E
S

g
1

L
(r0)/25(2.856

60.014)r0
21 to L̄L

5(3.84460.065)r0
21 at b56.2 (r0 /a

'7.3), where we have two independent results for the latter
quantity @48,49#, we obtain

D5~0.98860.067!r0
21 . ~87!

For ease of comparison with Sec. VI A, we display the re-

sulting L̄pot
L (a) in Table VI as well as in the figures. The

additional uncertainty due to the error in D should be kept in
mind.

We display L̄pot
L in Table VI, together with conversions

into the RS scheme, according to Eqs. ~77! and ~78!. The
data are also depicted in Fig. 17 ~full diamonds!, together

with the results from the static-light energies L̄L ~open dia-
monds!. Except for the four data points of Ref. @34# at
r0 /a'2.9,4.5,6.3 and 8.5, whose slope is somewhat incom-
patible with the results from the other references as well as
with perturbation theory ~as we already noticed in Sec.
VI A!, we find agreement between the non-perturbative run-

ning of ES
g
1(r0)/2 and that of L̄L, down to the lowest scales.

This need not be so since in principle the results may differ

by O(a2/r0
2) lattice terms. We also compare this running

with the expectation from the value LMS'0.602r0
21 ~solid

line!, where we use the normalization suggested by the cen-

tral value of Eq. ~81!, L̄RS(n f59.76r0
21)'1.70r0

21.

As can be seen there is no contradiction between the lat-
tice data and NNNLO perturbation theory down to scales as

low as 2r0
21 and as high as 15r0

21. This agreement is quan-

tifiable: a one-parameter NNNLO fit to the a21
.5r0

21 data

TABLE VI. The inverse lattice spacing, the estimate of the static-light binding energy in the lattice

scheme, L̄pot
L

5E
S

g
1

L
(r0)/21D , Eqs. ~86! and ~87!, as well as its conversion to the RS scheme to different

orders in perturbation theory. The errors only incorporate the statistical uncertainties of the ES
g
1(r0) data, as

well as the 8% uncertainty in LMSr0 @37#, added in quadrature. The overall error due to the uncertainty in D ,

which does not affect the running of L̄L, is not displayed.

a21r0 L̄pot
L r0 L̄RSr0(NLO) L̄RSr0(NNLO) L̄RSr0(NNNLO)

1.95 2.11~10! 0.64~14! 1.30~10! 0.99~12!

2.42 2.35~10! 0.81~12! 1.39~10! 1.16~11!

2.94 2.51 ~4! 0.86 ~8! 1.40 ~5! 1.22 ~6!

3.80 2.81 ~5! 0.95 ~8! 1.49 ~5! 1.33 ~6!

4.47 3.02 ~3! 1.00 ~7! 1.54 ~4! 1.39 ~5!

5.35 3.29 ~2! 1.05 ~7! 1.61 ~4! 1.46 ~5!

7.30 3.84 ~2! 1.13 ~7! 1.73 ~4! 1.59 ~5!

9.89 4.53 ~2! 1.21 ~8! 1.87 ~5! 1.73 ~6!

12.74 5.23 ~3! 1.26 ~9! 1.99 ~6! 1.85 ~7!

14.36 5.47~10! 1.16~13! 1.92~12! 1.78~12!
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~setting LMS50.602r0
21) yields x2/NDF53.53/4, with the

value ~translated into the RS scheme for ease of comparison!

L̄RS~9.76r0
21!5~1.7160.01!r0

21 . ~88!

Including all available data results in x2/NDF56.91/9 with

L̄RS(9.76r0
21)5(1.7060.01)r0

21. The errors of the above

examples are purely statistical. The uncertainties in D and

LMS as well as theoretical errors are unaccounted for. If we

go to NNLO we obtain the x2/NDF values of 16.3 ~all data

points!, 23.0 (a21
.5r0

21) and 6.7 (a21
.9r0

21). Also, the

predicted value of L̄RS(9.76r0
21)r0 becomes somewhat un-

stable, ranging from 1.76 ~all data points!, 1.79 (a21

.5r0
21), up to 1.91 (a21

.9r0
21): within the accuracy of

the data it is essential to go to at least NNNLO in perturba-
tion theory.

In Fig. 17 and Table VI we have also displayed the re-
sults, translated into the RS scheme to different orders in
perturbation theory. In Fig. 18 we focus on this comparison.
This figure very much resembles Fig. 16, only that now the
error bars are smaller as we discard the error of D , which

will only affect the overall value of L̄ but not the running
with the scale. The dashed lines correspond to NNNLO per-

turbation theory in the lattice scheme with LMS50.602r0
21,

and the central value of Eq. ~88! as normalization point. This
running perfectly agrees with the data down to very low
energies. As already observed in Sec. VI A, we also find nice

convergence for a21
*3r0

21, as the order of the perturbation

theory is increased. The error band corresponds to the PV

prescription of the running in the RS scheme13 with

L̄RS(9.76r0
21)5(1.7060.04)r0

21, run to different scales, us-

ing LMS5(0.60260.048)r0
21. Note that the errors that we

display in this case are only due to the uncertainty in as ,
with all other error sources of Eq. ~81! ~as well as the uncer-
tainty of D) ignored.

We find excellent agreement between data and the pre-
dicted running. In fact, one can in principle determine as

from the logarithmic corrections to the a21 running of the
binding energy: in dedicated lattice simulations of the short
distance static potential tremendous statistical accuracy can
be achieved and tiny lattice spacings are accessible @25#.
Even using our static singlet potentials @46,52# that are less
accurate than those of this recent reference, a two-parameter
NNNLO fit to the a21

.5r0
21 data yields LMS5(0.590

60.036)r0
21 and L̄RS(9.76r0

21)5(1.7360.04)r0
21 with

x2/NDF53.35/3. Including the whole energy range, down to
a21'2r0

21, results in LMS5(0.62760.026)r0
21 and

L̄RS(9.76r0
21)5(1.6860.02)r0

21, still with very acceptable

x2/NDF56.08/8. The results for L̄RS are in perfect agree-
ment with those obtained in Eqs. ~81! and ~88!. Moreover,
the fits are consistent with the value of Ref. @37#, LMS

5(0.60260.048)r0
21, within statistical errors smaller than

the uncertainty of this reference value.

13At n f@n59.76r0
21 we find some differences between the

NNNLO running in the lattice scheme ~dashed black line! and the

PV prediction ~error band!, due to large logarithms in the differ-

ence, Eq. ~80!, where we have not attempted a logarithmic resum-

mation.

FIG. 17. The binding energy L̄pot
L , Eq. ~86!, in the lattice

scheme ~full diamonds!, in comparison with L̄L of Sec. VI A ~open

diamonds!. The constant D has been adjusted by requiring agree-

ment between the two data sets at r0'7.3a . The uncertainty of D

5(0.98860.067)r0
21 is not included into the errors. NLO, NNLO

and NNNLO refer to transformations of L̄pot
L into the RS scheme to

different orders in perturbation theory. The solid line corresponds to

the NNNLO expectation with LMS'0.602r0
21, and the central

value of Eq. ~81!, L̄RS(n f59.76r0
21)51.70r0

21.

FIG. 18. The binding energy L̄pot
L , Eq. ~86!, translated into the

RS scheme at NLO ~squares!, NNLO ~pentagons! and NNNLO

~circles!. We have neglected an overall error in the vertical scale of

60.067r0
21, due to the uncertainty of D , that does not affect the

running. The dashed lines correspond to the NNNLO running in the

lattice scheme with LMS50.602r0
21, where we used the fit result of

Eq. ~88!, L̄RS(9.76r0
21)'1.71r0

21, as normalization. The error band

corresponds to the prediction of Eq. ~81!, L̄RS(9.76r0
21)5(1.70

60.04)r0
21, and includes the uncertainty due to LMS5(0.602

60.048)r0
21 ~but no other errors!.
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In conclusion, we have demonstrated that the running of
the binding energy in the lattice scheme can be reproduced
with incredible accuracy in NNNLO perturbation theory, in
terms of as . This accuracy is possible since, unlike in the
case of the binding energy itself, there is no leading renor-
malon contribution to its running. Down to energies of about
1 GeV we do not see any sign of a break-down of perturba-
tion theory or evidence of significant non-perturbative con-
tributions to the running. We have also confirmed that the
theoretical errors estimated in Eqs. ~81! and ~82! are indeed
conservative.

VII. GLUINONIUM AND OTHER RELATED ISSUES

We already mentioned that gluelumps are interesting in
the context of bound states, including heavy adjoint particles,
such as gluinos of supersymmetry ~SUSY! models ~even if it
is quite likely that they will decay before any kind of had-
ronization takes place!. In this case, to leading order in
HGET ~heavy gluino effective theory!, the gluino mass can
be obtained from the relation,

M G̃5LB
OS

1m g̃ ,OS5LB
RS~n !1m g̃ ,RS~n !, ~89!

in a scheme of choice that can then be converted into the

mass in, say, the MS scheme m̄ g̃(m̄ g̃), analogously to the
discussion of Sec. VI. We will limit most of the discussion
below to the RS and OS schemes but translation into lattice
schemes is straightforward.

M G̃ denotes the mass of the lightest ~spin-averaged! glue-
ballino. Note that in this context the gluelump energy LB

plays the same role as the binding energy L̄ did for heavy-

light mesons. We have LH
RS(n f)5LH

OS
2dLRS(n f) and hence

m g̃ ,RS~n f !5m g̃ ,OS1dLRS~n f !: ~90!

dm g̃ ,RS52dLRS in the glueballino case corresponds to the
dmRS of heavy-light mesons. We can also write down the
above equations in the lattice scheme in which case, using
the same conventions as in other parts of this paper, dm g̃ ,L

5dLL .
In addition to glueballinos one can imagine gluino-gluino

bound states: gluinonia, G . Their dynamics is dictated by the
following Lagrangian:

LpNRQCD,G5E d3r d3R Tr$SG
†~ i]02VA ,s!SG

1OG ,1
†~ iD02VA ,o!OG ,11•••%, ~91!

at leading order in 1/m g̃ and in the multipole expansion. This
is analogous to Eq. ~1!, replacing the static sources in the
fundamental by static sources in the adjoint representation.
This means that there will be further multiplets in Eq. ~91!
that we will not consider in this paper.

The singlet potential between two adjoint sources VA ,s(r)

has been calculated in perturbation theory to O(as
2) and the

corresponding energy EA
L(r;a) was determined in lattice

simulations ~see, e.g. Ref. @24#!. Up to lattice artifacts }a2

we can write

EA~r !52m g̃ ,L~a !1EA
L~r;a ! ~92!

52m g̃ ,L~a !1VA ,s ,L~r;a !1O~r2! ~93!

52m g̃ ,RS~n f !1VA ,s ,RS~r;n f !1O~r2!, ~94!

where the normalization of EA
L(r) with respect to EA(r) can

be obtained from the gluinonium spectrum. Obviously,

lim
r→`

EA~r !52M G̃ , ~95!

while for the bottomonium energy in QCD with sea quarks
one obtains ~up to 1/mb corrections and neglecting radial and
gluonic excitations!,

lim
r→`

Es~r !5 lim
r→`

EH~r !52M B . ~96!

In combining Eq. ~94! with Eqs. ~26! and ~30! we obtain the
important equality,

EA~r !12@EB~r !2Es~r !#

5VA ,s ,RS~r;n f !12@Vo ,RS~r;n f !2Vs ,RS~r;n f !#

12M G̃1O~r2!, ~97!

where we have used the fact that M G̃5m g̃ ,RS1LB
RS and EB

P$EPu
,ES

u
2%. The effect of dmRS cancels from the combi-

nation EB2Es and dLRS from EA12EH . Since the glue-
ballino mass is a physical observable this implies that, up to
O(r2) corrections, the combination VA ,s(r)12@Vo(r)
2Vs(r)# is scale independent and free of renormalon and
power contributions: the UV renormalon of Vo is cancelled
by the UV renormalon of Vs while the leading IR renorma-
lon of Vo , which we studied in this paper, is cancelled by

one-half of the UV renormalon of VA ,s . In fact, to O(as
2)

this combination explicitly vanishes and the O(as
3) term is

suppressed by a color factor 1/Nc
2 .

In the above equation EB(r) corresponds to the Pu or Su
2

hybrid levels. For a general EH(r) we would have to replace
the M G̃ on the rhs by the mass of the excited glueballino in
the respective channel. At r→` the rhs of Eq. ~97! will
approach 2M G̃ , see Eqs. ~95! and ~96!.

We wish to compare our expectation with lattice data.
This can either be done after an extrapolation of these to the
continuum limit or at finite lattice spacing in the lattice
scheme. Reexpressing Eq. ~97! in terms of the energy levels

as determined in the lattice scheme @EA(r)5EA
L(r;a)

12m g̃ ,L(a), etc.#, and using the conventions of Sec. IV D,
this amounts to

EA
L~r;a !12@EPu

L ~r;a !2E
S

g
1

L
~r;a !2LB

L~a !#

5VA ,s ,L~r;a !12@Vo ,L~r;a !2dLL~a !2Vs ,L~r;a !#

1O~r2!1•••

5O~r2!1O~as
3/Nc

2!1O~LQCD
2 a2!1O~a2/r2!.

~98!
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Both the lhs and rhs of the above equation are explicitly free
of a21 power terms ~and of leading renormalons!. In fact the

rhs vanishes in perturbation theory, to at least O(as
3/Nc

2). As

indicated in the equation, in general there will be non-

perturbative O(a2/r2) as well as O(LQCD
2 a2) lattice arti-

facts, in addition to the O(r2) corrections from higher terms
in the multipole expansion.

The above combination is extremely interesting as for
small r there should only be a quadratic but no linear term.
At r*2r0 the adjoint string will break and the lhs of the
equation will approach zero like 1/r . In the intermediate re-
gion 0.5r0,r,2r0 one would expect two non-perturbative
contributions, a linear term from the slope of EA(r), with an

effective string tension @24#, seff5@3.0960.10#r0
22, as well

as a 1/r term that dominantly originates from the difference
between static hybrid and singlet potentials and whose coef-
ficient will approach 2p as r→` , in an effective string
model expectation. In fact for r'r0 one would expect this
1/r term still to dominate over the linear term.

We wish to compare this expectation to numerical data.
Unfortunately, on isotropic lattices where we know the glue-
lump mass in the lattice scheme we did not compute the
adjoint potential while on our anisotropic data sets all poten-
tials, singlet, adjoint and hybrid, are available but the glue-
lump mass is unknown. In Fig. 19 we display the combina-

tion EA
L(r)12@EPu

L (r)2E
S

g
1

L
(r)# as a function of r̄5r@1

1O(a2/r2)# , Eq. ~10!, at our finest anisotropic lattice spac-
ing, as'0.16r0'4at which, within errors, is compatible
with the continuum limit, see Sec. III and Ref. @24#. Note
that there is an additional 1% overall error on the ordinate
and the abscissa due to the conversion from lattice units into
units of r0 that we do not display.

From Eq. ~98! we would expect the combination shown to

approach the gluelump energy in the lattice scheme, LB
L(a),

as r→0. We see that the approach towards this limit is re-
markably flat. In fact, excluding the r.0.9r0 data, which are
clearly in the non-perturbative regime anyway, we are unable
to resolve deviations of the data from a constant. Note that

the units on the ordinate, 0.2r0
21'80 MeV, are quite small.

A linear plus quadratic fit,

EA
L~r !12@EPu

L ~r !2ES
g
1~r !#52LB

L
1cr2, ~99!

to r,0.5r0 data, yields

2LB
L
5~15.5160.10!r0

21 , c5~0.0760.70!r0
23 .

~100!

A purely phenomenological fit to the same functional form
for all distances results in

2LB
L
5~15.4560.06!r0

21 , c5~0.3860.07!r0
23 ,

~101!

while in a physically completely unmotivated funnel param-

etrization, 2LB
L
1e/r1kr , we obtain

2LB
L
5~14.9560.20!r0

21 , e5~0.0860.04!,

k5~0.8460.18!r0
22 . ~102!

The r dependence is so weak that on the 1% error level of the
lattice data we are unable to discriminate between different
parametrizations. However, we can determine the gluelump

mass rather precisely, LB
L(as ,at)5(7.7560.0560.07)r0

21,

where the second error reflects the uncertainty in the lattice
determination of r0 /at . In fact the same can be done for the
as'0.23r0 and as'0.33r0 data sets. The respective results

read LB
L
5(6.7160.0460.09)r0

21 and LB
L
5(5.7560.10

60.05)r0
21 , respectively. The data are in agreement with a

linear slope in a21 but, unfortunately, at present we only
know the NLO perturbation theory for the anisotropic case.
After subtracting twice these gluelump energies, we find
scaling of the coarse lattice data with the results depicted in
the figure, within error bars of comparable size.

In particular, from the fit to the funnel type parametriza-
tion we see that the data leave little room for perturbation
theory style short-distance Coulomb terms. This is in agree-
ment with our expectation. However, miraculously there is
also no evidence for a quadratic term in the r,0.9r0 data

and, in fact, we can set the limits 0.46.cr0
3
.20.18 for such

a contribution, from the r,0.7r0 data. We believe that the
smallness of this term is accidental as had we replaced the

Pu by the Su
2 potential, it would certainly be present; see

Sec. II D. One can, however, speculate that there might be a
cancellation of r2 effects and that Pu does not receive a
significant r2 contribution in the multipole expansion. This
issue should be addressed in future theoretical and numerical
studies with enhanced accuracy.

The observed slope at larger distances ('0.84r0
22) is

much smaller than that of the adjoint potential in this region

('3.09r0
22), in agreement with our expectation that the 1/r

contribution from the difference 2(EPu
2ES

u
2) cannot be ne-

glected.
There is no evidence of a linear non-standard short-

distance term for r,0.9r0 , at least not of the size expected
in various models @53#. A possible explanation of the absence
of such a term from our calculation of a quantity that van-
ishes to low orders in perturbation theory would be that
as(q) itself receives O(1/q2) corrections ~see Refs. @53#!.
We remark to this end that as is not a physical observable. In

the MS scheme it is perturbatively defined. The difference
between as and any non-perturbative generalization of this
coupling, which would allow inclusion of such singularities,
will necessarily not be universal but depend on the prescrip-
tion used. However, we are investigating a physical observ-
able here that is scheme independent.

Combinations of different potentials that lead to renorma-
lon and low order perturbation theory cancellations are cer-
tainly an arena worthwhile studying for a determination of
higher order terms in the multipole expansion and for testing
the validity of the standard operator product expansion pic-
ture. As we shall detail below many such combinations exist.

There are also hybrid excitations in the adjoint channel.
The perturbation theory in this case is richer than for poten-
tials between fundamental sources as 8^ 851% 8% 8% 10

% 10* % 27: in addition to singlet and octet, we have another
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octet, two decuplet fields and a 27-let which have to be in-
cluded into Eq. ~91!. Consequently, adjoint hybrid potentials
cannot only have the octet perturbative expansion but some
will correspond to decuplets and others to 27-lets. Note that
the decuplet representation is not self-adjoint but has vanish-
ing triality as it should be.

The renormalon of the octet potential between adjoint
sources is the same as in the fundamental case but the de-
cuplet and 27-plet adjoint potentials contain new renorma-
lons, which are related to those of the singlet potentials be-
tween color charges in these respective representations. This
exactly resembles the situation discussed above where the
adjoint singlet potential contains the same renormalon as the
fundamental octet potential. In fact one can define an infinite
tower of states with different renormalons following this
construction, a theoretically interesting enterprise but not
likely to be of much direct phenomenological use.

The inclusion of the octet states of Eq. ~91! is necessary
for any consistent pNRQCD calculation of gluino pair pro-
duction near threshold at NLO @54#. At NNLO the decuplet
and 27-plet fields will also play a role. In fact such contribu-
tions, depending on the mass of the gluino ~and on its exis-

tence!, might be of bigger importance than in the case of t t̄

production because there are more of them. This is an excit-
ing and very cleancut situation since v

2 and r21 are bigger
by a factor ;CA /C f than for quarkonia, such that all ‘‘soft’’
physics is clearly and extremely safely within the perturba-
tive domain.

Let us finally mention that LB , the binding energy of the
lightest glueballino, determines the size of the splitting be-
tween the adjoint singlet potential and the lowest adjoint
hybrid potential at short distances, the latter of which, unfor-
tunately, has never been determined in lattice simulations.
This is very different from the case of fundamental sources

where binding energies of heavy-light systems, L̄ , are much
smaller than the gaps between ground state and hybrid exci-
tations. In ‘‘hadrinos,’’ which contain stable adjoint sources,
gluonic excitations would hence play a very prominent role

and simple constituent-gluino models might fail terribly. Un-
fortunately, in nature we do not encounter such particles. It
would, however, be most entertaining to confirm this expec-
tation in lattice simulations.

VIII. CONCLUSIONS

We report compelling evidence that for distances around
1 GeV21 the gluonic excitations of the static potential are in
the short distance regime. We are able to obtain a value for
the lowest-lying mass LB of the bilocal gluonic correlation
functions with well controlled uncertainties, by fitting to the

difference between the Pu and Sg
1 potentials. The RS

scheme result reads

LB
RS~n f50 !5@2.2560.10~ latt.!60.21~ th.!

60.08~LMS!#r0
21 ~103!

for n f52.5r0
21'1 GeV. Translated into physical units this

reads

LB
RS~1 GeV!5@887639~ latt.!683~ th.!632~L MS!# MeV.

~104!

Note that one should also add an extra error of order 10%
due to quenching to these numbers. With the information
presented in this paper n f can be run to different scales ~see
Fig. 14!. We also obtain values for the masses of other glue-
lumps, listed in Table IV, as well as for the non-perturbative

slope APu2S
u
250.92

20.52
10.53r0

23 of the quadratic difference be-

tween the lowest two hybrid potentials.
In order to state sensible numbers for LB , the scheme for

the renormalon cancellation has to be specified. Otherwise,
very different numbers can be obtained, as we can see from
a comparison of the result in the lattice and the RS schemes.
One can translate from one scheme into the other in a
renormalon-free way, order by order in perturbation theory
and check whether both results are consistent with each
other. We have been able to confirm this. If we use the glue-
lump results from Foster and Michael @12# at finite lattice

spacing, we obtain LB
RS(2.5r0

21)5@2.3160.04(latt.)

60.33(th.)
20.19
10.18(LMS)#r0

21 , which is perfectly compatible

with the result of Eq. ~103!, albeit with slightly larger errors.
We also investigate the binding energy of heavy-light me-

sons in the static limit and to NNNLO in the conversion. We
arrive at similar conclusions. For the binding energy we ob-
tain the n f50 value,

L̄RS~n f52.5r0!5@1.1760.08~ latt.!60.13~ th.!

60.09~LMS!#r0
21 , ~105!

which is in good agreement with the phenomenological
value, obtained from the experimental Y(1S) and B meson

systems @15#, L̄RS
5@0.9260.22(th.)

20.11
10.15(LMS)#r0

21 .

We have demonstrated the internal consistency of our ap-

proach. Lattice predictions for LB
L and L̄L at different lattice

spacings have been studied. We have shown that the pertur-

FIG. 19. The combination EA
L(r)12@EPu

L (r)2E
S

g
1

L
(r)# , Eq.

~98!, as a function of r̄5r@11O(a2/r2)# , Eq. ~10!, together with

various fits on an anisotropic lattice with resolution as'4at

'0.16r0 .
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bative series, Eq. ~80!, relating LB
L(a) and L̄L(a) with

LB
L(a8) and L̄L(a8), respectively, in the lattice scheme is

free of renormalon singularities and has nice convergence
properties, as indicated by the consistency with the non-
perturbatively obtained values. In particular this means that

from the knowledge of LB
L and L̄L at a given lattice spacing

values at different lattice spacings can accurately be pre-
dicted. We have studied the conversion of lattice predictions

for LB
L and L̄L into the RS scheme. This conversion is also

dictated by a perturbative series which is free of renorma-
lons. We have verified that the values in the lattice scheme
indeed approach the results in the RS scheme with a conver-
gent pattern and, remarkably, the n f-scale dependence pre-
dicted by the RS scheme is reproduced, within errors. We
remark that for the n f-scale running it is possible to obtain a
resummed non-perturbative expression in which the renor-
malon is cancelled and at the same time the logarithm resum-
mation is performed.

We stress that the RS scheme used here is designed to

smoothly converge to (MS-style dimensional regularization!
perturbation theory at low orders in as ; after all, the renor-
malon effect only sets in asymptotically at large orders in

perturbation theory. Different values for LB and for L̄ can be
obtained in other schemes but only at the inconvenience of
having large corrections to ‘‘standard’’ perturbation theory at
low orders. In this sense we consider our approach ‘‘natu-
ral’’; the RS scheme incorporates salient features of both
dimensional and lattice regularization. The approach readily

benefits from results computed in the MS scheme, the
scheme in which perturbative quantities are usually known to
the highest order. On the other hand, by subtracting renorma-
lons we encounter explicit power divergencies, which is ex-
actly what one obtains with a hard lattice cut off, too.

Our model independent non-perturbative predictions can
directly be incorporated into perturbative calculations, within
effective field theories, or exploited in the context of QCD
vacuum models or calculations based on non-local conden-
sates. Obvious phenomenological applications in the context

of EFTs are pNRQCD in the kinematic domain mv
2

&LQCD,mv , translating glueballino masses into RS or MS
gluino masses within HGET ~heavy gluino effective theory!,
or converting heavy-light meson masses into quark masses
within HQET.

We observe that LB'(CA /C f)L̄'mG/2, where mG de-
notes the mass of the lightest glueball. The first similarity is
not necessarily surprising since there are technical parallels
between LB , which corresponds to the binding energy of an

adjoint source, and L̄ , the energy of a fundamental source.
We do not intend to advocate a constituent gluon picture.
Nevertheless, it may seem reasonable that the binding energy
of the glue to an adjoint source has about half the size of the
energy of an entirely gluonic state. It should, however, be
noted that the latter is an unambiguously defined state in the
physical spectrum while for the binding energy LB we nec-
essarily encounter the scheme and scale dependence that we
discussed.

We have also investigated the scenario of gluinonia and
other excitations in non-fundamental channels. While glui-
nos might not exist in nature and certainly do not form light
bound states, such that phenomenological applications are
limited, from a theoretical and conceptual point of view the
existence of this part of the spectrum is very interesting. The
inclusion of such potentials allows one to identify many
combinations in which renormalons and other un-wanted
contributions vanish, opening up a window to the study of
non-perturbative short distance physics.
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