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1. Introduction

In measurements, and related theoretical analyses, of scaling violations of the F2
structure function [1, 2], of forward-jet production in DIS [3]–[7], and of dijet produc-

tion at large rapidity intervals [8]–[14], several attempts have been made to detect a

footprint of BFKL [15]–[17] evolution in hadronic cross sections. Except for forward-

jet production in DIS, where a full next-to-leading-order (NLO) calculation [18] has

proven itself insufficient to describe the data, perhaps hinting toward corrections of

BFKL type, none of the processes above shows any appreciable deviation from a

standard perturbative-QCD behaviour, which allows us to describe them in terms

of a fixed-order expansion in αS of the kernel cross sections, complemented with the

Altarelli-Parisi evolution of the parton densities. However, in the processes above the

hadronic nature of one or both of the incoming particles renders it difficult to disen-

tangle an eventual BFKL signal from standard non-perturbative long-distance effects.

In order to overcome this problem, it was proposed in refs. [19, 20] to consider

the high-energy scattering of two heavy quarkonia, since the transverse sizes of the

quarkonia are small enough to allow for the perturbative computation of their wave
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Figure 1: Sample of diagrams contributing to the production of hadrons in the collision

of two off-shell photons.

function. At present, scattering of two heavy quarkonia is not feasible experimentally.

An increasingly popular alternative is the study of the process

γ∗ + γ∗ −→ hadrons , (1.1)

at fixed photon virtualities q2i = −Q2i < 0, and for large center-of-mass energies
squared W 2 = (q1 + q2)

2, with qi the momenta of the photons (throughout this pa-

per, we also assume Q2i ≫ Λ2QCD). The virtual photons play the same role as the
quarkonia; they are colourless, and their virtualities control their transverse sizes,

which are roughly proportional to 1/
√

Q2i , thus allowing for a completely perturba-

tive treatment. The virtuality of the photon is therefore physically equivalent to the

(squared) mass of the quarkonium; however, while the mass of the quarkonium is

fixed by nature, the virtuality of the photon can be controlled by the experimental

setup.

In order to elucidate how the process in eq. (1.1) may be relevant to the BFKL

dynamics, we expand the production rate associated to eq. (1.1) in αS and illustrate

in figure 1 some of the final-state configurations contributing to it. Diagrams d),

e) and f), plus all the diagrams obtained by emitting more and more gluons from

the crossed-channel gluon, are included in the BFKL dynamics: in fact, the BFKL
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theory assumes that any scattering process is dominated by gluon exchange in the

crossed channel, a result that holds exactly only asymptotically for large energies.

In the case at hand, if one considers the large-W limit, diagrams with a crossed-

channel quark exchange, such as a), b) and c), are expected to give a cross section

behaving as

σγ∗γ∗ ∼ 1/W 2 , (1.2)

modulo logarithmic corrections, while diagrams relevant to BFKL physics, such as

d), e) and f), are expected to give

σBFKLγ∗γ∗ ∼ a0 +
∞∑

j=1

aj(αSL)
j +O(αS(αSL)j) , (1.3)

where L = log(W 2/µ2
W
) is a “large” logarithm, and all subleading logarithmic terms

are indicated with O(αS(αSL)j); the quantity µ2W is a mass scale squared, typically of
the order of the crossed-channel momentum transfer and/or of the photon virtualities.

By comparing eqs. (1.2) and (1.3), it is clear that the latter will dominate over the

former in the asymptotic energy regionW →∞. Thus, testing the BFKL predictions
in an ideal world would be quite straightforward: the data relevant to the process

in eq. (1.1) for large W values would be compared to the theoretical predictions for

σBFKLγ∗γ∗ .

However, things are not so simple when comparing the theory to the data of a

realistic experimental set-up. Firstly, at current collider energies σγ∗γ∗ is not safely

negligible, and must be taken into proper account. For this reason, one usually

subtracts the theoretical predictions for σγ∗γ∗ from the data, and then compares the

results obtained in this way to the predictions for σBFKLγ∗γ∗ , which have been obtained in

the high-energy limit in refs. [21, 22, 17]. Unfortunately, at present only the leading

order (LO) contribution to σγ∗γ∗ (diagram a) in figure 1 has been considered [23].

Diagrams such as b) and c) have been neglected so far; these diagrams represent

the first non-trivial QCD corrections to the process in eq. (1.1): as we know from

other processes in hadron physics, they might give rise to a sizable enhancement

with respect to the LO cross section. We shall denote these contributions as NLO

corrections, although effectively of leading order in αS. The aim of this work is to

compute the NLO corrections, in order to assess whether a full NLO calculation of

the total cross section suffices to describe the data. As a by-product, we shall also be

able to give our predictions for one- and two-jet cross sections, with the jets having

a non-trivial internal structure. In the case of dijet observables, we shall choose

the two jets with the largest rapidity interval in the event, in accordance with the

Mueller-Navelet analysis [10]. The total and jet cross sections are computed by using

a general-purpose parton generator, developed specifically for this work.1

1The code can be obtained upon request.
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A second remark concerns the data relevant to the process in eq. (1.1). The

easiest way to access this process is through the reaction,

e+ + e− −→ e+ + e− + γ∗ + γ∗
︸ ︷︷ ︸

|−→ hadrons ;
(1.4)

namely, one considers e+e− collisions, selecting those events in which the incoming

leptons produce two photons which eventually initiate the hard scattering that pro-

duces the hadrons. However, it is clear that the process in eq. (1.4) is non physical;

rather, it has to be understood as a shorthand notation for a subset of Feynman

diagrams contributing to the process that is actually observed,

e+ + e− −→ e+ + e− + hadrons . (1.5)

Other contributions to the process in eq. (1.5) are, for example, those in which the

incoming e+e− pair annihilates into a photon or a Z boson, eventually producing

the hadrons and a lepton pair, or those in which one (or both) of the two photons

in eq. (1.4) is replaced by a Z boson. However, it is not difficult to devise a set of

cuts such that the process in eq. (1.4) gives the only non-negligible contribution to

the process in eq. (1.5). One can tag both of the outgoing leptons, and retain only

those events (thus termed double-tag events) in which the scattering angles of the

leptons are small: in such a way, the contamination due to annihilation processes is

safely negligible. Furthermore, small-angle tagging also guarantees that the photon

virtualities are never too large (at LEP2, one typically measures Q2i = O(10 GeV2));
therefore, the contributions from processes in which a photon is replaced by a Z

boson are also negligible. Thus, it is not difficult to extract the cross section of the

process γ∗γ∗ → hadrons from the data relevant to the process in eq. (1.5). Double-
tag events have in fact been studied by the CERN L3 and OPAL collaborations, at

various e+e− center-of-mass energies (
√
S = 91 and 183 GeV [24], 189 GeV [25] and

189-202 GeV [26, 27, 28]).

With this in mind, we computed the cross section for the process in eq. (1.4),

rather than that relevant to the process in eq. (1.1); as it should be clear from the

previous discussion, the two are strictly equivalent from a physical point of view.

However, the former can be more easily related to the experimental analyses; in fact,

our code outputs the momenta of both the final-state partons and the leptons. The

reader should keep in mind that the study of QED radiative corrections shall not be

considered in this paper; in particular, we shall not address the problem of a proper

treatment of the initial state radiation, which is rather important on the experimental

side, and is not fully understood yet for what concerns double-tag events.

The outline of the paper is the following: in section 2 we explain how the LO and

NLO production rates are computed, giving some details on the simplifications pos-

sible in the present case as compared to other NLO calculations. Then, in section 3
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we present phenomenologically relevant results: LO and NLO rates are computed for

total, inclusive jet and dijet cross sections at LEP2 and at a possible configuration

for a Next Linear Collider (NLC). In doing this, we discuss the possible choices of

mass scales entering the electromagnetic and strong running couplings, and analyse

how the NLO rates depend on variations of the strong scale. Finally, we compare

our results with the available data for the total cross section at LEP2. In section 4

we draw our conclusions. A few useful formulae are reported in the appendices.

2. Production rates

The computation of the NLO corrections to a hard scattering process is by now a

rather standard procedure, since algorithms exist that are universal (that is, process

independent), and applicable to any number of final state partons. The role of these

algorithms is to combine in a physically sensible way the virtual and the real contri-

butions, that are unphysical and divergent upon loop and phase-space integrations.

The information on the hard process basically enter only in the computation of the

matrix elements. In our case, one needs to compute the amplitude of the process

e+e− → e+e−qq̄ at one loop, and of the process e+e− → e+e−qq̄g at the tree level.

Fortunately, these results are easily obtained from existing literature (notice that

we assume the quarks to be massless; in section 3 we shall comment further on this

choice). As a preliminary step, we need also to consider the process e+e− → e+e−qq̄

at the tree level, which gives the LO contribution, first computed in ref. [23], and

that we analyse in the following subsection.

2.1 The LO matrix elements

In order to evaluate the matrix element relevant to the process

e+ + e− −→ e+ + e− + γ∗ + γ∗
︸ ︷︷ ︸

|−→ q + q̄ ,
(2.1)

we use the helicity amplitudes for the q̄q → γ∗γ∗ → ℓℓ̄ ℓ̄′ℓ′ process, with all the

particles taken as outgoing. The scattering amplitude is (see figure 2)

A6(1q, 2q̄; 3ℓ, 4ℓ̄, 5ℓ̄′, 6ℓ′) = 4e4Q2fA6(1, 2; 3, 4, 5, 6) , (2.2)

with eQf the electromagnetic charge of the quark q of flavour f , and where labels

{1, 2} refer to the quark pair, while {3, 4} and {5, 6} denote the lepton pairs. The sub-
amplitude A6 depends only on the momenta and helicities of the external particles

(we also point out that eq. (2.2) is valid to any order in αS). At tree level, the sub-

amplitude A6 for any helicity configuration is given in terms of a single function a6,

Atree6 (1, 2; 3, 4, 5, 6) = a6(1, 2; 3, 4, 5, 6) + a6(1, 2; 6, 5, 4, 3) . (2.3)
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Figure 2: Sample of diagrams contributing to eq. (1.4), obtained by dressing diagrams

a), b) and c) of figure 1 with external lepton legs. The particle labelling scheme, as used

in sect. 2, is also shown.

In terms of spinor products, currents and kinematic invariants as defined in ap-

pendix B, the explicit form of the function a6 for the (1
−, 2+; 3−, 4+, 5+, 6−) config-

uration is the following [29]:

a6(1
−, 2+; 3−, 4+, 5+, 6−) = i

〈1 3〉 [2 5] 〈6|(2 + 5)|4〉
s34 s56 t134

. (2.4)

The function a6 is odd under the flip symmetry

flip : 1↔ 2 , 3↔ 5 , 4↔ 6 , 〈a b〉 ↔ [a b] . (2.5)

In addition, there is a reflection symmetry on the quark line such that

a6(1
+, 2−; 3−, 4+, 5+, 6−) = a6(2

−, 1+; 6−, 5+, 4+, 3−) . (2.6)

Thus, the other quark-helicity configuration can be obtained by reflection, which

amounts to exchanging the labels 1 and 2 in eq. (2.3). The other lepton-helicity

configurations are obtained by exchanging the labels 3 and 4 and/or 5 and 6 in

eq. (2.4).

In crossing to the physical region, we choose 4 as the incoming electron and 6 as

the incoming positron. For a fixed lepton-helicity configuration, e.g. (3−ℓ , 4
+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′),

the production rate is obtained by summing over the quark-helicity configurations,2

dσ(3−ℓ , 4
+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′ ) =

1

2S
dP2+2(p1, p2, p3, p5; p4 + p6) (4παem)4

(∑

f

Q4f

)

×

×16Nc
[

|Atree6 (1−, 2+; 3−, 4+, 5+, 6−)|2 +

+ |Atree6 (2−, 1+; 3−, 4+, 5+, 6−)|2
]

, (2.7)

2In eqs. (2.7), (2.12), and (2.16) it is understood that the amplitudes are crossed into the physical

channel.
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where S = (p4 + p6)
2, dP2+2 is the phase space for the final-state quark pair and

lepton pair (see eq. (2.19)), and

∑

f

Q4f = Q
4
unu +Q

4
dnd , (2.8)

with Qu = 2/3, Qd = −1/3 and nu(d) being the number of up(down)-type quarks.

2.2 The NLO matrix elements

At NLO, we must consider the real corrections due to the emission of a gluon off the

quark line, γ∗γ∗ → qq̄g, and the one-loop corrections to γ∗γ∗ → qq̄. For the gluon

emission, we can use the tree amplitude q̄qg → γ∗γ∗ → ℓℓ̄ ℓ̄′ℓ′,

Atree7 (1q, 2q̄; 3ℓ, 4ℓ̄, 5ℓ̄′, 6ℓ′; 7g) = 4e4Q2fgSλ ī2i1 A
tree
7 (1, 2; 3, 4, 5, 6; 7) . (2.9)

The colour subamplitude Atree7 can again be written in terms of a single function a7

Atree7 (1, 2; 3, 4, 5, 6; 7) = a7(1, 2; 3, 4, 5, 6; 7) + a7(1, 2; 6, 5, 4, 3; 7) . (2.10)

For the configuration (1−, 2+; 3−, 4+, 5+, 6−; 7+) it reads [29]

a7(1, 2; 3, 4, 5, 6; 7) = i
〈1 3〉

〈1 7〉 s34 s56 t134

[〈1 3〉 [3 4] [2 5] 〈6|(2 + 5)|7〉
t256

+ (2.11)

+
〈6|(1 + 3)|4〉〈1|(2 + 7)|5〉

〈7 2〉

]

.

The same configuration with a negative-helicity gluon is obtained by applying the

−flip operation of eq. (2.5).
For the lepton-helicity configuration (3−ℓ , 4

+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′), the production rate is ob-

tained by summing over the quark and gluon helicity configurations,

dσr(3
−

ℓ , 4
+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′) =

1

2S
dP3+2(p1, p2, p7, p3, p5; p4 + p6)(4παem)4

(∑

f

Q4f

)

×

×16(N2c − 1)4παS
[(
|Atree7 (1−, 2+; 3−, 4+, 5+, 6−; 7+)|2+flip

)
+

+ (1↔ 2)
]

, (2.12)

where dP3+2 is the phase space for the three QCD partons — the qq̄ pair and the
gluon — and the lepton pair.

In order to compute the one-loop corrections to γ∗γ∗ → qq̄, we can use the

one-loop amplitude for q̄q → γ∗γ∗ → ℓℓ̄ ℓ̄′ℓ′. As detailed in ref. [29, sect. 2.2], the

latter can be extracted from the relevant contribution to the one-loop amplitude for

e+e− → q1q̄1q2q̄2 [30, 31], by replacing two of the four quark-gluon vertex factors

7
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gSλ
a with the quark-photon vertex factors

√
2 eQf .

3 The relevant contribution is

due to the two box-parent diagrams depicted in the first line of figure 3c of ref. [31].4

The unrenormalized one-loop amplitude is given by eq. (2.2) with A6 → A1-loop6

substitution, where

A1-loop6 =
N2c − 1
Nc

g2
S
cΓ
(
Atree6 V + iF

)
. (2.13)

Atree6 is given in eq. (2.3) and the prefactor cΓ is

cΓ =
1

(4π)2−ǫ
Γ(1 + ǫ) Γ2(1− ǫ)
Γ(1− 2ǫ) . (2.14)

The universal divergent piece V , in the dimensional reduction [32, 33] scheme or

four-dimensional helicity scheme [34] used to compute the one-loop amplitude, reads

V = − 1
ǫ2

(
µ2

−s12

)ǫ

− 3
2ǫ

(
µ2

−s12

)ǫ

− 4 . (2.15)

The one-loop charge renormalization UV counterterm to A1-loop6 is zero, due to the

electric-charge conservation. The finite piece F is obtained from ref. [31, eq.(12.11)]

by performing on it the relabeling {1, 2, 3, 4, 5, 6} → {5, 6, 2, 1, 3, 4}. For the lepton-
helicity configuration (3−ℓ , 4

+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′ ), the one-loop production rate is then,

dσv(3
−

ℓ , 4
+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′ ) =

1

2S
dP2+2(p1, p2, p3, p5; p4 + p6) (4παem)4

(∑

f

Q4f

)

×

×16Nc
{

2Re
[

Atree6 (1
−, 2+; 3−, 4+, 5+, 6−)∗ × (2.16)

×A1-loop6 (1−, 2+; 3−, 4+, 5+, 6−)
]

+ (1↔ 2)
}

.

In eqs. (2.12) and (2.16), the other three lepton-helicity configurations are obtained

by permuting the lepton labels as described in section 2.1. The unpolarised rate is

given by averaging the fixed-helicity rates over the four lepton-helicity configurations.

In order to obtain the correct cross section in conventional dimensional regularization,

we have to add the term [35]

−αSCF
2π
dσ(3−ℓ , 4

+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′ ) (2.17)

to the right hand side of eq. (2.16), where dσ(3−ℓ , 4
+
ℓ̄
, 5+
ℓ̄′
, 6−ℓ′ ) is given in eq. (2.7).

3The factor
√
2 appearing in the quark-photon vertex is due to the tr(λaλb) = δab normalization,

where λa are the generators of the SU(3) group in the fundamental representation.
4The amplitudes in ref. [31] are presented in such a way that the contribution of the box-parent

diagrams can be easily separated from that of the other parent diagrams [29].
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2.3 From matrix elements to physical observables

Having the matrix elements at disposal, one can plug them into one’s preferred NLO

algorithm, and obtain physical results. Our case can however be greatly simplified

in a preliminary stage; in fact, the incoming and outgoing leptons do not participate

in the hard scattering, that is initiated by the two virtual photons. Formally, the

simplification goes through a suitable decomposition of the phase space. This is

achieved by writing the phase space of two leptons plus n partons (in our case, n = 2

or n = 3 for the one-loop or the tree-level amplitudes respectively) as follows,

dPn+2(k1, . . . , kn, pℓ1, pℓ2; p′ℓ1 + p
′

ℓ2
) = dΓ(pℓ1 , pℓ2) dPn(k1, . . . , kn; q1 + q2) , (2.18)

where p′ℓi (pℓi) are the momenta of the incoming (outgoing) leptons, qi = p′ℓi − pℓi,
ki are the momenta of the outgoing partons, and we used the standard definition of

the phase space of m particles,

dPm(r1, . . . , rm;R) = (2π)4 δ4
(

R−
m∑

i=1

ri

)
m∏

i=1

d3ri
(2π)32r0i

. (2.19)

The decomposition in eq. (2.18) is represented pictorially in figure 3: the lepton

sector communicates with the hadron sector only through the photon momenta qi.

It has to be stressed that we changed the labelling convention for the momenta with

respect to the previous subsections; while the former labelling rendered it easy to

write the matrix elements in terms of helicity amplitudes, the present one, which we

shall adopt from now on, is more transparent from the physical point of view. We can

get back to the labelling of the previous subsections with the following identifications,

p′ℓ1 → p4, p′ℓ2 → p6, pℓ1 → p3, pℓ2 → p5, k1 → p1, k2 → p2, k3 → p7 . (2.20)

Eqs. (2.18) and (2.19) implicitly define dΓ, and we get

dΓ(pℓ1 , pℓ2) =
d3pℓ1
(2π)32p0ℓ1

d3pℓ2
(2π)32p0ℓ2

. (2.21)

Figure 3: Decomposition of the phase space for the process e+e− → e+e−+ hadrons.
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From eqs. (2.19) and (2.21), we see that both terms in the right-hand side of

eq. (2.18) have a Lorentz-invariant expression. We exploit it to re-write eq. (2.21) in

the center-of-mass frame of the incoming e+e− pair,

dΓ =
1

4(2π)6S
dQ21 dQ

2
2 dE1 dE2 dϕ dϕ̄ , (2.22)

where ϕ and ϕ̄ are two generic azimuthal angles, one of which, say ϕ to be definite,

can be interpreted as the angle between the two outgoing leptons; Ei are the energies

of the outgoing leptons in the center-of-mass frame of the incoming e+e− pair. The

strategy of the computation should now be clear: although we compute the cross sec-

tion for the process in eq. (1.4), the hard process we deal with at NLO is effectively

that of eq. (1.1). Thanks to the decomposition in eq. (2.18), we have a 2→ n phase

space which is formally identical to that one gets as a starting point of any NLO

algorithm. Thus, we can safely adopt one of the existing NLO algorithms, and study

the process of eq. (1.1) in the γ∗γ∗ center-of-mass frame, without any reference to the

incoming or outgoing leptons. This amounts to a non-trivial simplification, since the

complexity of the numerical computations at NLO is known to grow rapidly with the

number of particles involved in the hard scattering. Of course, the information on

the lepton momenta is entering somewhere, in particular in the matrix elements; to

take this fact into account, we proceed in two steps, still using figure 3 as a guide. We

start by generating the full kinematical configuration of the outgoing leptons, using

eq. (2.22). In doing this, we also get the photon momenta, and therefore we know how

to boost from the e+e− to the γ∗γ∗ center-of-mass frame. Then, we boost the lepton

momenta to the γ∗γ∗ center-of-mass frame, where we generate the remaining (parton)

momenta, according to the phase space dPn; at this stage, we can perform all the
manipulations required by the NLO algorithm. More details on the final-state kine-

matics, including bounds on the phase-space variables, can be found in appendix A.

Following the procedure outlined above, we constructed a code capable of predict-

ing, to NLO accuracy, any infrared-safe quantity constructed with up to three partons

(plus two leptons) in the final state. We stress that the code is not of a parton-shower

type, and should actually be regarded as a Monte Carlo integrator; however, exactly

like in the case of parton-shower Monte Carlo event generators, it allows us to easily

implement realistic experimental cuts and to obtain binned differential distributions

for all sorts of variables and jet definitions. The code is based upon the NLO algo-

rithm of refs. [36, 37], and it is a suitable modification of one of the codes presented

in ref. [37]. A few technicalities concerning the code are given in appendix A.

3. Results

In this section, we present results of phenomenological relevance obtained with the

code mentioned above. Before assessing the effect of the NLO corrections and com-

paring our predictions to data, we discuss the choice of the scales entering the elec-
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tromagnetic and the strong running couplings which appear in the amplitudes. Al-

though arguments exist on the choice of an “optimal” scale, there is no rigorous

theorem that prescribes such a choice. Thus, we shall choose the reference scale on

the ground of some physical motivations; we stress, however, that alternative choices

are possible, and we shall explore a few of them. All of the theoretical results and

data presented in this section are relevant to the production of hadrons in e+e−

collisions, through the process of eq. (1.4).

3.1 Scale choices

As far as αem is concerned, we have made the choice of evolving it on an event-by-

event basis to the scales set by the virtualities of the exchanged photons; hence, we

replace the Thomson value α0 ≃ 1/137 by αem(Q2i ). This choice better describes the
effective strength at which the electromagnetic interaction takes place. Notice that

we treat independently the two photon legs: thus, in the formulae relevant to the

cross sections, α4em has to be understood as α
2
em(Q

2
1)α

2
em(Q

2
2).

An analysis of the differential distributions reveals that, for a typical experimen-

tal set-up used at LEP2, defined more precisely below, the mean Q2 values fall in

the 14–17 GeV2 range. At this scale the strength of the electromagnetic interaction

is increased by about 3% with respect to the Thomson value. Since αem enters at

the fourth power in our squared matrix elements, the 3% increase in αem trans-

lates into an increase of more than 10% in the cross section. Some uncertainty is of

course implicit in this number: both the scheme for αem evolution (we used one-loop

MS running) and the precise scale value will affect the final result by a few per cent.

A similar problem is faced when considering the strong coupling αS, and it is

solved in the same way: we define a default scale µ0 so as to match the order of

magnitude of the (inverse of the) interaction range:

µ20 =
Q21 +Q

2
2

2
+

(
k1T + k2T + k3T

2

)2

. (3.1)

The renormalization scale µ entering αS will eventually be set equal to µ0 as a

default value, and equal to µ0/2 or 2µ0 when studying the scale dependence of the

cross section. In eq. (3.1), the kiT are the transverse energies of the outgoing quarks

and, for three-particle events, the emitted gluon. Since the hard process is initiated

by the two virtual photons, the proper frame to study its properties is the γ∗γ∗

center-of-mass one. Therefore, when talking about transverse energies, whether in

a total cross section or in a jet reconstruction algorithm, this frame will be always

understood. This is in fact quite similar to what happens in DIS, where the Breit

frame is used. Finally, we point out that the term in parentheses in eq. (3.1) is,

event-by-event, half of the total transverse energy, which is a measurable quantity;

at LO, it coincides with the transverse energy of the jets, in the case in which a jet

cross section is considered.
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We evolve αS to next-to-leading log accuracy, with αS(MZ) = 0.1181 [38] (in MS

at two loops and with five flavours, this implies Λ
(5)

MS
= 0.2275 GeV).

We also considered a different choice with respect to that in eq. (3.1); namely,

we used
√

Q21Q
2
2 instead of (Q

2
1 + Q

2
2)/2 in eq. (3.1). Only very minor differences

(much smaller than 1%, i.e. not noticeable on the scale of the plots shown in what

follows) were found. This is easily understood since the two scales coincide when

Q21 = Q
2
2, and, as we verified explicitly both at the LO and at the NLO, the dominant

contribution to the cross section is just due to the region where the virtualities of

the two photons are approximately equal.

A third possible choice for the default scale is

µ̄20 =
Q21 +Q

2
2

2
. (3.2)

Strictly speaking, µ̄0 is arguably better than µ0 when studying fully inclusive quan-

tities, while µ0 is clearly recommended when, for examples, jets are reconstructed.

Still, having a tool such as an event generator, we stick to µ0 as our default choice

also for fully inclusive observables. However, we also studied the effect of setting

µ = µ̄0, and found only minor differences (of order of 1%) at the level of total cross

sections. We shall comment further on the use of µ̄0 in section 3.3.

3.2 Numerical results

We compared our LO result, obtained with fixed αem = α0, to the massless limit of

the JAMVG program of ref. [23], and found perfect agreement.

To study the effect of the NLO corrections, we used the experimental cuts em-

ployed by the L3 collaboration; any other physically sensible sets of cuts would lead

to the same qualitative conclusions. The scattered electron and positron are required

to have energy E1,2 larger than 30 GeV and scattering angle θ1,2 between 30 and 66

mrad. Furthermore, the variable Y , defined by

Y = log
y1y2S
√

Q21Q
2
2

≡ log S
S0
, (3.3)

is required to lie between 2 and 7 (yi are defined in appendix A, where a discussion

on the properties of Y can also be found). The cross sections have been evaluated

at
√
S = 200GeV, including up to five massless flavours.

Within this set of cuts, the replacement of the Thomson electromagnetic coupling

α0 with the running one is found to increase our LO cross section by about 14% (see

table 1), in agreement with the estimate given above. Such a non-negligible effect

should of course be included when comparing to experimental data. Unless stated

otherwise, all cross sections considered below will be calculated with the running

αem.
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LO, fixed αem = α0 LO, running αem(Q
2) NLO, running αem(Q

2)

0.466 0.534 0.569+0.006
−0.004

Table 1: Total cross section (in picobarns) within the L3 experimental cuts at LEP2

energy. The errors in the NLO column refer to the variation of the renormalization scale

in the (µ0/2, 2µ0) range.

Table 1 also shows the effect of including the NLO corrections calculated in

this paper. They increase the LO total cross section within the cuts applied by

about 7 per cent. This increase is of similar size as the αS/π NLO correction to the

total hadronic cross section in electron-positron annihilation. The numbers quoted

as errors affecting the NLO result are the differences between the cross sections

obtained by choosing µ = µ0/2, 2µ0, and the cross section obtained by using the

default value, µ = µ0. Thus, they should not be interpreted as statistical errors

affecting our prediction, but rather as an indication of the theoretical uncertainties

due to the scale choice.5

A better grasp on the effect of the radiative corrections can of course be obtained

by studying various differential distributions. Figure 4 shows such distributions for

various observables of experimental interest: the energy of the outgoing electron

Ee−(≡ E1), the hadronic invariant mass W , the photon virtuality Q
2
1, and Y as

defined in eq. (3.3). In each plot the leading order curve and the three next-to-leading

order ones referring to the three choices (µ0/2, µ0, 2µ0) of the renormalization scale

µ are presented.

The uncertainty related to µ can be seen to be always smaller than the net effect

of including the NLO corrections. It is actually quite difficult to distinguish between

the three NLO results (except in the large-W and Y regions), the relative difference

between them being of about 1% or less for the total cross section. This also implies

that the shape of the distribution is basically independent of µ.

As for the effect of the NLO corrections themselves, we see that, apart from

slightly increasing the cross section, they induce visible shape modifications in at

least two cases: both theW and the Y distributions become harder after the inclusion

of radiative corrections, their effect changing from almost nil at the left edge of the

plots to a more than 50% increase at the right one.

Using similar experimental cuts we can also analyse the effect of radiative cor-

rections on jet distributions. We define the jets by means of a kT clustering algo-

rithm [39], in the version formulated in ref. [40]. We set the jet-resolution parameter

D = 1 (see ref. [40]). Contrary to the cuts previously used, here we do not impose

an upper limit on Y , only requiring Y > 2. We consider single-inclusive jet and dijet

cross sections. In the latter case, we select the jets by imposing a ET > 14 GeV cut

5In all of the numerical results we present the statistical error of the Monte Carlo integration is

negligible with respect to the scale uncertainty.
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Figure 4: Differential cross sections within the L3 experimental cuts at LEP2 energy.

Shown are the LO prediction (dashed line) and the NLO ones corresponding to three

different choices for the renormalization scale µ.

on the transverse energy of the most energetic jet and requiring ET > 10 GeV for at

least another jet. We adopt different transverse energy cuts on the two tagged jets

in order to avoid the problems that arise in the case in which such cuts are chosen to

be equal, as discussed in some details in ref. [41]. Furthermore, as already mentioned

in the Introduction, in the case in which three jets are present in the event, we take

as tagged jets the two separated by the largest rapidity interval. Finally, we shall

only present results obtained with µ = µ0.

In the left panel of figure 5 we show the transverse energy distribution of single-

inclusive jets, considering the cuts Y > 2 and Y > 6. The first striking feature

of this observable is that the curves relevant to Y > 2 and Y > 6 coincide for

ET > 40 GeV. This is so for the following reason: at the threshold (where the jets

are produced at zero rapidity), W 2 = 4E2
T
; thus using eq. (A.11) with ET = 40 GeV

and Q21 = Q
2
2 = 16 GeV

2 (which is approximately the average virtuality within the

current cuts), we get Y = 5.99 (here, we identify Y with Y ; see eq. (A.13)). Therefore,

the region 2 < Y < 6 simply does not contribute to events with ET > 40 GeV. On

the other hand, at ET = 40 GeV, the two-photon system has just enough energy, at

Y = 6, to produce the jets. Larger values of Y do not contribute much, since the Y
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Figure 5: Differential distributions in jet events: transverse energy in single-inclusive jet

production (left panel), and rapidity difference between the most forward/backward jets

(right panel) in dijet production.

spectrum is very rapidly falling at large Y ’s (see figure 4). When considering larger

transverse momenta, the situation is exactly the same. We are therefore led to the

conclusion that the tail of the ET spectrum is dominated by threshold production,

and therefore cannot be reliably predicted by a fixed-order computation, like ours; a

resummation of large threshold logarithms is necessary. A signal that this is indeed

the case is reflected in the fact that the radiative corrections are negative in the tail.

At smaller transverse energies the behaviour of the radiative corrections displays a

pattern similar to that of total rates. For Y > 2, NLO and LO results are very close

to each other; the larger ET , the more important the contributions from threshold

production. For Y > 6, the radiative corrections increase sizably the LO result; this

is in agreement with the behaviour of the Y spectrum shown in figure 4. The increase

is obviously related to the appearance of large logarithms in the cross section, as it is

always the case when two scales (here, the small ET and the largeW ) are present. We

shall soon see that the large logarithms in the large-Y region are indeed of BFKL type.

We also considered the transverse energies of the most forward and most back-

ward jet in dijet events, and found a pattern identical to that relevant to single-

inclusive jet ET . The reason is clear: even at small transverse energies, three-jet

production is clearly disfavoured with respect to dijet production; in the vast major-

ity of the events, there are just two hard jets recoiling against each other.

If we want to study jet production in a sensible way at fixed order, we have

therefore to consider observables which are as insensitive as possible to threshold

effects. From what we said above, such observables are possibly those that get the

dominant contribution from the small-ET region. An example is given by rapidities.

In the right panel of figure 5, we show the distributions in the rapidity interval ∆η

between the two tagged jets in dijet events, for various cuts on Y . In this case,

only the NLO results are shown. We have verified that the radiative corrections give

positive contributions for all the regions in Y considered, except for 2 < Y < 4; in
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this case, in fact, the energy of the two-photon system is so small that there is no

way to get contributions away from the threshold. The most interesting feature of

this plot is that it shows that the large-Y and the large-∆η regions select the same

events, as can be inferred from the fact that the distributions relevant to Y > 2 (solid

line) and to Y > 6 (dot-dashed line) exactly coincide for ∆η > 3.5. This is actually

the same behaviour we observe in the case of the transverse energy distribution, but

the underlying physics is rather different. In fact, in this case we also get sizable

contributions away from the threshold; thus, at fixed ET , part of the energy of the

two-photon system contributes to the longitudinal degrees of freedom, and jets can

be produced away from the central region. Since we are in any case dominated

by two-jet events, the rapidity difference between the two tagged jets can be easily

estimated: ∆η ≃ log(W 2/E2T ). Therefore, by using eqs. (A.11) and (A.13), we get

Y ≃ ∆η + ln(E2T/
√

Q21Q
2
2). We point out that the pattern displayed in figure 5

for large ∆η does not depend upon the transverse momentum cuts: we lowered

these cuts down to 5 GeV, and found the same behaviour. The large-Y region is

thus naturally suitable to study BFKL physics. In addition, we note that the dijet

cross section at NLO is rather small; therefore, with the integrated luminosities at

LEP2 a sizeable number of dijet events would hint toward the importance of BFKL-

type contributions. Having clarified that the large Y region is basically populated

by events characterised by two hard jets well separated in rapidity, we can follow

ref. [22]: we invert eq. (A.14) to get cQ, substituting Y = 6 and identifying L with

the average ∆η corresponding to the cut Y > 6 (in this way, we just make a choice

for the scale µW entering the BFKL logarithms; other choices are of course possible,

and all of them are equally good at the leading logarithm level). We have

log cQ = Y − 〈∆η〉 ≃ 4.32 . (3.4)

By inspection of eq. (A.14), we see that, although Y and the BFKL logarithm L

coincide asymptotically, at LEP2 the difference between the two is of the same order

as Y , and thus cannot be neglected. It seems therefore that LEP2 is quite far from

probing the asymptotic BFKL region; it must be stressed, however, that the value

given in eq. (3.4) depends crucially on the assumptions made in ref. [22].

It is presumed that a BFKL signature from double-tag hadronic events would be

observed at an hypothetical Next Linear Collider much more easily than at LEP2.

For this to be true, one actually needs fairly small tagging angles, that allow to get

relatively small values for the virtualities, with large W values obtainable thanks

to the large e+e− center-of-mass energy; in fact, it is argued [21] that it would be

desirable to tag the electrons down to 20-40 mrad. We therefore studied the effect of

NLO radiative corrections at a NLC with
√
S = 500 GeV, requiring E1,2 > 40 GeV,

20 < θ1,2 < 70 mrad and Y > 2; however, we point out that, at present, it seems

unlikely that experiments at the NLC will reach such small values for the tagging

angles.
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The predicted total cross section within these cuts is found to be 0.425 pb at

leading order and 0.452 pb at next-to-leading order. The 6% increase is thus similar

to the one found at LEP2. The same is true for the Y distribution: for Y < 7, that

is in the range accessible both at LEP2 and at the NLC, the ratio of NLO over LO

predictions is to a very good extent the same in the two cases, getting as high as 1.6

at Y = 6. However, NLC within the cuts given above reaches much larger value in

Y (Y = 11), where the ratio of NLO over LO gets to values of about 2.5. Finally,

we verified that the pattern shown in the right panel of figure 5 is reproduced also

at the NLC: the large-Y and the large-∆η regions are populated by the same events.

Clearly, as in the case of the Y distribution, the values of ∆η accessible at the NLC

are larger than at LEP2 (at NLC, ∆η < 7.5, for transverse energy cuts on jets as

given above).

The large NLO corrections that we find in the large-Y region at the NLC show

that a calculation of the higher order effects will be necessary in order to sensibly

compare the theoretical predictions with the data, and eventually to extract evidence

of BFKL dynamics from the latter.

3.3 Comparisons with experimental data at LEP2

The L3 [24, 26, 27] and OPAL [25, 28] collaborations have recently analysed data for

hadron production in e+e− collisions (through γ∗γ∗ scattering) at a center-of-mass

energy around 200 GeV. In this Section, we aim at comparing these data to our

NLO results. We remind the reader that our predictions are all given at the parton

level, as compared to the data that are of course at the hadron level.

L3 made use of the previously mentioned set of experimental cuts. The cross

section they find, as a function of Y , is reported in table 2 and plotted in figure 6.

Table 2 shows, in four different Y bins, the experimental cross section compared to

our leading and next-to-leading order predictions, evaluated at
√
S = 200 GeV. The

same comparison is made in figure 6: the data lie above the theory in the low-Y

region, and sizably overshoot the predictions in the large-Y one. Thus we find a

dσ/dY (pb)
√
S = 189− 202 GeV

∆Y L3 Data LO NLO

2.0 – 2.5 0.50 ± 0.07 ± 0.03 0.405 0.396+0.002
−0.002

2.5 – 3.5 0.29 ± 0.03 ± 0.02 0.213 0.225+0.001
−0.002

3.5 – 5.0 0.15 ± 0.02 ± 0.01 0.067 0.080+0.002
−0.002

5.0 – 7.0 0.08 ± 0.01 ± 0.01 0.0091 0.0131+0.0009
−0.0006

Total 0.93 ± 0.05 ± 0.07 0.534 0.569+0.006
−0.004

Table 2: The experimental cross section from L3 compared to leading and next-to-leading

order predictions. The uncertainties in the NLO column are related to variations of the

renormalization scale.
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Figure 6: Differential cross section with respect to Y from the L3 collaboration compared

to leading and next-to-leading order predictions. The data are taken at
√
S = 189 −

202GeV. The theoretical simulation is always run at
√
S = 200 GeV.

marked difference in shape between theory and data which, if confirmed, could be

interpreted as the onset of important higher order effects, perhaps of BFKL type. As

can be seen from table 2, the scale uncertainties affecting our predictions are much

smaller than the experimental errors; in what follows, we shall therefore refrain from

varying the renormalization scale, setting it always equal to its default value µ0.

Also, the total cross section does tend to be higher than the predictions, as shown in

table 2. We remind the reader (see table 1) that the running of the electromagnetic

coupling and the inclusion of the NLO corrections have raised the theoretical result

from the 0.466 pb given by the massless leading order parton model with αem = α0.

We also compared L3 data of table 2 to the predictions obtained by choosing µ̄0
as a reference scale (see eq. (3.2)). As remarked before, the effect on the total cross

section is rather small; however, our NLO predictions for the two largest-Y bins in

table 2 get increased by about 6% and 15% respectively. We are thus getting closer

to data, but still a very clear disagreement is seen between theory and experiment.

We have also studied the effect of the finite mass of the outgoing heavy quarks in

the charm and bottom case, by comparing our results with the ones obtained with the

JAMVG [23] code. Within the L3 set of cuts, such mass effects can be seen to decrease

the LO massless cross section by an amount of the order of 10-15%. One could

in principle rescale the NLO result by this amount and get a phenomenologically

sensible prediction but, due to the lack of rigorousness of this procedure, we shall

always present our plots and numerical results without such a correction.

The OPAL collaboration has also recently presented data [28] taken at
√
S = 189

- 202 GeV, making use of a slightly different set of cuts: the tagged electron and

positron were required to have energies E1,2 > 0.4Ebeam and angles 34 < θ1,2 < 55
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mrad. No cut on Y is applied, but the hadronic invariant mass W is required to be

larger than 5 GeV. Our simulation is run within these cuts at an e+e− center-of-mass

energy corresponding to the luminosity-weighted average energy of the OPAL data,

i.e.
√
S = 194GeV.

Table 3 compares the experi-
dσ/dY (pb)

√
S = 189 - 202 GeV

∆Y OPAL Data LO NLO

0 – 1 0.055 ± 0.016 +0.030
−0.020 0.068 0.062

1 – 2 0.118 ± 0.024 +0.009
−0.024 0.140 0.133

2 – 3 0.123 ± 0.028 +0.010
−0.011 0.090 0.093

3 – 4 0.070 ± 0.021 +0.006
−0.015 0.043 0.049

4 – 6 0.028 ± 0.013 +0.002
−0.012 0.011 0.014

Total 0.40 ± 0.05 ± 0.05 0.364 0.365

Table 3: The experimental cross section from

OPAL, total and differential in Y , compared to

leading and next-to-leading order predictions.

mental results obtained with these

cuts with our LO and NLO predic-

tions. We can see the NLO correc-

tions to be extremely small. The

prediction for the total cross section

falls short of the central OPAL re-

sult, but is well within the exper-

imental error. Also shown in the

same table is the differential distri-

bution in the variable Y , defined in

eq. (A.11), where a generally good

agreement within errors can be ob-

served. Given the large discrepancy between theory and L3 data for this very same

variable, it shall therefore be of utmost importance to measure as accurately as pos-

sible the Y spectrum, in order to perform a precise study of effects beyond NLO

(such as BFKL dynamics).

In figure 7 we compare our predictions to OPAL data for several observables: the

azimuthal angle between the outgoing electron and positron, ∆φ, measured in the

incoming e+e− center-of-mass frame; W 2; Q2 = max(Q21, Q
2
2); x = Q2/(Q21 + Q

2
2 +

W 2); and Y . A good agreement can be seen in all the distributions, with the possible

exception of the last two points in the large-W region. Where the difference between

the NLO and the LO result is somewhat more sizeable, like in the x distribution

and in the large-W and large-Y regions, the corrections can be seen to change our

predictions in such a way that they get closer to data.

4. Conclusions

We have calculated the NLO corrections, of O(αS), to the process

e+ + e− −→ e+ + e− + γ∗ + γ∗
︸ ︷︷ ︸

|−→ hadrons ,
(4.1)

and implemented them into a Monte Carlo integrator which allows the calculation

of both total cross sections and differential distributions. In our computation, the

masses of the quarks have been set to zero. We have found the uncertainty related

to the choice of renormalization scale to be always smaller than the net effect of
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Figure 7: Differential cross sections within the OPAL experimental cuts (E1,2 > 0.4Ebeam,

34 < θ1,2 < 55mrad, W > 5GeV) at
√
S = 189 − 202 GeV. Shown are the LO prediction

(dashed line) and the NLO one (solid). We defined [28] Q2 = max(Q21, Q
2
2), and x =

Q2/(Q21 +Q
2
2 +W

2). ∆φ is the difference in azimuthal angle of the outgoing electron and

positron, measured in the e+e− center-of-mass frame.

including the NLO corrections. This means that the difference between the data

and the theoretical predictions of non-BFKL origin, which is the relevant quantity

in any attempt to pin down signals of BFKL physics, can now be reliably computed

at O(αS) in the massless limit.
When typical experimental cuts used at LEP2 by the L3 and OPAL collabora-

tions are applied, NLO corrections to the total cross section are found to be fairly
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small. Larger effects can instead be observed in the differential distributions, es-

pecially in the regions of large Y or large hadronic invariant mass W , where the

NLO corrections are found to increase the cross section by as much as 50%. No

mass effects for final-state charm and bottom quarks have been included. We re-

call that we have found them to decrease the LO cross section by 10-15% within

the set of cuts we have examined, thus worsening the agreement between theory

and data.

When comparing to experimental results, we find good agreement with the data

measured by the OPAL collaboration, both at the level of total cross section and

differential distributions in a number of different observables. In this case, the effect

of NLO corrections is marginal, although the full-NLO curves are seen to be closer

to data with respect to the LO predictions: however, this comparison will become

more significant only if the errors on data will be substantially reduced. Less good an

agreement has instead been found when comparing to L3 data, the NLO predictions

tending to fall short of the experimental result. In particular, when comparing with

the Y distribution, we can see the data to be sensibly higher than the theoretical

prediction in the large-Y region.

The comparison between theory and data at large Y ’s is of course crucial, since

a failure of fixed-order perturbative computations in describing the data in such a

region could of course be related to the onset of BFKL-like effects. In this sense,

no clear indication can be obtained from our study. If we subtract from L3 and

OPAL data at large Y ’s our O(αS) predictions, we get large numbers in both cases
(compared to, say, theO(αS) results). However, while in the case of L3 these numbers
are not statistically compatible with zero, in the case of OPAL they are statistically

compatible with zero. Thus, in order to reach a firm conclusion on this matter,

the collection of larger statistics is unavoidable. On the other hand, if we take the

data at their face value, there is probably an evidence of an effect beyond NLO. It

is in our opinion premature to interpret this fact in terms of BFKL physics. The

computation of the complete O(α2
S
) rates would be very useful in order to understand

this issue.
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A. Kinematics

In this appendix, we collect few useful formulae relevant to the kinematics of the

process we study. We define

zi =
2Ei√
S
, ζi =

Q2i
S
≡ −q

2
i

S
, (A.1)

with
√
S/2 the energy of the incoming leptons in their center-of-mass frame. From

eq. (2.22) we thus get

dΓ(pℓ1, pℓ2) =
S2

16(2π)6
dζ1 dζ2 dz1 dz2 dϕ dϕ̄ . (A.2)

The azimuthal angles ϕ and ϕ̄ have to be taken in the range (0, 2π), and it is easy

to show that

0 ≤ ζi ≤ zi ≤ 1 , i = 1, 2 . (A.3)

Using the variables defined in eq. (A.1), we also get

w2(ζ1, ζ2, z1, z2, ϕ) = (1− z1)(1− z2) + 2ζ1ζ2 − z1ζ2 − z2ζ1 +
+2 cosϕ

√

ζ1ζ2(z1 − ζ1)(z2 − ζ2) , (A.4)

where w2 =W 2/S is the scaled squared energy of the γ∗γ∗ system. The requirement

that w2 > 0 further constrains ζi, zi, and ϕ.

In real experimental situations the leptonic phase space is severely restricted.

The scattered leptons are observed in the forward calorimeters, so the scattering

angles θi off the beam direction are confined to a small region,

θmin ≤ θi ≤ θmax , i = 1, 2 . (A.5)

We assumed implicitly both in eq. (A.4) and (A.5) that the z axis is aligned with

the incoming electron and the scattering angle of the electron is θ1, while that of

the positron is θ2 + π. Typically θmin and θmax are of O(10mrad). Furthermore,
the energies of the scattered leptons are required to be larger than a certain Eminℓ in

the e+e− center-of-mass frame. In general, Eminℓ = O(10GeV) at LEP2 energies. In
terms of the integration variables, these phase space cuts read as

2Eminℓ√
S

1− cos θmin
2

≤ ζi ≤
1− cos θmax

2
, (A.6)

and zmin ≤ zi ≤ zmax, where

zmin =
2ζi

1− cos θmax
, zmax = min

(

1,
2ζi

1− cos θmin

)

. (A.7)
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In the e+e− center-of-mass frame, we can also use the lepton variables in order to

express the photon virtualities

−q2i ≡ Q2i =
√
SEi (1− cos θi) , (A.8)

and the variables yi, proportional to the light-cone momentum fraction of the virtual

photon

yi =
q0i + q

3
i√

S
= 1− 2Ei√

S
cos2

θi
2
. (A.9)

We also define (see eq.(3.3))

Y = log
y1y2S
√

Q21Q
2
2

, (A.10)

and

Y = log
W 2

√

Q21Q
2
2

. (A.11)

The variable Y can also be conveniently expressed in terms of the scaled variables

defined in eq. (A.1):

Y = ln
1− z1 + ζ1√

ζ1
+ ln

1− z2 + ζ2√
ζ2

. (A.12)

Y and Y are directly related to the BFKL logarithm L entering eq. (1.3). In fact,

for large W ’s the yi can be effectively interpreted as the longitudinal momentum

fractions of the photons in the incoming leptons (since the transverse components of

the photon momenta are much smaller than their larger light-cone component), and

thus W 2 ≃ y1y2S, which implies

Y
W→∞−→ Y . (A.13)

Furthermore (see for example ref. [22]), a sensible choice for the mass scale is

µ2
W
= cQ

√

Q21Q
2
2, with cQ a suitable constant. It then follows that

L = Y − log cQ . (A.14)

Finally, we come back to the issue of the construction of the computer code

we used to produce the phenomenological results shown in this paper. The general

strategy has been outlined in sect. 2.3. As discussed there, the NLO algorithm

effectively deals with the 2 → 2 process γ∗γ∗ → qq̄ (at the tree level and at one

loop), and with the 2→ 3 process γ∗γ∗ → qq̄g (at the tree level). We have to stress

two important differences due to the off-shellness of the incoming particles (q2i 6= 0)
with respect to the case described in refs. [36, 37]. Firstly, in all the formulae given

in the appendices of ref. [37], S has to be substituted with W 2 (the reader is urged

to avoid any confusion between the S of ref. [37], where S is the center-of-mass
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energy squared of the partonic system, and the S used in the rest of the present

paper). Secondly, the initial-state collinear divergences are absent. Technically, we

take this fact into account in the following way: in eq. (A.1) and (A.15) of ref. [37],

the terms dσ
(in,f)
a1a2,i

and dσ
(1,N−1r)
a1a2 are set to zero. Accordingly, there is no need to

introduce P(0)i in the decomposition of the P functions (see ref. [37, eq. (3.10)]), and
only P(1)ij is non vanishing. Notice that, since now the regions of the phase space
where one of the final-state partons is collinear to one of the initial-state particles

are not infrared singular, the functions P(1)ij do not need to vanish in these regions.
In order to construct the code relevant to the present paper, we implemented what

discussed above in the hadronic code of ref. [37]. On top of that, the generation of

the momenta of the leptons has been added, as discussed in section 2.3. The matrix

elements were coded as described in sections 2.1 and 2.2.

B. Notation for helicity amplitudes

In order to evaluate the production rates in section 2.1, we use helicity amplitudes,

defined in terms of massless Dirac spinors ψ±(p) of fixed helicity,

ψ±(p) =
1± γ5
2

ψ(p) ≡ |p±〉 , ψ±(p) ≡ 〈p±| , (B.1)

spinor products,

〈pk〉 ≡ 〈p−|k+〉 , [pk] ≡ 〈p+|k−〉 , (B.2)

currents,

〈i|k|j〉 ≡ 〈i−|/k|j−〉 = 〈ik〉 [kj] ,
〈i|(k + l)|j〉 ≡ 〈i−|(/k + /l)|j−〉 (B.3)

and Mandelstam invariants

spk = 2p · k = 〈pk〉 [kp] , tpkq = (p+ k + q)
2 . (B.4)
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