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Abstract—Static analysis is the process of analyzing software
code without executing the software. It can help find bugs and
potential problems in software that may only appear at runtime.
Although many static analysis tools have been developed for
classical software, due to the nature of quantum programs, these
existing tools are unsuitable for analyzing quantum programs.
This paper presents QChecker, a static analysis tool that supports
finding bugs in quantum programs in Qiskit. QChecker consists
of two main modules: a module for extracting program infor-
mation based on abstract syntax tree (AST), and a module for
detecting bugs based on patterns. We evaluate the performance
of QChecker using the Bugs4Q benchmark. The evaluation
results show that QChecker can effectively detect various bugs
in quantum programs.

Index Terms—quantum programming, static analysis, software
testing, program debugging, Qiskit

I. INTRODUCTION

Quantum computing has been applied to many cutting-
edge areas, such as quantum machine learning [4, 9], big
data analysis [24], and molecular simulations [14] due to its
unique promising advantage over classical computing. Quan-
tum programming is designing and constructing executable
quantum programs to achieve a specific computational result.
With the rapidly growing complexity of quantum programs,
it is decisive to alleviate the efforts in programming such
quantum programs. Several quantum programming languages
are available for quantum programmers, such as Qiskit [2],
Sliq [5], Cirq [12], Quipper [13], and Q# [27], allowing
researchers and developers to implement and experiment with
various quantum computing techniques quickly.

Given the importance and wide application of quantum
programming, ensuring the correctness of quantum programs
is crucial for quantum software development. However, recent
empirical studies [7, 23, 35, 36] have shown that the current
quantum program development process is still error-prone.
While debugging and testing quantum programs has gained
significant attention [3, 11, 15, 17, 19, 20], the existing debug-
ging and testing techniques often require dynamic execution
of the underlying quantum programs. Considering that most
of the current quantum programs are executed on quantum
computers and simulators available on the cloud, the existing
debugging and testing techniques can be cumbersome and
expensive.

In classical software development practice, static analysis
techniques have been widely used to detect various types of
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bugs in classical programs due to their advantages in speed and
cost [10, 16, 25, 26, 30]. However, detecting bugs in quantum
programs via static analysis can be challenging. Since quantum
computation logic is expressed in quantum circuits, and the
states of quantum registers are measured probabilistically,
static analysis tools designed for classical programs struggle
to detect mistakes in quantum programs.

To bridge the gap, we present QChecker, a static analysis
tool designed for detecting bugs in quantum programs, espe-
cially for Qiskit. The approach addresses the challenge above
by first distilling a set of common bug patterns summarized
from real quantum bugs in previous studies [35, 36] and then
constructing eight detectors for detecting these bug patterns
in quantum programs. The whole process is non-trivial since
the distilled bug patterns must carefully consider the domain-
specific constraints of quantum computing to be accurate and
effective.

We evaluate QChecker on Bugs4Q [36], a realistic bench-
mark consisting of 42 real-world buggy quantum programs.
Experimental results show that QChecker can efficiently de-
tect bugs in quantum programs. Furthermore, we discuss the
extendability of QChercker for other Python-based quantum
programming languages.

In summary, this work makes the following contributions:
• We present the first bug detection tool dedicated to quan-

tum programs in Qiskit. Using static analysis techniques,
QChecker can generate diagnostic messages that assist
developers in pinpointing potential bugs in their programs
quickly.

• We implement QChecker and evaluate its effectiveness
and performance in a real-world Bugs4Q benchmark. The
results show that QChecker can effectively detect various
types of bugs in quantum programs.

The rest of the paper is organized as follows. Section II
provides some basics of quantum programming. Section III de-
scribes our QChecker approach for static analysis of quantum
programs. Section IV presents the performance of QChecker
on Bugs4Q. Section V reviews our threats of validity. Sec-
tion VI discusses related work, and Section VII finally con-
cludes this paper.

II. BACKGROUND

We briefly introduce the background information on pro-
gramming in Qiskit and the basic concepts of qubits.
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simulator = Aer.get_backend("qasm_simulator")

qreg = QuantumRegister(3)
creg = ClassicalRegister(3)
circuit = QuantumCircuit(qreg, creg)

circuit.h(0)
circuit.h(2)
circuit.cx(0, 1)
circuit.measure([0,1,2], [0,1,2])
job = execute(circuit, simulator, shots=1000)
result = job.result()
counts = result.get_counts(circuit)
print(counts)

Fig. 1. A simple quantum program in Qiskit

A. Qiskit

Qiskit [2] is one of the most widely used open-source
frameworks for quantum computing, allowing us to create al-
gorithms for quantum computers. As a Python package, it pro-
vides tools for creating and manipulating quantum programs
and running on prototype quantum devices and simulators
and can use built-in modules for noise characterization and
circuit optimization to reduce the impact of noise. Qiskit also
provides a library of quantum algorithms for machine learning,
optimization, and chemistry.

In Qiskit, a program is defined by a quantum ob-
ject data structure that contains configuration information
and the experiment sequences. The object can be used
to get status information and retrieve results [22]. Fig-
ure 1 shows a simple Qiskit program that illustrates
the entire workflow of a quantum program. The function
Aer.get_backend(’qasm_simulator’) returns a backend
object for the given backend name (qasm_simulator). The
backend class is an interface to the simulator, and the
actual name of Aer for this class is AerProvider. After
the experimental design is completed, the instructions are run
through the execute method. The shots of the simulation,
which means the number of times the circuit is run, is set to
1000 while the default is 1024. When outputting the results
of a measurement, the method job.result() is used to
retrieve the measurement results. We can access the counts
via the method get_counts(circuit), which gives the
experiment’s aggregate outcomes.

B. Basic Properties of Qubits

In this subsection, we use Qiskit as an example to explain
the characteristics of quantum bit (qubit for short) and the
necessary execution process of a complete quantum program.

The basic unit of information in quantum computing is the
qubit. As shown in Figure 1, qreg = QuantumRegister(3)

means assigning a quantum register of three qubits, and
the value of each qubit is |0〉 by default. So the initial
value of these three qubits is |000〉. Next, let the first and
third qubits pass through the H (Hadamard) gate, as shown
by circuit.h(0) and circuit.h(2). In this way, the
unique property superposition of qubits is realized, which

means the qubit contains the states of |0〉 and |1〉. There is
also an entanglement of qubit properties that only multiple
qubits can achieve. The code in the sample program is
circuit.cx(0,1). That is to say, the first qubit is entangled
with the second qubit through a CNOT (Controlled-NOT) gate
operation. We measure the first qubit, and its output is 0 for
50 percent probability and 1 for 50 percent probability. After
that, measuring the second qubit is 100 percent the same
as the first measurement result. Since the third qubit is not
related to the first two qubits, the last qubit’s measurement
result is still taken with 0 for 50 percent probability and
1 for 50 percent probability. The measurement statement of
qubits shown in Figure 1 is circuit.measure([0,1,2],

[0,1,2]). Measurement can lead to the collapse of a quantum
superposition state to a classical state. There are many kinds
of quantum measurements, and the projection measurement
of a single qubit is used here. That is, each qubit is projected
onto a state space consisting of base vectors |0〉 or |1〉. In this
program, the final output is a three-bit array.

III. THE QCHECKER TOOL

In this section, we introduce the construction of QChecker,
which is developed based on Python. As illustrated in Figure 2,
QChecker first performs a thorough information extraction
of the quantum programs based on their ASTs. The corre-
sponding operations are in the module Ast_Operator. The
information mainly includes the variable assign operations and
function calls, which will be further stored in QP_Attribute

and QP_Operation. Then QChecker transmits the extracted
information to the bug detectors. The bug detectors can detect
various bug patterns, as shown in Table I. Finally, QChecker
generates bug detection reports, including the buggy programs,
line numbers, and bug descriptions.

A. Information Extraction

The previous static analysis tools inspire us (e.g.,
PyLint [28]) that using AST for program information extrac-
tion is effective and efficient. However, different from classical
static analysis tools, the AST_Operator in QChecker has the
ability to extract information specific to the semantics and
the function of quantum programs. Taking the program shown
in Figure 1 as an example, we apply a structured parsing to
each quantum program file, i.e., generating the AST. We adopt
two modules named QP_Attribute and QP_Operation to
store the AST information of all the variables and function
calls, respectively. In addition, QChecker also supports han-
dling complex syntax and data structures such as dictionaries,
lists, function definitions, loops, and conditional branches.
The purpose of this design is that the structured AST-based
information extraction can help QChecker trace the relation-
ship between each variable and function call. For example,
a variable may be modified multiple times, or its name may
be changed when passed as an argument inside a function.
Nevertheless, we can still trace back the initial value of the
variables in the program. We plot instances of QP_Attribute
and QP_Operation in Figures 3 and 4, respectively.
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Fig. 2. The structure of QChecker.

(’simulator’, ’Aer.get_backend("qasm_simulator")’)
(’qreg’, ’QuantumRegister(3)’)
(’creg’, ’ClassicalRegister(3)’)
(’circuit’, ’QuantumCircuit(qreg,creg)’)
(’job’, ’execute(circuit,simulator,shots=1000)’)
(’result’, ’job.result()’)
(’counts’, ’result.get_counts(circuit)’)

Fig. 3. Program information extracted by QP_Attribute.

• QP Attribute: The AST structure of a variable includes
its variable name, variable value (which can come from
a constant, another variable, or the result of a function
calculation), type, and location (line of code). As shown
in Figure 3, The QP_Attribute module is designed in
a key-value manner. The keys are variable names which
can be the indices for the variable values.

• QP Operation: The AST structure of a function call
contains a list of its arguments, the type and value of
each argument, its position, and other information. As
shown in Figure 4, The QP_Operation module is a
list that contains all the function calls in the quantum
program file. In detail, each function call can be further
divided into function call names, arguments, and values.
This information is stored in a more comprehensive table
from QChecker, which uses the function call strings in
QP_Operation as the index.

These two modules contain all the information of a quantum
program and make it more straightforward for further bug
detection. Moreover, users can directly obtain the above infor-
mation through QChecker based on the API we released. It is
worth mentioning that those programs containing basic syntax
errors (e.g., python indentation errors, unrecognized operators,
undefined variables and functions, etc.) will not be processed
by QChecker. Instead, they will be prompted as syntax errors
and thus be excluded from the static checking.

’Aer.get_backend("qasm_simulator")’
’QuantumRegister(3)’
’ClassicalRegister(3)’
’QuantumCircuit(qreg,creg)’
’circuit.h(0)’
’circuit.h(2)’
’circuit.cx(0,1)’
’circuit.measure([0,1,2],[0,1,2])’
’execute(circuit,simulator,shots=1000)’
’job.result()’
’result.get_counts(circuit)’
’print(counts)’

Fig. 4. Program information extracted by QP_Operation.

B. Bug Pattern Detectors

Bug patterns are erroneous code idioms or bad coding prac-
tices that have been proven to fail time and time again, which
are usually caused by the misunderstanding of a programming
language’s features, the use of erroneous design patterns, or
simple mistakes sharing common behaviors. Previous work
has identified some bug patterns for the Qiskit programming
language [35, 36]. In this work, we refined these bug patterns
and built eight detectors to detect them. Table I shows the
name of detectors and descriptions of bug patterns. We briefly
describe each detector as follows.

1) Incorrect uses of quantum gates (IG): This detector
mainly checks if quantum gates are called correctly. It de-
termines whether a gate is recognized by Qiskit and whether
it has been defined. In addition, the compliance of a custom
gate and a three-qubit gate with the specification would also
be checked.

2) Measurement related issue (MI): Incorrect measurement
means not only the improper use of measure operation that
cause bugs but also the wrong operation after measurement.
As shown in Figure 5, the user wants to achieve a quantum
teleportation program. The measured qubits are used as control
qubits to entangle with other qubits. This detector mainly acts
after the measure method is called. It iterates through the
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TABLE I
BUG PATTERNS THAT EACH DETECTOR IS RESPONSIBLE FOR.

Detector Name Bug patterns Descriptions

IG
- Gates are not among the backend’s basis gates.

- Handle custom multi-qubit gates.

- Random gate is not defined.

MI - Ignoring the effects of measurement.

IS
- Number of qubits larger than the registers defined.

- The insufficient number of qubits.

- Insufficient length of classical registers.

PE

- Instruction not in basis gates.

- Incorrect parameters in gates.

- Using classical bits for entanglement.

- Same physical qubit used in one operation.

- Not giving lists for coupling map.

CM

- Unrecognized parameters.

- Quantum circuit interaction error.

- Create redundant classical registers.

- The wrong command was used.

CE

- Object call error.

- Import error.

- Backend error.

- Translating error.

QE - Issue with new from qasm str() method.

DO - Method has been deprecated.

qc = QuantumCircuit(3, 3)
qc.x(0)
qc.h(1)
qc.cx(1, 2)
qc.cx(0, 1)
qc.h(0)
qc.measure(0, 0)
qc.measure(1, 1)
qc.cx(1, 2) <- Problematic operation
qc.cz(0, 2) <- Problematic operation

Fig. 5. Example of Incorrect Mearsurement

operations following the measure statement and determines
whether the measured qubit appears as a control qubit in the
double-qubit gate operations.

3) Incorrect initial state (IS): This detector does not simply
check whether the definitions of QuantumRegister and
ClassicalRegister conform to the specification. It de-
termines whether the initialization satisfies the entire quan-
tum program’s operation on qubits. Sometimes, the Qiskit
program limits the number of qubits used when simu-
lating quantum programs. Such as, after our validation,
using Aer.get_backend(’qasm_simulator’) as back-
ends supports less than 30 qubits for measure operation,
while BasicAer.get_backend(’qasm_simulator’) sup-

qreg = qk.QuantumRegister(7)

layout = {qreg[0]: 12, <- Problematic operation
qreg[1]: 11,
qreg[2]: 13,
qreg[3]: 17,
qreg[4]: 14,
qreg[5]: 12, <- Problematic operation
qreg[6]: 6}

Fig. 6. Example of parameters error

phase = Parameter(’phase’)

with pulse.build(FakeAlmaden())as phase_test_sched:

pulse.shiftphase( <- Unrecognized
phase, pulse.drive_channel(0))

phase_test_sched.instructions

Fig. 7. Example of command misuse.

ports less than 24 qubits. In this case, the detector first checks
the backend chosen by users and Identifies if the initialized
qubits are out of limits. When the number of initialized qubits
is set to n, the checker will keep track of the number of qubits
called in the program.

4) Parameter error (PE): After a quantum gate is invoked,
this detector is responsible for determining whether the pa-
rameters in the gate are correct, including the parameters that
do not exist in multiple-qubit gates, and the wrong use of
numeric types. However, some bug patterns are not easy to
find. From Figure 6, we can see that the user wants to assign
the qubits in the register to the physical qubits, both qreg[0]

are qreg[5] assigned to the physical qubits 12. Therefore,
the detector goes through the parameter values and checks for
duplicate physical qubit occupancy.

5) Command misuse (CM): This detector could detect the
wrong or improper use of commands. Sometimes, parameters
are not recognized because the method name is miswritten.
On the other hand, some methods can not recognize pa-
rameters and raise errors. As shown in Figure 7, attribute
pulse.shiftphase() is not in module qiskit.phase.
Some of the commands in Qiskit are difficult to detect. For
example, there are more than two quantum circuits while the
user wants to nest one circuit with the others: 1) Command
to_gate() could be used to change the circuit into a com-
bination of gates embedded in other circuits. 2) Command
decompose() could be used to decompose the circuit for
embedded operation automatically.

6) Call error (CE): This detector is responsible for
call errors, including Python package calls, backend sim-
ulator calls, and translator calls. Besides, the detector
can check for problems with parameter declarations. As
shown in Figure 8, this error is not a duplicate call to
PauliMeasurementBasis(). After running the code, we
found that there was an error of invalid qubits for ba-
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circ = QuantumCircuit(1,1)
circ.x(0)

tomo = ProcessTomography(
circuit=circ,
measurement_basis=PauliMeasurementBasis(),
measurement_qubits=None,
preparation_basis=PauliMeasurementBasis(), <-
preparation_qubits=None,
basis_indices=None,
qubits=None)

Fig. 8. Example of call error

sis. The call of PauliMeasurementBasis() is invalid for
preparation_basis. This types of bugs are hard to detect
by QChecker, the detector can only judge one scenario now.

7) QASM error (QE): This detector detects problems with
qasm_simulator as the backend or when building qasm
programs with the Qiskit programming language.

8) Discarded orders (DO): This detector determines if a
deprecated method is being called, and it comes into play when
an old operation or variable type is discarded due to a version
update.

C. Bug Detection

The bug patterns shown in Table I represent the general
bugs in quantum programs. In addition to syntactic bugs,
it also contains some faulty logic in some quantum-related
operations. Based on the program information extraction mod-
ules (QP_Attribute and QP_Operation), as well as the
detectors, we can perform a thorough static analysis for the
quantum program files. To enable comprehensive and useful
bug detection and benefit the debug process, we report the
details of the buggy programs (code lines, content, etc.),
bug types (patterns), and specific descriptions. We hope such
information may help users improve the quality of quantum
programs.

IV. EVALUATION

This section presents the empirical performance of
QChecker. We evaluate QChecker on Bugs4Q [36], which
contains 42 real-world buggy quantum programs in Qiskit.
The experiments were conducted on a server with an Intel
i9-10940X CPU, 128G RAM, running on Ubuntu 20.04 with
Python 3.10 installed.

A. Metrics

We adopt Precision, Recall, and F1-score to evaluate the
performance of QChecker. Specifically, for each bug b in
Bugs4Q, we use the bug type in Bugs4Q as ground truth and
apply QChecker to its source quantum program. If the detec-
tion result of QChecker matches the corresponding bug type in
Bugs4Q, we call this b as True Positive (TP). Otherwise, this b
is a False Positive (FP). False Negative (FN) is a ground-truth
bug that can not be detected by QChecker. The Precision is
calculated as TP/(TP+FP ), Recall as TP/(TP+FN) and
F1-score as 2× Precision×Recall/(Precision+Recall).

B. Performance on Real-World Qiskit Programs

First of all, there are 42 Qiskit programs detected by
QChecker, and 24 bugs were found. Figure 9 shows the
empirical results produced by applying QChecker on Bugs4Q.
Detector PE found 10 bugs, while CE and IS found 7 and 2
bugs, respectively. And other detectors found one bug in each.
As we know, out of the 42 bugs in Bugs4Q, 22 bugs are output
errors, i.e., the output of the program does not match the user’s
expectations. This condition makes Qchercker unable to detect
these bugs. So we consider that the remaining number of bugs
in Bugs4Q found by Qchecker is in line with expectations.
Combining Table I with the results in Figure 9, we analyzed
and derived two points about the performance of each detector:

• The more cases the detectors can cover, the more bugs
can be found. As we made the detectors according to
the relevance of the bug patterns, the number of cases
covered by each detector may vary. Detector PE and CE

can detect more cases than other detectors. And in fact,
the two detectors made a better performance.

• The performance of detectors also depends on the type
of errors made by the programmers. Considering the
limited number of bugs in Bugs4Q, we believe that some
detectors perform poorly because they cover cases that
rarely occur. For example, detector IG, CM, and IS can
detect more than one case while the results are barely
satisfactory.

In addition, a detector that solves only one case does not
indicate poor performance. Instead, with their increased func-
tionality, these specialized detectors will realize their potential
to detect bugs better.

Fig. 9. Distribution of bugs found by each detector.

The efficiency of QChecker on 42 Qiskit programs provided
by Bugs4Q is shown in Table II. As illustrated in [21], exe-
cuting a quantum program on simulators can easily consume
more than 103 ms. As a result, QChecker demonstrates high
efficiency by taking an average time of only 48.2 ms to
complete detection on a single quantum program. To better
represent this, we investigated the 42 quantum programs in
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TABLE II
PERFORMANCE OF QCHECKER ON QISKIT PROGRAMS.

Performance Prec. Recall F1-score Avg. Time

QChecker 0.625 0.882 0.731 48.2ms

import cirq
qubit = cirq.NamedQubit("myqubit")
circuit = cirq.Circuit(cirq.H(qubit))
for i in range(10):

result2 = cirq.measure(qubit, key=’myqubit’)
print(result2)

print(circuit)
result = cirq.Simulator().simulate(circuit)
print(result2)

Fig. 10. An exapmle of Cirq program.

Bugs4Q. The average execution time for these programs was
2.14 seconds, while the average amount of code per program
was 31 LOC. From Section II, we already know that obtaining
the state of a qubit requires a large number of iterations of the
output to obtain its probability distribution, which we consider
to be the main cost of executing one program.

In summary, QChecker has the advantage of being efficient
and relatively effective in execution, while the disadvantage is
QChecker does not avoid the problem of false positives. As
the number of qubits in future quantum programs increases,
we believe it is necessary and effective to find bugs before
program execution by means of static analysis.

C. Extendability of QChecker

We next discuss the extendability of QChecker. The example
of a Cirq program and the corresponding detection result of
QChecker are shown in Figures 10 and 11, respectively. After
careful inspection of the results, we find that the information
extraction part of QChecker can still function on other Python-
based quantum languages (e.g., Cirq). The syntax difference
between these quantum languages may cause the detectors
designed for Qiskit fails to work, which leads to the lack of
guaranteed performance.

In summary, the experimental results show that QChecker
can successfully detect bugs in real-world Qiskit quantum
programs, exhibiting the effectiveness of applying static anal-
ysis to quantum programs. Besides, the intermediate re-
sults indicate that the QChecker can correctly extract the
QP_Attribute and QP_Operation information from the
underlying Cirq program, indicating that the QChecker can be
easily extended to common Python-based quantum program-
ming languages.

V. TREATS TO VALIDITY

A. External Threats

Even for the most widely used Qiskit quantum programming
language, there are still not enough buggy programs. More-
over, existing quantum programs are usually run on simulators
rather than on actual quantum computers, which leads to the

(’qubit’, ’cirq.NamedQubit("myqubit")’)
(’circuit’, ’cirq.Circuit(cirq.H(qubit))’)
(’result’, ’cirq.Simulator().simulate(circuit)’)
(’result2’, ’cirq.measure(qubit,key="myqubit")’)
==========================================
’cirq.NamedQubit("myqubit")’
’cirq.Circuit(cirq.H(qubit))’
’range(10)’
’print(circuit)’
’cirq.Simulator().simulate(circuit)’
’print("result:")’
’print(result2)’
’cirq.H(qubit)’
’cirq.measure(qubit,key="myqubit")’,
’print(result2)’,
’cirq.Simulator()’

Fig. 11. A Cirq program detected by QChecker

eng = MainEngine()
qubits = eng.allocate_qureg(3)
H | qubits[0]
CX | (qubits[0], qubits[2])
eng.flush()
amplitudes = np.array(eng.backend.cheat()[1])
amplitudes = np.abs(amplitudes)
All(Measure) | qubits

Fig. 12. An exapmle of ProjectQ program.

small size of current quantum programs. As a result, the
number of bug patterns can be a threat to validity. We have
put much effort into collecting bugs from quantum programs
and extracting as many bug patterns as possible from these
collected bugs. However, due to the limitation of the current
scale of development and application of quantum programs,
we cannot include more bug patterns in QChecker. Therefore,
we will continue to collect quantum programs and their bugs,
enrich QChecker’s detection capabilities, and continuously
update the tool.

B. Internal Threats

QChecker is designed for Qiskit and can be extended to
other Python-based quantum languages (e.g., Cirq) with slight
modifications. However, it also has limitations. For instance,
ProjectQ has overloaded the | operator, which will cause the
information extractor fails to work. As shown in Figures 12
and 13, QChecker could not extract information from the
underlying ProjectQ program, such as the H gate and CX

gate. These limitations will be resolved with the extension
of QChecker.

C. Verifiability

This threat concerns the possibility of replicating this re-
search. we provide all the necessary details to help researchers
replicate this work. The replication package is made publicly
available at https://github.com/Z-928/QChecker.

VI. RELATED WORK

A large number of error detection techniques based on static
analysis [10, 16, 25, 26, 30] have been developed in classical
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(’eng’, ’MainEngine()’)
(’qubits’, ’eng.allocate_qureg(3)’)
(’amplitudes’, ’np.array([1])’)
(’amplitudes’, ’np.abs(amplitudes)’)
==========================================
’MainEngine()’
’eng.allocate_qureg(3)’
’eng.flush()’
’np.array([1])’
’np.abs(amplitudes)’
’All(Measure)’
’eng.backend.cheat()’]

Fig. 13. A ProjectQ program detected by QChecker.

software development. However, static analysis techniques for
classical programs are difficult to apply directly to quantum
programs due to the essential differences between quantum
programs and classical programs.

Currently, static analysis techniques for quantum programs
have emerged. Yu and Palsberg [34] proposed an abstract
interpretation technique for quantum programs and used this
technique to detect assertions to find errors in the programs.
Xia and Zhao [32] proposed a practical static entanglement
analysis technique to accurately analyze the entanglement
information within and between modules in Q# quantum pro-
grams, which can help find errors related to entanglement in
the programs. ScaffCC [18] is a scalable compiler framework
for the quantum programming language Scaffold [1], which
also supports entanglement analysis. ScaffCC explores data-
flow analysis techniques to automatically track the entangle-
ments within the code by annotating the output of the QASM-
HL program, an intermediate representation of ScaffCC, to
denote possibly entangled qubits. The analysis is conservative
because it assumes that if two qubits interact, they are likely to
have become entangled with each other. In contrast to these
analysis methods, QChecker aims to find bugs in quantum
programs based on bug patterns through static analysis.

Researchers have also extended Hoare logic to the quantum
domain to support the formal verification of quantum pro-
grams [6, 8, 33, 29, 37]. Among them, Li et al. [37] introduced
applied quantum Hoare logic (aQHL), which is a simplified
version of quantum Hoare logic (QHL) [33], with particular
emphasis on supporting debugging and testing of the quantum
programs. aQHL simplified QHL through binding QHL to a
particular class of pre- and postconditions (assertions), that
is, projections, to reduce the complexity of quantum program
verification and provide a convenient way used for debugging
and testing quantum software. However, as we know, formal
verification can be costly and difficult to scale up.

Another line of research is to develop debugging [17, 19]
and testing [3, 11, 15, 20, 31] techniques for quantum pro-
grams, which are based on dynamic program analysis in
principle. Although more accurate results can be obtained, the
running cost of these techniques is relatively high compared
to static analysis techniques due to the nature of quantum
programs.

VII. CONCLUSION REMARKS

This paper has presented QChecker, a static analysis tool
for quantum programs to enable effective and efficient poten-
tial bug detection of quantum programs. QChecker involves
two AST-based program information extraction modules and
comprehensive bug detectors which can detect various bug
patterns. We applied QChecker to the Bugs4Q benchmark
suite and evaluated its effectiveness. The results show that
QChecker can detect various types of bugs in quantum pro-
grams. In the future, we plan to extend QChecker to detect
more bug patterns of Qiskit programs and support bug detec-
tion of other common quantum programming languages such
as Cirq and ProjectQ.

VIII. ACKNOWLEDGMENT

This work was supported by JST SPRING (Grant Numbers
JPMJSP2136 and JPMJFS2132).

REFERENCES

[1] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu,
A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, and
F. Chong, “Scaffold: Quantum programming language,”
Department of Computer Science, Princeton University,
Tech. Rep., 2012.

[2] G. Aleksandrowicz, T. Alexander, P. Barkoutsos,
L. Bello, Y. Ben-Haim, D. Bucher, F. Cabrera-Hernández,
J. Carballo-Franquis, A. Chen, C. Chen et al., “Qiskit:
An open-source framework for quantum computing,”
Accessed on: Mar, vol. 16, 2019.

[3] S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing
the effectiveness of input and output coverage criteria
for testing quantum programs,” in 2021 14th IEEE Con-
ference on Software Testing, Verification and Validation
(ICST). IEEE, 2021, pp. 13–23.

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, “Quantum machine learning,”
Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[5] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq:
A high-level quantum language with safe uncomputation
and intuitive semantics,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2020, pp. 286–300.

[6] O. Brunet and P. Jorrand, “Dynamic quantum logic for
quantum programs,” International Journal of Quantum
Information, vol. 2, no. 01, pp. 45–54, 2004.

[7] J. Campos and A. Souto, “QBugs: A collection of
reproducible bugs in quantum algorithms and a sup-
porting infrastructure to enable controlled quantum soft-
ware testing and debugging experiments,” arXiv preprint
arXiv:2103.16968, 2021.

[8] E. D’hondt and P. Panangaden, “Quantum weakest pre-
conditions,” Mathematical Structures in Computer Sci-
ence, vol. 16, no. 3, pp. 429–451, 2006.

[9] V. Dunjko, J. M. Taylor, and H. J. Briegel, “Quantum-
enhanced machine learning,” Physical review letters, vol.
117, no. 13, p. 130501, 2016.

7



[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata, “Extended static checking
for Java,” in Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and im-
plementation, 2002, pp. 234–245.

[11] D. Fortunato, J. Campos, and R. Abreu, “Mutation testing
of quantum programs: A case study with Qiskit,” IEEE
Transactions on Quantum Engineering, vol. 3, pp. 1–17,
2022.

[12] Google AI Quantum Team, “Cirq,” 2018. [Online].
Available: https://github.com/quantumlib/Cirq

[13] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and
B. Valiron, “Quipper: a scalable quantum programming
language,” in Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and imple-
mentation, 2013, pp. 333–342.

[14] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J.
Mayhall, “An adaptive variational algorithm for exact
molecular simulations on a quantum computer,” Nature
communications, vol. 10, no. 1, pp. 1–9, 2019.

[15] S. Honarvar, M. Mousavi, and R. Nagarajan, “Property-
based testing of quantum programs in Q#,” in First In-
ternational Workshop on Quantum Software Engineering
(Q-SE 2020), 2020.

[16] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” Acm
sigplan notices, vol. 39, no. 12, pp. 92–106, 2004.

[17] Y. Huang and M. Martonosi, “Statistical assertions for
validating patterns and finding bugs in quantum pro-
grams,” in Proceedings of the 46th International Sym-
posium on Computer Architecture, 2019, pp. 541–553.

[18] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov,
F. T. Chong, and M. Martonosi, “Scaffcc: Scalable com-
pilation and analysis of quantum programs,” Parallel
Computing, vol. 45, pp. 2–17, 2015.

[19] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie,
“Projection-based runtime assertions for testing and de-
bugging quantum programs,” Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, pp.
1–29, 2020.

[20] P. Long and J. Zhao, “Testing quantum programs with
multiple subroutines,” arXiv preprint arXiv:2208.09206,
2022.

[21] P. Matteo and P. Michael, “MorphQ: Metamorphic
testing of quantum computing platforms,” 2022. [Online].
Available: https://arxiv.org/abs/2206.01111

[22] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk,
L. Bishop, J. Chen, J. M. Chow, A. D. Córcoles, D. Eg-
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