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Abstract

The increasing number of biomedical and translational applications in mass spectrometry-

based proteomics poses new analytical challenges and raises the need for automated qual-

ity control systems. Despite previous efforts to set standard file formats, data processing

workflows and key evaluation parameters for quality control, automated quality control sys-

tems are not yet widespread among proteomics laboratories, which limits the acquisition of

high-quality results, inter-laboratory comparisons and the assessment of variability of instru-

mental platforms. Here we present QCloud, a cloud-based system to support proteomics

laboratories in daily quality assessment using a user-friendly interface, easy setup, auto-

mated data processing and archiving, and unbiased instrument evaluation. QCloud sup-

ports the most common targeted and untargeted proteomics workflows, it accepts data

formats from different vendors and it enables the annotation of acquired data and reporting

incidences. A complete version of the QCloud system has successfully been developed and

it is now open to the proteomics community (http://qcloud.crg.eu). QCloud system is an

open source project, publicly available under a Creative Commons License Attribution-

ShareAlike 4.0.

Introduction

Proteomics technologies have matured into a panoply of reliable methods for measuring with

high sensitivity thousands of peptides in multiple biological samples. Persistent methodologi-

cal developments have enabled new large-scope applications for clinical and translational pro-

teomics research [1–3] in which hundreds of samples are prepared and analysed by mass

spectrometry. These applications have increased the analytical challenges of proteomics exper-

iments, and generated the need to implement systems to control and assure the quality of each

of the steps involved in the proteomics workflow, including sample preparation, chro-

matographic peptide separation, mass spectrometric acquisition, and data analysis [4–7].
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Pastor O, Solé A, et al. (2018) QCloud: A cloud-

based quality control system for mass

spectrometry-based proteomics laboratories. PLoS

ONE 13(1): e0189209. https://doi.org/10.1371/

journal.pone.0189209

Editor: Frederique Lisacek, Swiss Institute of

Bioinformatics, SWITZERLAND

Received: April 26, 2017

Accepted:November 21, 2017

Published: January 11, 2018

Copyright: © 2018 Chiva et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper, and at https://github.com/

rolivella/QCloud/ under a Creative Commons

License Attribution-ShareAlike 4.0.

Funding: This work was supported by: 1.

“Plataforma de Recursos Biomoleculares y
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Several community efforts aimed to define common standards [8–11]and to establish qual-

ity control and quality assurance procedures have emerged to reduce the variance of proteo-

mics results and to increase their robustness and reproducibility [12,13]. The initiatives arisen

within organizations such as the ABRF, HuPO, NCI, and ProteoRed [14–18] reflect the impor-

tance of standardization and quality systems. These quality systems are not only required by

regulatory agencies to accept proteomics data within clinical contexts [19], but also to increase

the analytical throughput in proteomics laboratories by shifting from a reactive action para-

digm when problems occur, towards proactive actions induced by an early detection of poten-

tial future nonconformities.

Particularly active has been the development of quality control tools to monitor the perfor-

mance of LC-MS systems in proteomics analyses [20–23]. An extensive set of quality metrics

was initially introduced by NIST to assess data quality in proteomics experiments, and since

the pioneering MSQC software was released [24], a succession of software packages and met-

rics have emerged to automate and facilitate this task.

Quality control systems usually benefit from limited human intervention to reduce subjec-

tive evaluations and inconsistencies, and to promote a systematic longitudinal evaluation of

the system performance. Therefore, proteomics quality control software has focused on auto-

mation capabilities, effortless data collection, objective evaluation, and implementation of

user-friendly interfaces to overcome what otherwise would be a tedious and labour-intensive

task. In this regard, soon after the release of MSQC, another software package, QuaMeter, was

released that made use of existing proteomics software tools to get over some initial limitations

of its predecessor in an effort to improve its usability and dissemination among proteomics

laboratories. Later, the release of SIMPATIQCO [22], Metriculator [21], and others [25], intro-

duced web-based interfaces, interactive plots and comparison capabilities to assist instrument

operators in monitoring quality control metric. Other tools, such as OpenMS [26], iMonDB

[27] and AutoQC [23], have also contributed to automate the extraction of quality metrics

from raw files and, thus, to generate automatic pipelines for quality control. In parallel, meth-

ods for evaluating multivariate quality control metrics have emerged [28–30], and tools from

the statistical process control framework have been introduced to evaluate instrument perfor-

mance and to improve the quality of the process [31], such as SproCoP [32] and MsstatsQC

[33]. Two thorough reviews of the computational tools available for quality control in LC-MS

proteomics experiments have been recently published [34,35].

Despite all previous work to set standard file formats, data processing workflows, and evalu-

ation of key performance parameters, automated quality control systems are not yet wide-

spread among proteomics laboratories, as the field is resilient to their implementation. There

are several reasons for this situation such as the difficulty of deploying existing quality control

software made by others, license or technical limitations imposed by certain tools (e.g., limited

to a particular vendor), the need of trained operators to make the quality control system work,

and the lack of modern user-friendly interfaces to facilitate the revision of the quality metrics,

and the management of annotations and nonconformities.

Many of the shortcomings of current proteomics quality control software packages end up

in laboratories doing intermittent quality control assessment. The lack of a systematic moni-

toring of instrument performance limits the acquisition of high-quality results, as well as the

assessment of the instrument technical variability, and potential inter-laboratory comparisons.

Several initiatives have benefited from community efforts to assess the reproducibility and

repeatability of longitudinal proteomics experiments in multiple laboratories [36–38]. How-

ever, these studies are often limited in time and in the number of participating laboratories,

and they do not benefit from common tools that in addition to quality assessment, provide an

effortless and quick evaluation of an instrument performance (Instrument QC), and enable
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instrument comparison within the same laboratory (Intra-laboratory QC), and among labora-

tories (Community QC).

Here we present QCloud, a cloud-based quality control system meant to support proteo-

mics laboratories in longitudinal instrument quality control assessment using a user-friendly

interface, easy setup, automated data processing that includes database searching capabilities,

and unbiased instrument evaluation. The QCloud system offers an automated ready-to-use

quality control system to the proteomics operator, who is thus released from software deploy-

ment, and method selection to evaluate multivariate metrics related to instrument perfor-

mance. By reducing the workload associated to quality control, the QCloud system aims to

spread the adoption of an automated quality control system to multiple laboratories thus facili-

tating early detection of instrumental problems and enabling quality control features that align

with on-going efforts and agreed standards.

Materials andmethods

Quality control samples

QC1 samples tested in Thermo and Sciex instruments (LTQ-Orbitrap Velos Pro, LTQ-Orbi-

trap XL, LTQ-q-Orbitrap Fusion Lumos; and QqQ 5500 QTRAP) corresponded to 1 vial of

500 pmol of commercially available “Trypsin-digested BSAMS Standard (CAMmodified)”

from New England Biolabs with part number P8108S. The 500 pmol of dried digested bovine

serum albumin (BSA) were dissolved with 500 μL of 0.1% formic acid in water and then 15 μL

were diluted with 285 μL of 0.1% formic acid in water to 50 fmol/μL. A total of 0.5 μL were

injected in each analysis, which corresponded to 25 fmol of BSA.

QC2 samples tested in Thermo and Sciex instruments corresponded to Pierce HeLa protein

digest standard from Thermo Fisher Scientific (Part number: 88329). The commercial product

is a vial of 20 μg dried digested HeLa extract which are dissolved in 200 μL of 0.1% formic acid

in water to a final concentration of 100 ng/μL. A total amount of 1 μL (100ng) is injected per

analysis.

All quality control samples used in this work were commercially available.

QCmethods

Quality control samples were analyzed in a LTQ-Orbitrap XL, a LTQ-Orbitrap Velos Pro and

a LTQ-Orbitrap Fusion Lumos (Thermo Fisher Scientific) coupled to a Proxeon 1000 nano-

LC (Proxeon), and a QqQ 5500 QTRAP (Sciex) coupled to an Eksigent nano-LC Ultra 1D.

The liquid chromatography systems were equipped with a C18 reversed-phase chromatogra-

phy column with column lengths varying from 12 to 50 cm.

Chromatographic gradients for the analysis of quality control samples started at 97% buffer

A and 3% buffer B with a flow rate of 250–300 nl/min, and gradually increased to 93% buffer A

and 7% buffer B in 1 min, and to 65% buffer A and 35% buffer B in 10–20 min (QC1) and 90–

120 min (QC2). After each analysis, the column was washed for 15 min with 10% buffer A and

90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 0.1% formic acid in acetonitrile.

Mass spectrometers were operated in positive ionization mode using either a selected reac-

tion monitoring acquisition (20 ms of dwell time, 5500 QTRAP), or data-dependent acquisi-

tion (Orbitrap-based instruments) in which each survey scan was followed by the

fragmentation of the top nmost intense multiple charged ions via collision-induced dissocia-

tion (CID). Dynamic exclusion, resolution, injection and accumulation times, and the number

of fragmented precursor ions were tuned in each LC-MS system and type of QC sample to

obtain a cycle time that results in 8–10 data points per chromatographic peak.

All data were acquired with the software Xcalibur v2.2, and Analyst v1.6.
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Results and discussion

Overview of the QCloud system

QCloud is a cloud-based quality control system that establishes a seamless quality control pipe-

line and, thus, eliminates those barriers that usually prevent the adoption of quality control

tools as an integral part of mass spectrometry proteomics workflows.

The QCloud system consists in i) a thin client installed in the mass spectrometer acquisition

computer, ii) a cloud-based processing infrastructure, and iii) a web user interface (Fig 1) that

automate the complete quality control workflow by performing automatic data collection

from the instrument, data processing, unbiased instrument evaluation, metrics display, and

data self-archiving. Compared to existing proteomics quality control systems, QCloud greatly

facilitates the initial system setup to mass spectrometer operators and significantly reduces the

time and efforts required by a proteomics laboratory to adopt a quality control system for con-

tinuous performance assessment of mass spectrometry-based proteomics experiments.

QCloud relies on previous community efforts and the system development has been based

on the Java programming language, msconvert [39], the OpenMS infrastructure [26], the

qcML data format [11], and a LAMP webserver. QCloud is an id-based quality control system

and it currently supports different proteomics workflows, including shotgun discovery proteo-

mics, peptide MS1 quantitation, parallel reaction monitoring, and selected reaction

monitoring.

The QCloud system has been designed to assess the performance of the LC-MS systems in

any laboratory and it can adopt data files from different mass spectrometer vendors. Currently,

the QCloud system has been tested on Thermo and Sciex instruments, specifically the

LTQ-Orbitrap XL, LTQ-Orbitrap Velos Pro, LTQ-q-Orbitrap Fusion Lumos, Q-Exactive

series, as well as on the QqQ QTRAP 5500.

A complete version of the QCloud system has successfully been developed and it is now

open to the proteomics community (http://qcloud.crg.eu).

Fig 1. QCloud overview.Overview of the QCloud system structure consisting in i) a thin client in the mass spectrometer acquisition computer, ii) the cloud-based
processing infrastructure, and iii) the web user interface.

https://doi.org/10.1371/journal.pone.0189209.g001
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Quality control samples

The QCloud supports two types of quality control samples, QC1 and QC2, according to the

nomenclature established by Pichler et al. In 2012 [22]. The QC1 sample corresponds to a low

complexity quality control sample that is analysed several times per day in order to establish

the performance of the instrument before and after running each real sample. In contrast, the

QC2 sample is a high complexity sample that mimics real samples analysed in a proteomics

laboratory, and is meant to be injected 1–5 times per week as a sample to test system

suitability.

Currently the QCloud system supports bovine serum albumin as QC1 sample, and the

HeLa cellular digested proteome as QC2 sample. Supported quality control samples were

selected based on their commercial availability as ready-to-inject samples to reduce sample

manipulation within the laboratory and to facilitate sample preparation, accessibility and

batch tracking. The use of pre-defined, ready-to-use, and easily accessible quality control sam-

ples does not only facilitate workflow automation, but also instrument comparison within the

same laboratory (Intra-laboratory QC), and among laboratories (Community QC).

Although a yeast QC reference material has been defined by NIST [40], this QC sample is

not currently supported by QCloud due to its limited availability and non-sustained supply.

However, the QCloud framework allows the easy incorporation of new reference materials as

soon as they are defined and made broadly accessible.

Detailed description of the QCloud system

Quality control samples need to be regularly programmed for analysis by the mass spectrome-

ter operator following the recommended acquisition methods (see “Materials and methods”

section). QC1 samples are analysed with short methods of 10–20 min with narrow chro-

matographic peak widths and short cycle times, whereas standard high complexity methods of

90–120 min are recommended for the analysis of QC2 samples. Despite the definition of sev-

eral recommended methods, parameters might need to be adapted when other types of mass

spectrometers, chromatographic systems, solvents and chromatographic columns are used.

By using a defined file naming system, the created quality control raw files are automatically

processed by QCrawler, a thin client (374 KB) that needs to be run in the instrument com-

puter. QCrawler is, therefore, the entry point into the QCloud system. It performs user authen-

tication, and once the user has defined the acquisition folder and the instrument, it

automatically locates and uploads the quality control acquisition files and instrument parame-

ters to the QCloud system through a remote FTP server (Fig 2). QCrawler is coded with the.

NET v3.0 framework to be retro-compatible with a wide range of versions of the Microsoft

Windows™ operating system installed in the acquisition computers.

Quality control sample raw files are then converted to the mzML open standard using the

QConverter wrapper of msconvert (v.3.0.9393) in a Microsoft Windows™ virtual machine and

the spectra are processed via a Java-based wrapper of OpenMS v2.0 (mzml2qcml.jar). The sys-

tem adapts to data files from different mass spectrometer vendors. QCloud currently supports

both id-free and id-based proteomics workflows, thus including targeted methods such as pre-

cursor ion quantitation, parallel reaction monitoring, and selected reaction monitoring, as

well as untargeted workflows such as shotgun discovery proteomics. On shotgun proteomics

samples, QCloud relies on a database search with the OMSSA search engine and the Feature-

Finder module in OpenMS, whereas in targeted proteomics the fragment ion chromatograms

are extracted for a selection of bovine serum albumin peptides (see detailed workflows at

https://github.com/rolivella/QCloud).
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A set of quality control parameters is extracted from the qcML, idXML and featureXML

files (see Tables 1 and 2) and they are stored in the persistence layer by a MySQL wrapper

(qcml2db.jar, Fig 3). Quality control data are presented to the user in a web server front-end

with a responsive layout based on jQuery, CSS bootstrap, and Google Charts (Fig 4A). The

user interface is interactive and it enables user annotations with controlled vocabulary to

report incidences and annotate the acquired data, potential problems with nonconformities,

and operator interventions (Fig 4B).

Quality control parameters are subjected to statistical assessment based on their compari-

son with a high-performance period defined by the user, which is used to set the acceptance

thresholds. QCloud classifies each data point in three categories: a) conformities (green) when

the parameter lays within two standard deviations around its mean, b) warnings (yellow) when

the parameter is between two and three standard deviations around its mean, and nonconfor-

mities (red) when the assessed value is beyond three standard deviations from its mean. This

setup enables automated non-subjective instrument performance evaluation and the definition

of the three categories directly translates into specific actions—i.e. continue acquiring, do a

preventive action, or stop the instrument, respectively (Fig 5).

The code for the QCloud system is publicly available at https://github.com/rolivella/

QCloud under a Creative Commons License Attribution-ShareAlike 4.0 and it accepts contri-

butions from the community.

Benefits and limitations of the QCloud system

At this point, QCloud has been up and running for more than one year providing quality con-

trol services to several proteomics laboratories from different research institutions, including

Fig 2. Detailed scheme of the cloud-based processing infrastructure pipeline.

https://doi.org/10.1371/journal.pone.0189209.g002
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ours. In our laboratory, QCloud performs unattended processing of an average of ten QC1

samples per day and per instrument, and two QC2 samples per week and per instrument,

which results in more than 3,000 quality control samples automatically processed per year in

each instrument. During this period, QCloud allowed us to pinpoint a variety of incidences,

including slight mass calibration problems, sudden loss of performance, sample carry over,

and it provided an objective classification of conformities and non-conformities that deter-

mined when operator interventions were needed (Fig 6). Early detection of instrument inci-

dences allowed us to perform correction actions at early stages of the proteomics workflow,

thus saving time, money and samples, compared to post-acquisition quality control

evaluation.

Table 1. List of quality control parameters currently extracted by QCloud.

Parameter name CV HuPO-PSI NIST Description

Peak Area Areas of the features corresponding to the list of selected peptides within a mz (+/-
5 ppm) and RT (+/-240 s) tolerance window

Mass Accuracy QC:0000038 1E6 x (observed_mz-theoretical_mz)/theoretical_mz where the observed_mz is
extracted from the featureXML

Retention Time Drift Peptide retention time difference between the current QC sample and the previous
one

Median Injection Time MS1 Median MS:1000927
(MS1-only)

MS1-1
(similar)

Median ion injection time of all MS1 scans.

Median Injection Time MS2 Median MS:1000927
(MS2-only)

MS2-1
(similar)

Median ion injection time of all MS2 scans.

Chromatographic Resolution (RT pep1 –RT pep2) / (FWHM(pep1) + FWHM(pep2))�

Peak Capacity (max(RT)–min(RT)) / (average(FWHM))

Total Ion Current QC:0000048 MS1-2B
(similar)

Sum of all TIC per RT extracted from the qcML

MS1 Spectra Count QC:0000006 DS-2A
(similar)

MS2 Spectra Count QC:0000007 DS-2B
(similar)

Chromatogram Count QC:0000008

TIC Slump QC:0000023

Total Number of Missed Cleavages QC:0000037

Total Number of Identified
Proteins

QC:0000032

Total Number of Uniquely
Identified Proteins

QC:0000033

Total Number of PSMs QC:0000029 P-2A

Total Number of Identified
Peptides

QC:0000030 P-2B

Total Number of Uniquely
Identified Peptides

QC:0000031 P-2C

Mean Delta ppm QC:0000040

Median Delta ppm QC:0000041 MS1-5C

Id Ratio QC:0000035

MS Quantification Results Details QC:0000045

Number of Features QC:0000046

� This parameter is calculated with two peptide pairs: the first pair is pep1 "SLADELALVDVLEDK" and pep2 "RFPGYDSESK", and the second pair is pep1

"FEELNMDLFR" and pep2 "LAVDEEENADNNTK".

https://doi.org/10.1371/journal.pone.0189209.t001
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Compared to other available proteomics quality control software, QCloud offers a complete

automation of the quality control workflow, covering all the required steps from the raw files

to the automatic generation of plots in the web user interface. Therefore, QCloud releases the

operator from the need to manually copy, upload, and process any quality control raw file to

extract and plot the metrics of interest. By reducing the workload associated to quality control,

the system facilitates the adoption of quality control system in proteomics laboratories, as one

person can manage the quality control of several instruments while attending other require-

ments from the laboratory. Moreover, the system offers a single entry-point for objective eval-

uation of instrument performance to all laboratory operators, thus avoiding discrepancies in

quality control assessment.

Currently, QCloud performs the whole quality control process—from sample injection to

the publication of the quality control metrics in the website—with less than one hour when a

network connection>10 Mbps is available. This includes file upload (1–5 min), file conversion

(2–10 min), id-based and/or id-free analysis workflows (5–40 min), plus small synchronization

overheads. Overall, a shotgun QC1 BSAs sample analysed with database search takes around

10–15 min to appear in the website, whereas a QC2 HeLa sample takes around 30–45 min.

Therefore, QCloud does not offer real-time data analysis for on-the-fly interventions, but the

data processing time is fast enough to generate a quality evaluation while the next sample is

being acquired.

Finally, it is worth mentioning, that QCloud supports a limited set of quality control met-

rics, acquisition workflows and samples—mainly bovine serum albumin for QC1 samples, and

HeLa cell extracts for QC2 samples. Therefore, compared to other quality control software or

workflow generator frameworks, QCloud is a streamlined system that offers little customiza-

tion to the user. This simplifies software maintenance and it enables the comparison of instru-

ment performance within or among different laboratories.

Conclusions

Comprehensive quality control systems need to become an integral part of mass spectrometry-

based proteomics experiments. This will facilitate objective and systematic longitudinal

Table 2. List of monitored peptides for QC1 and QC2 samples.

QC1 QC2

LVNELTEFAK YAEAVTR

HLVDEPQNLIK TPAQFDADELR

VPQVSTPTLVEVSR STLTDSLVC(CAM)K

EAC(CAM)FAVEGPK SLADELALVDVLEDK

EYEATLEEC(CAM)C(CAM)AK NPDDITNEEYGEFYK

EC(CAM)C(CAM)HGDLLEC(CAM)ADDR LGDLYEEEMR

SLHTLFGDELC(CAM)K LAVDEEENADNNTK

TC(CAM)VADESHAGC(CAM)EK FEELNMDLFR

YIC(CAM)DNQDTISSK EAALSTALSEK

NEC(CAM)FLSHK DDVAQTDLLQIDPNFGSK

RFPGYDSESK

EVSTYIK

EATTEFSVDAR

FAFQAEVNR

EQFLDGDGWTSR

https://doi.org/10.1371/journal.pone.0189209.t002
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evaluations of system performance and, thus, advance into robust and reproducible proteo-

mics analyses in the fields of clinical and translational proteomics research.

Substantial community efforts have led to significant advances in data standardization, defi-

nition of performance parameters, and development of quality control software and statistical

assessment methods. To transform these efforts into a wide adoption of quality control system

in proteomics laboratories, advances are required in the cost-benefit curve of academic soft-

ware towards the development of user-friendly and easy-to-setup systems.

The QCloud quality control system belongs specifically into this niche, as it aligns with on-

going community efforts and agreed standards to establish a seamless quality control pipeline.

QCloud is a cloud-based longitudinal quality control system for MS-based proteomics that

relies on the Java programming language, the OpenMS infrastructure, the qcML data format,

and a LAMP web server. The system eliminates the barriers that usually prevent the adoption

Fig 3. Table scheme and relationship of the persistent layer.

https://doi.org/10.1371/journal.pone.0189209.g003
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of quality control tools and offers a ready-to-use system to proteomics laboratories. Indeed,

QCloud does not require software deployment, it supports several vendors and acquisition

workflows, and it offers a modern user interface that facilitates the revision of the quality

parameters, and the annotation of nonconformities.

It has not escaped our notice that cloud-based systems have the potential not only to facili-

tate instrument comparison within the same laboratory, but also among different laboratories

(Community QC). The implementation of new community features will thus enable the

Fig 4. Web server front-end. A) Schematic architecture of the server back and front-end. B) Example of quality control data point annotations with
controlled vocabulary in the QCloud system in a profile plot of log2(Area) of multiple selected peptides (see Table 2).

https://doi.org/10.1371/journal.pone.0189209.g004

Fig 5. Quality control charts. A sample of several quality control charts displayed in the web interface by the QCloud system, including peptide areas,
injection time, total numbers of proteins, peptides and PSM, chromatographic resolution, peak capacity, and retention time drift. Plotted parameters
are defined in Table 1.

https://doi.org/10.1371/journal.pone.0189209.g005
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performance comparison of a given instrument with the average performance of the commu-

nity, and identify the most common causes of performance problems and downtime. More-

over, cloud-based quality control tools will progressively support advanced multivariate

statistical methods, automated notifications, and additional proteomics workflows such as

sample preparation. Finally, we envisage the implementation of smart actions to control the

acquisition flow according to quality parameters (e. g., stop acquisition queue or program

washing routines), making use of the advanced API interfaces available in modern mass

spectrometers.

In conclusion, cloud-based ready-to-use tools, such as QCloud, will accelerate the adoption

of quality control systems for continuous quality assessment in proteomics laboratories and

provide an effortless and quick evaluation of instrument performance.
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Investigation: Cristina Chiva, Roger Olivella, Eva Borràs, Guadalupe Espadas, Olga Pastor,

Amanda Solé, Eduard Sabidó.

Methodology: Cristina Chiva, Roger Olivella, Eva Borràs, Guadalupe Espadas, Olga Pastor,

Amanda Solé, Eduard Sabidó.
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