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ABSTRACT

The learning-enhanced relevance feedback has been one of
the most active research areas in content-based image re-
trieval in recent years. However, few methods using the rel-
evance feedback are currently available to process relatively
complex queries on large image databases. In the case of
complex image queries, the feature space and the distance
function of the user’s perception are usually different from
those of the system. This difference leads to the represen-
tation of a query with multiple clusters (i.e., regions) in the
feature space. Therefore, it is necessary to handle disjunc-
tive queries in the feature space.

In this paper, we propose a new content-based image
retrieval method using adaptive classification and cluster-
merging to find multiple clusters of a complex image query.
When the measures of a retrieval method are invariant under
linear transformations, the method can achieve the same re-
trieval quality regardless of the shapes of clusters of a query.
Our method achieves the same high retrieval quality regard-
less of the shapes of clusters of a query since it uses such
measures. Extensive experiments show that the result of
our method converges to the user’s true information need
fast, and the retrieval quality of our method is about 22%
in recall and 20% in precision better than that of the query
expansion approach, and about 34% in recall and about 33%
in precision better than that of the query point movement
approach, in MARS.
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With the advances in image processing, information re-
trieval, and database management, there have been exten-
sive studies on content-based image retrieval (CBIR) for
large image databases. Content-based image retrieval sys-
tems use the visual contents of images, such as color, texture,
and shape features to represent and index images.

Many retrieval methods represent images as vectors in
the feature space and many retrieval systems take a query
image, features and feature representations, on which the
search is based on, as the input from a user. A range query
or a nearest-neighbor query are used to retrieve images sim-
ilar to a query image in terms of the features and feature
representations provided by a user. That is, the closer two
vectors are, the more similar the corresponding images are.

However, it is not an easy task for a user to select features
and feature representations which are effective to express
high-level concepts (i.e., objects) in a query image. The
reasons are as follows. First, there exists a gap between high-
level concepts and low-level feature representations [16]. So,
the current technology requires interactive user help to map
from low-level feature representations to high-level concepts.
Second, the user’s preference for a query image changes from
time to time since he or she may not initially have the query
image at hand or an initial query may evolve to an ideal
query during the retrieval process.

To resolve this problem, recent studies in CBIR have fo-
cused on the approach based on the relevance feedback.
The relevance feedback is an automatic refining process of
the current query to representations based on low-level fea-
tures using the user’s evaluation of the relevance of images
retrieved by query processing [16]. Whenever the system
presents a set of images considered to be similar to a given
query, the user can pick up the ones the most relevant to the
given query and the system refines the query using them.
Let the relevant images be the ones picked up by the user.

Implementing the relevance feedback concerns the compu-
tation of a new query point (or points) in a feature space and
the change of a distance function. As shown in Figure 1(a),
early studies [11, 15] represent a new query as a single point
and change the weights of feature components to find an op-
timal query point and an optimal distance function. In this
case, a single point is computed using the weighted average
of all relevant images in the feature space. The contours
represent equi-similarity lines. Meanwhile, a recent study
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Figure 1: Query shape

[13] represents a new query as multiple points to determine
the shape of the contour as shown in Figure 1(b). This ap-
proach uses a clustering method [8] to compute new query
points using query results (relevant images) based on the
user’s relevance judgement. It is assumed that the relevant
images are mapped to points close together according to the
similarity measure. A single large contour is constructed to
cover all query points and the system finds images similar to
them. However, if the feature space and the distance func-
tion of the user’s perception are quite different from those
of the system, the relevant images are mapped to disjoint
clusters of arbitrary shapes in the feature space. That is,
the relevant images may be ranked below other retrieved
images for the given query. In order to converge rapidly to
the user’s information need, the system should find the im-
ages similar to any of the query points as in Figure 1(c). A
query that retrieves the images similar to any of the query
points is called a disjunctive query. Especially, a complex
image query is represented as disjoint multiple clusters.

In this paper, we propose a new adaptive classification
and cluster-merging method to determine arbitrary shapes
of contours for a given complex image query. Also we pro-
pose an approach to the relevance feedback using multiple
query points to support disjunctive queries.

1.1 Brief Sketch of Our Method
Figure 2 shows the proposed relevance feedback mecha-

nism. At the first stage, an example image submitted by
the user is parsed to generate an initial query Q = (q, d, k),
where q is a query point in the feature space, k is the num-
ber of images in the query result to be returned by the sys-
tem, and d is the distance function. The query point q is
compared with images in the database using the distance
function d. According to d, the result set consisting of k
images close to q, Result(Q) = {p1, . . . , pk}, is returned to
the user.

At the next stage, the user evaluates the relevance of im-
ages in Result(Q) by assigning a relevance score to each of
them. Based on those scores, the relevant set, Relevant(Q) =
{p′

1, . . . , p
′
m}, is obtained. In this paper, we present a new

adaptive clustering method consisting of two processes: the
classifying process and the cluster-merging process. The
proposed classifying process places each element of the rel-
evant set, Relevant(Q), in one of the current clusters or a
new cluster. Then, the proposed cluster-merging process
reduces the number of clusters by merging certain clusters
to reduce the number of query points in the next iteration.
Finally, representatives of clusters generated from relevant
images in the classified set make up the set of new query

points. A new query, Q′ = (q′, d′, k) with a set of new query
points q′ and a new distance function d′, is computed and
then used as an input for the second round.

After some iterations, the loop ends up with the final re-
sult set close to Result(Qopt), where Qopt = (qopt, dopt, k) is
the optimal query.

Query 
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Figure 2: Overall structure of the proposed method

Our approach to the relevance feedback allows multiple
objects to be a query. We refer to them as a multipoint
query. When the user marks several points as relevant, we
cluster sets of relevant points and choose the centroids of
the clusters as their representatives. Then, we construct a
multipoint query using a small number of good represen-
tative points. At the classifying process, a Bayesian clas-
sification function [9] is used. Statistics such as mean and
covariance of each cluster, which were computed from the
previous iteration, are used as the prior information. At the
cluster-merging process, Hotelling’s T 2 [12] is used to merge
any pair of clusters in arbitrary shapes.

1.2 Contributions
The contributions of this paper are as follows:

• The adaptive clustering generates contours consisting
of multiple hyper-ellipsoids, and therefore our retrieval
method can handle disjunctive queries.

• Our method constructs clusters and changes them with-
out performing complete re-clustering. Its computing
time is short since the same statistical measures are
used at both the classification stage and the cluster-
merging stage.

• The measures used in our method are invariant under
linear transformations. Therefore, the retrieval quality
is the same regardless of the shapes of clusters of a
query.

• Our experimental results show that the proposed method
achieves about 22% improvement of recall and 20%
improvement of precision against the query expansion
approach[13], and about 35% improvement of recall
and about 31% improvement of precision against the
query point movement approach[15], in MARS.

1.3 Paper Organization
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Section 2 provides a survey of related works with a brief
discussion on the relevance feedback. Section 3 includes
some interesting motivating examples, the similarity mea-
sure, and the overall algorithm of the multipoint relevance
feedback. The classification and cluster-merging processes
are described in Section 4 with an algorithm to select an
appropriate group. Extensive experiments on a large set of
30,000 heterogeneous images and their results are reported
in Section 5.

2. RELATED WORK
Earlier approaches [10, 18] to the content-based multime-

dia retrieval do not adapt the query and retrieval model
based on the user’s perception of the visual similarity. To
overcome this problem, a number of relevance feedback tech-
niques [1, 2, 4, 5, 11, 13, 15, 16, 19, 20, 21] have been
proposed. They try to establish the link between high-level
concepts and low-level feature representations and model the
user’s subjective perception from the user’s feedback. There
are two components to learn in the relevance feedback: a dis-
tance function and a new query point. The distance function
is changed by learning weights of feature components, and
the new query point is obtained by learning the ideal point
that the user looks for.

The query-point movement has been applied to the im-
age retrieval systems such as MARS [15] and MindReader
[11]. These systems represent the query as a single point in
the feature space and try to move this point toward “good”
matches, as well as to move it away from “bad” result points.
This idea originated from the Rochio’s formula [14], which
has been successfully used in document retrieval. In this ap-
proach, the re-weighting technique assigns a weight to each
dimension of the query point. The weight is inversely pro-
portional to the variance of feature values of the relevant
points along that dimension. MARS uses a weighted Eu-
clidean distance, which handles ellipsoids whose major axis
is aligned with the coordinate axis. On the other hand,
MindReader uses a generalized Euclidean distance, which
permits the rotation of the axes so that it works well for
arbitrarily oriented ellipsoids.

Recently, other query refinement methods using the multi-
point relevance feedback were introduced. The query expan-
sion approach [13] of MARS constructs local clusters for rel-
evant points. In this approach, all local clusters are merged
to form a single large contour that covers all query points.
On the other hand, the query-point movement approach [11,
15] ignores these clusters and compute a single query point
from all relevant points. These two approaches can generate
a single hyper-ellipsoid or convex shapes using local clusters
in some feature space to cover all query points for simple
queries. However, both approaches fail to identify appro-
priate regions for complex queries. Wu et al. presented an
aggregate dissimilarity model in FALCON [20], to facilitate
learning disjunctive queries in the vector space as well as in
arbitrary metric spaces. However, the proposed aggregate
dissimilarity model depends on ad hoc heuristics and this
model assumes that all relevant points are query points.

3. MULTIPOINT RELEVANCE FEEDBACK

APPROACH
This section presents the overall mechanism of our ap-

proach to the multipoint relevance feedback. Table 1 shows

some notations to be used.

Table 1: Symbols and their definitions

Symbol Definition

p dimension of feature vector
xij = [xij1, . . . , xijp]′ feature vector of jth image of

ith cluster
C1, . . . , Cg g clusters

x̄i = [x̄i1, . . . , x̄ip]′ weighted centroid of ith cluster
Q = {x̄1, . . . , x̄g} query set of g multiple points

d2() generalized Euclidean distance function
qopt ideal query point
ni the number of images for ith cluster
mi the sum of relevance score values of

ith cluster
wi normalized weight of ith cluster
α significance level

S−1
pooled pooled inverse covariance matrix

S−1
i inverse covariance matrix of ith cluster

vij relevance score value for jth image of
ith cluster

d̂() classifier function
T 2() cluster-merging measure

3.1 Motivating Examples

Example 1. The user wants to select bird images via
query-by-example in the image data set of 30,000 color im-
ages. A pairwise distance metric relying primarily on color
is used to compare images. As shown in Figure 3, the set
of retrieved relevant images includes bird images with a light-
green background and ones with a dark-blue background. How-
ever, these may not be projected to points close together in
the feature space. Instead, the points form two distinct clus-
ters. ✷

Figure 3: Bird images

Finding similar images in this space is related to cluster-
ing. If the difference between the user’s perception and the
feature representation in the system gets large, there comes
a necessity of expressing a query by several points in the
feature space. MARS uses multiple point queries and every
query point is supposed to be merged. All relevant images
are merged to several clusters and a single large contour is
made to cover all representatives of these clusters.

Example 2. Given the top-leftmost image as a query in
Figure 3, Figure 4 shows the 3 dimensional plot of feature
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Figure 4: 3 dimensional plot of 10 points

vectors of 10 retrieved relevant images. It shows that five im-
ages are similar, but the other five images are quite different,
MARS makes a single contour for two clusters. However, it
is better to make separate contours for two different clusters
of data. Our method can determine the shapes of two local
clusters. ✷

For query expansion, Porkaew et al. [13] assumed that
query images given by a user should be similar. Their method
makes several clusters to include all relevant images and
builds a large contour to cover them. So the single large
contour of the clusters of a query is used as the basis for
the search. However, the clusters of a query might be very
apart from each other. So, the search might not yield fruit-
ful results. For a successful search, the contours must be
separated instead of being combined, as our method does.

A complex image query must be expressed as multiple
query points so that multiple representatives of clusters are
used.

The basic method of clustering image feature vectors is as
follows: Initially, assign n input points (feature vectors of
images) to n distinct clusters. Among all clusters, pick up
the two clusters with the smallest distance between them.
Merge them to form a new cluster. Repeat these two steps
until there are no clusters left to be merged. We adjust the
number of clusters using the Hotelling’s T 2 and the signif-
icance level α. The basic idea of our approach is to use
an adaptive classification and cluster merging method that
finds multiple clusters of a query. Our goal is as follows:

• Given: user-selected p-dimensional points from the re-
sult of a k-nearest neighbor query and their relevance
scores.

• Goal: find a set of centroids x̄1, . . . , x̄g of clusters and
their weights w1, . . . , wg.

We use multiple points, which are the centroids of clus-
ters C1, . . . , Cg to guess the best query point qopt, their co-
variance matrices, and weights to learn the hidden distance
function.

3.2 Similarity Measure
When a user marks several images as relevant ones at

each iteration of the relevance feedback, we cluster a set
of relevant points and choose the centroid of the cluster as
its representative. For each image x in the database, the

distance d2(x, x̄i) between the two points x and the centroid
of the ith cluster x̄i is defined by:

d2(x, x̄i) = (x − x̄i)
′S−1

i (x − x̄i) (1)

This quadratic distance function allows different weight
for each dimension and it can express a user’s high-level
concept better than ordinary Euclidean distance, since it is
an ellipsoid and an ellipsoid can express a user’s hidden dis-
tance function better than a circle. MindReader [11] proved
that this method is theoretically solid to handle similarity
queries. The estimates x̄i and Si are as follows:

Definition 1. For ni points of the ith cluster, the mean
vector weighted by the relevance score vik is defined by:

x̄i =

∑ni

k=1 vikxik∑ni

k=1 vik

(2)

Definition 2. The weighted covariance matrix Si (p× p
dimensional matrix) of the ith cluster is defined by:

Si =

ni∑

k=1

vik(xik − x̄i)(xik − x̄i)
′ (3)

The parameter S−1
i can be estimated using an inverse matrix

scheme(MindReader [11]) or a diagonal matrix scheme(MARS
[13, 15]). Many relevance feedback methods make use of the
sample covariance matrix Si and its inverse [11, 16, 19, 21].
However, the singularity issue arises when the number of
relevant images is smaller than the dimensionality of the
feature space. In this case, regularization terms should be
added on the diagonal of the covariance matrix before the
inversion [21]. In this paper, we use a simpler form of d2 us-
ing a diagonal matrix for S−1

i instead of an inverse matrix.
Conventionally, a similarity query is represented as a sin-

gle point, while we insist that a complex image query be
represented as multiple points. We compute multiple rep-
resentatives or a single representative using the proposed
adaptive classification and cluster-merging method. A gen-
eral aggregate distance function between a point x and a set
of multiple query points Q = {x̄1, . . . , x̄g} is defined by [17,
20]:

dα
aggregate(Q, x) =

1

g

g∑

i=1

dα(x̄i, x) (4)

The negative value of α mimics a fuzzy OR function since
the smallest distance will have the largest impact on the
aggregate distance function [17]. For Equation (4), we use
α = −2 and incorporate the sum of relevance score val-
ues for each cluster. Consequently, we apply the following
aggregate distance function to those representatives to find
images similar to one of the representatives in the query
point set.

d2
disjunctive(Q, x) =

∑g

i=1 mi∑g

i=1 mi/[(x − x̄i)′S
−1
i (x − x̄i)]

(5)

where Q is a set of multiple cluster representatives {x̄1, . . . , x̄g},
x is the feature vector of a target image, and mi is the sum of
relevance score values of ith cluster. This distance function
can reflect disjunctive contours as shown in Example 3.

Example 3. The synthetic data consists of 10,000 points
in ℜ3, randomly distributed uniformly within the axis-aligned
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cube (−2,−2,−2) ∼ (2, 2, 2). We used the aggregate dis-
tance function (Equation (5)) as the distance metric. In
this case, S−1

i is computed using a diagonal matrix scheme
and mi is set to 1 for all i. Points were retrieved if and
only if they were within 1.0 units of either (−1,−1,−1) or
(1, 1, 1). 820 points were retrieved. Figure 5 shows that this
aggregate distance function can handle disjunctive queries.

✷

Figure 5: scatter plot for the result of the disjunctive

query

3.3 A General Algorithm
We propose a novel relevance feedback approach for mul-

tipoint queries using the adaptive classification and cluster-
merging method. The algorithm of our relevance feedback
for multipoint queries is as follows:

Algorithm 1 k-nearest neighbor search
input: a query example
output: k retrieved images
begin

1. At the initial iteration, perform k-NN query.
The user marks relevant images among ones retrieved
for a given query and the relevant images are clustered
using a hierarchical clustering method. For each current
cluster, calculate a centroid, its covariance, and its weight.

2. Process k-NN query using the aggregate distance function
to multiple representatives.

3. Continue or stop the query iteration.
4. Relevance feedback to the query results
5. For a new point in the relevant set,
6. Determine an appropriate cluster using an adaptive

classification method
7. If a new point is located within the determined

cluster boundary,
8. place it in the determined cluster
9. Else make it a separate cluster
10. Endfor

11. For each current cluster,
12. calculate a centroid, its covariance, and its weight.
13. For any pair of clusters,
14. If two clusters are close, then merge them.
15. Endfor

16. Goto Step 2 with the adjusted Q, and start a new iteration of
retrieval.

end

4. ADAPTIVE CLASSIFICATION AND MERG

ING CLUSTERS
The adaptive classification and merging clusters are the

cores of our approach. They are used to accelerate query
processing by considering only a small number of represen-
tatives of the clusters, rather than the entire set of relevant
images. When all relevant images are included in a single
cluster, it is the same as MindReader’s. At each stage the

clusters are modified according to the result of a query and
a user’s relevance feedback. Therefore, it is necessary to
construct new clusters without complete re-clustering.

The proposed method is composed of two stages: the clas-
sification stage and cluster-merging stage. At the first stage,
new points are classified into current clusters or new clusters
using their statistical information. At the second stage, the
number of current clusters is reduced. Its advantages are as
follows:

• It is easy to compute multiple query points since the
method does not re-cluster completely at each itera-
tion.

• The method can approximate any query shape to an
arbitrarily oriented ellipsoid since the distance func-
tion is a quadratic form.

• The method can adjust the number of clusters using a
rigorous statistical measure.

• The method using a diagonal matrix avoids the singu-
larity problem and its performance is similar to that
of the method using an inverse matrix.

4.1 Initial Clustering and Effective Radius
Initial clusters of the training data form the basis. Among

numerous methods, we use the hierarchical clustering algo-
rithm that groups data into hyperspherical regions. Once
initial clusters are obtained, we calculate a mean vector x̄,
a weighted covariance matrix S, and an effective radius r.
The mean vector determines the location of the hyperellip-
soid, while the covariance matrix characterizes its shape and
orientation. The weight of each cluster compared with the
others is determined by the sum of relevance score values
of points in each cluster. The effective radius is a critical
value to decide whether a new point x lies inside the given
ellipsoid.

Lemma 1. If x lies inside the ellipsoid, the following prop-
erty is satisfied [3]:

(x − x̄)′S−1(x − x̄) < r (6)

Let us assume that the data follows a Gaussian distribution
and takes α as a significance level. For the given significance
level α, 100(1−α)% (typically 95% ∼ 99%) of the data will
fall inside the ellipsoid and the distance function follows a χ2

p

distribution with p degrees of freedom. Then the effective
radius r is χ2

p(α). As α decreases, a given effective radius
increases. Any point outside of the ellipsoid is identified as
an outlier and forms a new cluster.

4.2 Classification Stage

4.2.1 Bayesian Classifier with several clusters
Let C1, . . . , Cg be g clusters. The classification algorithm

places a new point in one of the g clusters or in a new cluster.
A generalized Euclidean distance D2

i (x) between a new point
x and the centroid of the ith cluster Ci, x̄i, is computed as
follows:

D
2

i (x) = (x− x̄i)
′

S
−1

pooled(x− x̄i) (7)

where

Spooled= 1
m1+m2+···+mg−g

[(m1−1)S1+(m2−1)S2+···+(mg−1)Sg ],
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mi is the weight (sum of relevance score values) of the ith
cluster Ci, and Si is the covariance matrix of Ci, for i =
1, . . . , g.

The classifier is based on the Bayesian classification func-
tion [9] and it uses means, covariance matrices, and weights
of clusters at the cluster-merging stage of the previous it-
eration as prior information. The classification rule is as
follows:

Allocate x to Ck if wkfk(x) > wifi(x) for all i 6= k (8)

where fi is the probability density function of Ci.
At the feedback loop stage, the user specifies a score value

v for each image x. Later, after the cluster-merging stage
of the current iteration, if x has become the kth point of
Ci, then v becomes vik. mi is the weight of Ci, i.e., mi =∑ni

k=1 vik. Then wi is the normalized weight of the ith clus-
ter, that is, wi = mi/

∑g

k=1 mk. The classification rule in
Equation (8) is identical to one that maximizes the “pos-
terior” probability P (Ck | x) = P (x comes from Ck given
that x was observed), where

P (Ck | x) =
wkfk(x)∑g

i=1 wifi(x)
(9)

=
(priork) × (likelihoodk)∑
[(priori) × (likelihoodi)]

for i = 1, . . . , g

An important special case occurs when fi(x) is a multi-
variate normal density function with centroid vector x̄i and
covariance matrix Si of cluster Ci for i = 1, . . . , g. Then
Equation (8) becomes:

Allocate x to Ck if ln(wkfk(x)) ≥ ln(wifi(x)) for all i 6= k
where ln(wifi(x)) = ln(wi) −

p

2
ln(2π) − 1

2
ln | Si |

− 1
2
(x − x̄i)

′S−1
pooled(x − x̄i)

The constant and common terms are ignored(see Reference
[9] in finding the classification function for each cluster).
Then the estimate of the classification function for Ci for
i = 1, . . . , g is found to be:

d̂i(x) = −
1

2
(x − x̄i)

′S−1
pooled(x − x̄i) + ln(wi) (10)

The basic idea of this classification algorithm is that a
new point x should be classified to the nearest cluster. The
details are as follows: For a given new point x, d̂i(x) is

calculated and x is assigned to kth cluster where d̂k(x) is
maximal. If the distance value is less than the effective
radius of Ck, the point is placed to that cluster. Otherwise,
it becomes the center of a new cluster. The effective radius
and the distance are computed by using Equation (6). The
classification algorithm is as follows:

Algorithm 2 Bayesian Classification
begin
1. For a new point in the relevant result set,

2. Compute d̂1(x), d̂2(x), . . . , d̂g(x) using Equation (10)

3. Determine the cluster k where d̂k(x) = max1≤i≤g d̂i(x)

4. If (x − x̄k)′S−1
k

(x − x̄k) < χ2(α)
5. place it in the cluster k
6. Else make it a separate cluster
7. Endfor
end

4.3 ClusterMerging Stage

The clusters after the classification stage can be further
merged into bigger clusters. Our basic idea of the cluster-
merging stage is as follows: the initial clusters at the initial
iteration include only one point in each of them. Consider
two clusters at a time. If they are not significantly different,
then merge them to one cluster. We repeat this until the
number of clusters is reduced to a certain threshold.

Given g clusters, our cluster-merging algorithm finds can-
didate pairs of clusters to be merged. For efficient clustering,
we determine the parameters of the merged clusters from
those of existing clusters instead of those of points in exist-
ing clusters. When clusters are characterized by the mean
vector, x̄i, covariance matrix, Si, the number of elements in
the cluster, ni, and the weight of the cluster, mi, we char-
acterize a new cluster created by combining clusters i and j
with the following statistics [12]:

mnew = mi + mj (11)

x̄new =
mi

mnew

x̄i +
mj

mnew

x̄j (12)

Snew =
mi − 1

mnew−1
Si +

mj − 1

mnew−1
Sj

+
mimj

mnew(mnew − 1)
[(x̄i − x̄j)(x̄i − x̄j)

′] (13)

Two clusters most likely to be merged should be “close”
enough. The algorithm selects the next pair of clusters to be
merged until the number of clusters reaches a given thresh-
old. For this purpose, we compare their mean vectors. We
infer the merge of the two clusters statistically from the
closeness of two mean vectors x̄i and x̄j . We use Hotelling’s
T 2 statistics [12] to test the equivalence of two mean vectors
of a given pair of clusters.

For the statistical test, let us define:

• the points of ith cluster, xi1, xi2, . . . , xini
, to be a ran-

dom sample of size ni from a population with a mean
vector µi and a covariance matrix Σi.

• the points of jth cluster, xj1, xj2, . . . , xjnj
, to be a

random sample of size nj from a population with the
mean vector µj and a covariance matrix Σj .

• xi1, xi2, . . . , xini
to be independent of xj1, xj2, . . . , xjnj

.

Especially, when ni and nj are small, we need the following
assumptions:

• The populations of the two clusters follow multivariate
normal distributions.

• The populations have the same covariance.

We use a pooled covariance to estimate the common covari-
ance since we assume that the population covariances for
the two clusters are nearly equal.

Definition 3. Hotelling’s T 2 is defined by

T 2(x̄i, x̄j) =
mimj

mi + mj

(x̄i − x̄j)
′S−1

pooled(x̄i − x̄j) (14)

where

Spooled =
1

mi + mj

(

ni∑

k=1

vik(xik − x̄i)(xik − x̄i)
′

+

nj∑

k=1

vjk(xjk − x̄j)(xjk − x̄j)
′). (15)
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The usual hypothesis to test the location difference is as
follows:

H0 : µi = µj and H1 : µi 6= µj

where µi is the unknown true center of Ci for i = 1, . . . , g.
If T 2 is too big which happens when x̄i is “too far” from
x̄j , then the null hypothesis H0 is rejected. Note that T 2 ≈
p(mi+mj−2)

mi+mj−p−1
Fp,mi+mj−p−1(α) if H0 is true. Here Fp,mi+mj−p−1

(α) is the upper (100(1 − α))th percentile of F-distribution
with p and mi + mj − p − 1 degrees of freedom. Therefore
Reject H0 if

T
2
(x̄i, x̄j) = (x̄i − x̄j)

′

[(
1

mi

+
1

mj

)Spooled]
−1

(x̄i − x̄j) > c
2

(16)

where c2 =
(mi+mj−2)p

mi+mj−p−1
Fp,mi+mj−p−1(α).

In other words, if T 2 is larger than
p(mi+mj−2)

mi+mj−p−1
Fp,mi+mj−p−1

(α), we conclude that the two clusters are different.
Repeat this until the number of current clusters is reduced
to a given size. As α decreases, critical distance c2 increases.
That is, we can adjust the number of clusters to be merged
by selecting a proper significance level α.

Algorithm 3 Cluster Merging
begin

1. Compute T 2-statistic values and c2 values
for all pairs of clusters

2. Sort them in ascending order and insert them into a queue
3. While Queue is not empty
4. Dequeue T 2 value and c2 value for a pair of clusters i, j
5. Perform the likelihood ratio test of a pair of clusters i, j

using Equation (16)
6. If T 2 ≤ c2, merge a pair of clusters i, j
7. Else

8. Increase critical distance c2 using α
9. Add a pair of clusters i, j into a queue
10. If the number of current clusters ≤ a given size
11. stop the algorithm
12. EndWhile
end

The advantages of using T 2 are as follows:

• T 2 has been verified through various simulations in
statistics and its theoretical properties are well known.

• Our cluster-merging method using T 2 can combine
clusters of any shape. Especially, it can be well ap-
plied to elliptical clusters.

• To compute T 2, we can use the previous information
from the earlier classification stage such as mean vec-
tors, covariance matrices, etc.

Definition 4. Let ~x = (x1, . . . , xp) ∈ ℜp. An algo-
rithm is invariant under linear transformations if the statis-
tic U(~x) is invariant under linear transformations, that is

U(A~x) = U(~x),

where A is a p × p matrix with a proper inverse.

Theorem 1. Algorithm 2 and Algorithm 3 are invariant
under linear transformations.
Proof It is enough to show that T 2, d2, and d̂ are invariant

under the linear transformations. First, let us consider T 2.

T 2(A~x) =
mimj

mi + mj

(Ax̄i − Ax̄j)
′S−1

pooled
(A~x)(Ax̄i − Ax̄j)

=
mimj

mi + mj

(x̄i − x̄j)
′A′(ASpooledA′)−1A(x̄i − x̄j)

=
mimj

mi + mj

(x̄i − x̄j)
′A′(A′)−1S−1

pooled
A−1A(x̄i − x̄j)

= T 2(~x).

The proofs are similar for d2 and d̂. ✷

Because of this property, the efficiency and quality of the
proposed algorithms are almost the same for any linear trans-
formations of circles, which include ellipsoids.

4.4 Dimension Reduction
A general problem of similarity retrieval in large image

databases is that image/video descriptors are represented by
high dimensional vectors. Since most data are from a very
high dimension, the singularity of covariance is troublesome.
To reduce the dimension, we use the popular principal com-
ponents [9] instead of the original data.

4.4.1 Principal Component Analysis

If x is a p dimensional random vector with mean µ and
covariance matrix Σ and Γ is the eigenvector of Σ, the prin-
cipal component transformation is given by

z = (x − µ)′Γ

where Γ is orthogonal, Γ′ΣΓ = Λ is diagonal and λ1 ≥ λ2 ≥
· · · ≥ λp ≥ 0. The strict positivity of the eigenvalues λi is
guaranteed if Σ is positive definite. Let γi be ith column
vector of Γ. Then zi = (x− µ)′γi and zi is the ith principal
component of x. The variance of zi is λi and the expected
value of zi is 0.

4.4.2 Sample Principal Components

Let X = (x1, . . . , xn)′, S be the sample covariance matrix
of X, G be the p × p eigenvector matrix of S and L be
the eigenvalue matrix of S where xi’s are column vectors
in Rp and g(i)’s are column vectors of G. Then the sample
principal component is defined by direct analogy with 4.4.1
as

z(i) = (X − 1x̄′)g(i)

where S = GLG′. Putting the sample principal components
together we get

Z = (X − 1x̄′)G

G transformed one (n × p) matrix to another of the same
order. L is the covariance matrix of Z.

4.4.3 Hotelling’s T 2 with Principal Components

Recall that

T 2(x̄, ȳ) = C(x̄ − ȳ)′S−1
pooled(x̄ − ȳ)

where C is a constant and x̄ and ȳ are used in place of x̄1

and x̄2, respectively. Let COVpooled(x, y) denote the pooled
covariance of x and y. Then

COVpooled(G
′x, G′y) = G′Spooled(G

′)′

= G′SpooledG

= G′(GLG′)G

= L
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So,

T 2(G′x̄, G′ȳ) = C(G′x̄ − G′ȳ)′(G′SpooledG)−1(G′x̄ − G′ȳ)

= C(x̄ − ȳ)′G(G′SpooledG)−1G′(x̄ − ȳ)′

= T 2(x̄, ȳ) (17)

By using Theorem 1, T 2(G′x̄, G′ȳ) = T 2(x̄, ȳ), d̂i(G
′x) =

d̂i(x) and d2(G′x, G′x̄i) = d2(x, x̄i) holds. Let z̄x = G′x̄
and z̄y = G′ȳ. We have a simpler form of T 2 with principal
components as follows:

T 2(G′x̄, G′ȳ) = C(z̄x − z̄y)′(G′SpooledG)−1(z̄x − z̄y)

= C(z̄x − z̄y)′(G′GLG′G)−1(z̄x − z̄y)

= C

p∑

j=1

(z̄xj − z̄yj)
2/λj (18)

Note that T 2 becomes a quadratic form which saves a lot
of computing efforts. Likewise, we have a simpler form of
d̂i, d

2 with principal components.

4.4.4 Dimension Reduction in Hotelling’s T 2

The proposed measures such as equations (5),(10),(14)
make use of the sample covariance matrix and its inverse.
To resolve the singularity problem, we adopt a new scheme
using the diagonal matrix instead of the inverse covariance
matrix. Let us take the first k ≤ p principal components
such that

λ1 + . . . + λk

λ1 + . . . + λk + . . . + λp

≥ 1 − ǫ

where ǫ ≤ 0.15. 1 − ǫ is the proportion of total variation
covered by the first k principal components. Let Gk be a
(p× k) matrix, where columns are the first k columns of G.
Let z̄xk = G′

kx̄ and z̄yk = G′
kȳ.

T 2
k (G′

kx̄, G′
kȳ) = C(z̄xk − z̄yk)′(G′

kSpooledGk)−1(z̄xk − z̄yk)

= C(z̄xk − z̄yk)′(G′
kGLG′Gk)−1(z̄xk − z̄yk)

∼= C

k∑

j=1

(z̄xkj − z̄ykj)
2/lj (19)

In this case, Hotelling’s T 2 becomes a simple quadratic form.
Likewise, we have a similar form of d2, d̂i

4.5 Quality of Clustering
A good way of measuring the quality of the proposed

classification method is to calculate its “classification er-
ror rates,” or misclassification probabilities. Our method of
measuring the clustering quality is as follows:

After the number of clusters is fixed at the final iteration,
take out one element of a cluster. Check if the element is
classified into the previous cluster again according to the
classification procedure. Let C be the number of elements
classified correctly to its own cluster and N be the total
number of elements in all clusters. The error-rate becomes
1−C/N . This method can be applied even though numbers
of elements of the cluster are small.

5. EXPERIMENTAL EVALUATION
Our extensive experiments have been conducted for two

goals. First, evaluate the query clustering approach(Qcluster)
to answer multipoint k-NN queries and compare it to the

query point movement(QPM) and the query expansion ap-
proach(QEX). Second, test that the proposed Qcluster al-
gorithm converges to the user’s true information needs fast.
We have implemented Qcluster in C++ on a Sun Ultra II.
For experimental studies, the synthetic data and the Corel
and Mantan image collection are used as the test set of
data. The image collection includes 30,000 color images.
Its images have been classified into distinct categories by
domain professionals and there are about 100 images in
each category. In the experiments, we use high-level cate-
gory information as the ground truth to obtain the relevance
feedback since the user wants to retrieve the images based
on high-level concepts, not low-level feature representations
[19]. That is, images from the same category are considered
most relevant and images from related categories (such as
flowers and plants) are considered relevant.

First, we consider the real data. In our system, we use two
visual features: color moments and co-occurrence matrix
texture. For color moments, we use the HSV color space be-
cause of its perceptual uniformity of color. For each of three
color channels, we extract the mean, standard deviation,
and skewness, and reduce the length of the feature vector to
three using the principal component analysis. Then, we use
the three dimensional feature vector as the color feature.

For the co-occurrence matrix texture, the (i, j)th element
of co-occurrence matrix is built by counting the number of
pixels, the gray-level(usually 0-255) of which is i and the
gray-level of its adjacent pixel is j, in the image. Tex-
ture feature values are derived by weighting each of the co-
occurrence matrix elements and then summing these weighted
values to form the feature value. We extract a vector of the
texture feature whose 16 elements are energy, inertia, en-
tropy, homogentity, etc [13] and reduce the length of feature
vector to four using the principal component analysis.

In the experiments, we generate 100 random initial queries
and evaluate the retrieval quality for a sequence of iterations
starting with these initial queries. We perform five feedback
iterations in addition to the initial query. All the measure-
ments are averaged over 100 queries. The k-NN query is
used to accomplish the similarity-based match and we set k
to 100. We use the hybrid tree [6] to index feature vectors
of the whole data and fix the node size to 4KB.

Figure 6 compares the CPU cost of an inverse matrix
scheme and a diagonal matrix scheme for the Qcluster ap-
proach when color moments are used as a feature. The di-
agonal matrix scheme of the Qcluster approach significantly
outperforms the inverse matrix scheme in terms of CPU
time. Therefore, we use a diagonal matrix scheme in our
method.

Figure 7 compares the execution cost for the three ap-
proaches. The proposed Qcluster shows the similar perfor-
mance with the multipoint approach [7] and outperforms
the centroid-based approach such as MARS [6] and FAL-
CON [20]. This is because our k-NN search is based on the
multipoint approach that saves the execution cost of an it-
eration by caching the information of index nodes generated
during the previous iterations of the query.

Figure 8 and 9 show the precision-recall graphs for our
method when color moments and co-ocurrence matrix tex-
ture are used, respectively. In these graphs, one line is plot-
ted per iteration. Each line is drawn with 100 points, each of
which shows precision and recall as the number of retrieved
images increases from 1 to 100. Based on these figures, we
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make two observations as follows:

• The retrieval quality improves at each iteration.

• The retrieval quality increases most at the first iter-
ation. At the following iterations there are minor in-
creases in the retrieval quality. This ensures that our
method converges to the user’s true information need
fast.

Figure 10 and 11 compare the recall for query clustering,
query point movement, and query expansion at each itera-
tion. Figure 12 and 13 compare the precision for the three
approaches. They produce the same precision and the same
recall for the initial query. These figures show that the pre-
cision and the recall of our method increase at each iteration
and outperform those of the query point movement and the
query expansion approach.

Next, we performed extensive experiments to measure the
accuracy of the adaptive classification algorithm and that
of the cluster-merging algorithm using the synthetic data.
Let z = (z1, . . . , zp) in ℜp where z1, . . . , zp are independent
and identically distributed with N(0, 1). Then z is a multi-
variate normal with a mean vector 0 and a covariance matrix
I, and the data shape of z is a sphere. Let y = Az. Then
COV (y) = AA′ and the data shape of y is an ellipsoid. The
synthetic data in ℜ16 are generated. The data consist of
3 clusters and their inter-cluster distance values vary from
0.5 to 2.5. Then the principal component analysis is used
to reduce the dimension of them from 16 to 12, 9, 6, 3,
respectively.

We calculate error rates of the classification algorithm
(Algorithm 2) with respect to 12, 9, 6, 3 dimensional data.
Figure 14 shows those for spherical data and Figure 15 shows
those for elliptical data when we use an inverse matrix in the
Bayesian classifier. Figure 16 shows those for spherical data
and Figure 17 shows those for elliptical data when we use
a diagonal matrix instead. The result shows that the error
rate decreases as the inter-cluster distance value increases
and the error rate increases as the dimension decreases for
the same inter-cluster distance value. The reason is that the
information loss increases as the proportion of total varia-
tion covered by the k principal components (k=12, 9, 6, 3)
decreases. Importantly, figures show that the quality of the
classification algorithm stays almost the same regardless of
the data shape. This result confirms the linear transforma-
tion invariant property of the proposed classification algo-
rithm.

Next, we compute the error-ratios of the T 2-statistic with
an inverse matrix and those with a diagonal matrix in order
to measure the accuracy of cluster-merging algorithm with
respect to 12, 9, 6, 3 dimensional data.Given 100 pairs of
clusters of size 30, 100 T 2 values and corresponding critical
distance (c2) values are computed. Quantile-F values in Ta-
ble 2 and 3 are the critical distance values given by the 95th
percentile Fp,n−p(0.05) where p is a dimension and n is the
number of objects. If T 2 value is larger than corresponding
c2 value, reject H0. That is, we decide that a pair of clusters
must be separated. If a pair of clusters are close, then the
error ratio increases in case of separating them. Table 2 and
3 show the average T 2 and the average error ratio(%) with
respect to 12, 9, 6, 3 dimensional data for T 2 with an inverse
matrix and T 2 with a diagonal matrix.

Figure 18 and 19 show the quantile-quantile plot of 100 T 2

values and 100 critical distance values for 50 pairs of clus-

ters with same mean and 50 pairs of clusters with different
mean. Critical distance values are calculated from random
F value, which is a value from F-distribution without fixing
a significance level, using the following equation:

randomF12,48 =
χ2

12

χ2
48

=

∑12
i=1 x2

i∑48
i=1 y2

i

(20)

where 12, 48 are degrees of freedom and xi, yi are random
numbers following the Gaussian distribution of N(0, 1). To
construct the quantile-quantile plot, we ordered T 2 values
and critical distance values from smallest to largest and
made the pairs of them into points of the plot. The line
represents T 2 = c2. The result shows that the T 2 value is
less than or equal to the corresponding c2 value when each
pair of clusters have the same mean, while the T 2 value
is larger than the corresponding c2 value when each pair
of clusters have different means. That is, the T 2 and the
c2 used in our cluster-merging algorithm (Algorithm 3) are
useful in deciding whether to merge a pair of close clusters.

6. CONCLUSION
We have focused on the problem of finding multiple clus-

ters of a query, based on the relevance feedback, to guess the
distance function and the ideal query point that the user has
in mind. Our approach consists of two steps: (1) an adaptive
classification that attempts to place relevant images in the
current clusters or new clusters, and (2) cluster-merging that
reduces the number of clusters by merging certain clusters
to reduce the number of query points in the next iteration.

The major contribution in this approach is the introduc-
tion of unified quadratic forms for the distance function, the
adaptive classifier, and the cluster-merging measure. Their
benefit is to support the same high retrieval quality regard-
less of query shapes since they are linear transformation in-
variant in the feature space.

Our experiment shows that the proposed techniques pro-
vide a significant improvement over the query point move-
ment and the query expansion in terms of the retrieval qual-
ity.

Table 2: Comparison of T 2 with inverse matrix and

T 2 with diagonal matrix when each pair of clusters

have same means

variation T 2 with inverse matrix
dim ratio T 2 quantile-F error-ratio(%)

12 0.996 0.77 1.96 0
9 0.97 1.02 2.07 1
6 0.96 0.79 2.28 2
3 0.94 0.44 2.77 2

variation T 2 with diagonal matrix
dim ratio T 2 quantile-F error-ratio(%)

12 0.996 0.70 1.96 2
9 0.97 0.87 2.07 4
6 0.96 0.68 2.28 6
3 0.94 0.44 2.77 6
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Figure 6: CPU time for inverse and diagonal matrix

schemes in query cluster approach
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Figure 7: Comparison of execution cost for the three

approaches

Figure 8: Precision recall graph for query clustering

when color moments is used

Figure 9: Precision recall graph for query clustering

when co-occurrence matrix texture is used

Figure 10: Comparison of recall for the three ap-

proaches when color moments is used

Figure 11: Comparison of recall for the three ap-

proaches when co-occurrence matrix texture is used
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approaches when color moments is used
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Figure 13: Comparison of precision for the three ap-

proaches when co-occurrence matrix texture is used

608608608608



� ✁ ✂☎✄ ✄ ✆ ✝ ✆ � ✂☎✞ ✆ ✟☎✠☛✡✌☞ ☞ ✟☎☞✎✍✑✏✒✡☎✠☛�☎✆ ☞ �☎✁ ✡✔✓✒✄ ✆ ✠✒✕☛✆ ✠✌✖✒✡☎☞ ✄ ✡✔✗✘✂ ✞ ☞ ✆ ✙✚✆ ✄✛✓✒✄ ✡✌✜
Figure 14: Error rate of the classification algorithm

using an inverse matrix for 3 clusters of the spherical

shape
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Figure 15: Error rate of the classification algorithm

using an inverse matrix for 3 clusters of the elliptical

shape
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Figure 16: Error rate of the classification algorithm

using a diagonal matrix for 3 clusters of the spherical

shape
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Figure 17: Error rate of the classification algorithm

using a diagonal matrix for 3 clusters of the elliptical

shape

Figure 18: Q-Q plot of 100 pairs of clusters by

cluster-merging algorithm using an inverse matrix

Figure 19: Q-Q plot of 100 pairs of clusters by

cluster-merging algorithm using a diagonal matrix
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Table 3: Comparison of T 2 with inverse matrix and

T 2 with diagonal matrix when each pair of clusters

have different means

variation T 2 with inverse matrix
dim ratio T 2 quantile-F error-ratio(%)

12 0.996 20.54 1.96 0
9 0.97 24.17 2.07 0
6 0.96 31.01 2.28 0
3 0.94 38.29 2.77 6

variation T 2 with diagonal matrix
dim ratio T 2 quantile-F error-ratio(%)

12 0.996 28.37 1.96 0
9 0.97 25.03 2.07 1
6 0.96 31.27 2.28 2
3 0.94 41.20 2.77 8
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