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1 Introduction

Maxwell’s equations receive corrections from virtual excitations of the charged quantum fields
(notably electrons and positrons). This leads to interesting effects [1]: light-by-light scattering,
photon splitting, modification of the speed of light in the presence of strong electromagnetic
fields, and – last, but not least – pair production.

When the heavy degrees of freedom are integrated out (in this case, the “heavy particles”
are the electrons and positrons), an effective theory results. The corrections can be described
by an effective interaction, the so-called quantum electrodynamic (QED) effective Lagrangian.
The dominant effect for electromagnetic fields that vary slowly with respect to the Compton
wavelength (frequencies ω ≪ 2mc2/~) is described by the one–loop quantum electrodynamic
effective (so-called “Heisenberg–Euler”) Lagrangian which is known to all orders in the electro-
magnetic field [1–6].

The Heisenberg–Euler Lagrangian ∆L, which constitutes a quantum correction to the
Maxwell Lagrangian, is usually expressed as a one-dimensional proper-time integral [see e.g.
Eq. (3.43) in [1], the notation is clarified in Sec. 2 below]:

∆L = −
e2

8π2
lim

ǫ,η→0+

∫ ∞+i η

i η

ds

s
e−(m2−iǫ) s

[

ab coth(eas) cot(ebs) −
a2 − b2

3
−

1

(es)2

]

. (1)

Because there are no singularities in the first quadrant of the complex plane and because Jordan’s
Lemma may be applied to the integral, it is possible to exchange the lower and upper limit of
integration by η and η + i∞, respectively.

Although the proper-time integral (1) can be evaluated by numerical quadrature, it is evident
that a representation by a convergent series expansion could have certain computational as well
as conceptual advantages. An expansion of (1) in terms of special functions has been given by
us in [7,8]. Here, we present a unified series expansion which encompasses both the real and the
imaginary part of the Lagrangian (see Sec. 2). Also, we clarify certain technical details concerning
the derivation of our previous results [7,8]. In Sec. 4, we discuss the “electric-magnetic duality”
which has recently drawn much attention [9, 10]. In particular, we elucidate different kinds of
dual invariance and pursue the question as to whether these invariances are realised by QED
effective Lagrangians. Before we expand on these aspects, we would like to provide some general
discussion on the general relevance of studies related to the QED effective action (1).

The real part of the Lagrangian (1) can be used to delineate dispersive phenomena such as
photon propagation in a magnetic field (see [1] and references therein), photon splitting [11–14],
vacuum birefringence and second harmonic generation [16], and light scattering in a vacuum [1].
These applications have a strong relevance to particle astrophysics. The imaginary part of the
Lagrangian (1) has been applied to absorption processes such as electron-positron pair creation
and dichroism (see e.g. [4, 7, 17–20]). The occurrence of strong fields in storage rings, pulsars,
magnetars and high-intensity lasers also motivates our study. The advent of state-of-the-art laser
beams and photon detectors may provide a signature of “QED’s nonlinear light”. The optical
second harmonic generation (SHG) in vacuo is an interesting second-order magneto-optical effect
that occurs if the spatial symmetry of the nonlinearity induced by the effective action (1) is bro-
ken e.g. by a strong static magnetic field (in a more general context, higher-harmonic generation
by vacuum effects was discussed in [15,16]). Note that the leading contribution to SHG in vacuo
involves a fourth-order effect in contrast to the much weaker 6th-order effect (hexagon graph)
which gives the leading contribution to photon splitting. SHG and photon splitting in vacuo
may be occurring close to astronomical objects such as white dwarfs, neutron stars and “mag-
netars” (see [14,21] and references therein) which have strong magnetic fields up to B ≈ 1014 G.
In all cases, a detailed, realistic description of the experimental conditions and/or the involved
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astrophysical objects, especially at extreme field strengths, requires techniques for the reliable
numerical evaluation of the QED effective action.

A priori, the construction of a series expansion for (1) constitutes a complete solution of
the problem from a theoretical point of view. However, such an expansion does not necessarily
provide all answers: Many series expansions are known which either converge extremely slowly
or which do not converge at all. Moreover, in the case of the Heisenberg–Euler Lagrangian, there
is the additional problem that the terms of the series are represented by special functions which
are in most cases defined and computed via series expansions. Again, convergence problems are
more likely the rule than the exception. Here, we are concerned with the solution of the principal
numerical difficulty associated with the the slow overall convergence of the series expansion
derived in [7], whose terms are nonalternating in sign. The modern theory of nonlinear sequence
transformations which begins with Wynn’s epsilon algorithm [36, 37] was developed when the
first computers became generally available. Padé approximants, however, would not be powerful
enough to sum our series for the Heisenberg–Euler Lagrangian derived in [7].

From a mathematical point of view, there is a distant analogy between the expansion of
(1) in terms of special functions and the (exact) expansion of certain quantum electrodynamic
bound-state effects into partial waves [38–41]. However, the mathematical entities involved in
the present decomposition possess a far less involved mathematical structure, and it is difficult to
associate a meaningful physical interpretation to each term in the special function representation
of (1). As is evident from the discussion in Sec. 3, the terms of the convergent series representation
may be interpreted as being generated by a “partial-fraction decomposition” in distant analogy
to the “partial-wave decomposition” in bound-state calculations. We point out in Sec. 5 that the
convergence of the special function representation can be accelerated by the same technique – the
so-called “Combined Nonlinear–Condensation Transformation” (CNCT) [42] – which was used
successfully for the acceleration of the convergence of partial-wave decompositions in quantum
electrodynamic bound-state calculations [40,41].

At the same time, we would like to mention that the integral (1), when expanded in powers
of the electric and magnetic field strengths, represents a divergent series. The resulting divergent
series can be used as a “model laboratory” for resummation methods [22–25], and related investi-
gations [24–27] have led to the development of asymptotically improved resummation algorithms
which have recently received interesting applications [28–30] in the highly accurate determination
of the strong coupling constant at the Z pole and other investigations on nonperturbative effects
in gauge theories [31–34]. These investigations are related to the fundamental question of how
to “make sense” of the fact that many perturbation series encountered in physics are divergent,
and are not meant to provide efficient means for numerical evaluation of the integral (1).

2 Representation of the QED Effective Action by

Special Functions

The QED effective Lagrangian can be expressed as a function of the Lorentz invariants F and
G which are given by

F = 1/4 Fµν F
µν = 1/2

(

B
2 −E

2
)

= 1/2
(

a2 − b2
)

, (2)

G = 1/4 Fµν (∗F )µν = −E ·B = ±ab , (3)

where E and B are the electric and magnetic field strengths, Fµν is the field strength tensor, and
(∗F )µν denotes the dual field strength tensor (∗F )µν = (1/2) ǫµνρσ Fρσ. By a and b we denote

3



the secular invariants,

a =

√

√

F2 + G2 + F ,

b =

√

√

F2 + G2 −F . (4)

These Lorentz invariants are referred to as secular invariants because they emerge naturally as
eigenvalues of the field strength tensor; these eigenvalues are conserved under proper Lorentz
transformations of the field strength tensor. There are connections between the different rep-
resentations [1]: If the relativistic invariant G is positive, then it is possible to transform to a
Lorentz frame in which E and B are antiparallel. In the case G < 0, it is possible to choose
a Lorentz frame in which E and B are parallel. Irrespective of the sign of G we have in the
specified frame

a = |B| and b = |E| if and only if B is (anti-)parallel to E . (5)

In any case, because a and b are positive definite, we have

a b = |E ·B| > 0 for any Lorentz frame and G 6= 0 , (6)

which clarifies the sign ambiguity in (3). We give in (2) and (3) seemingly redundant definitions,
but it will soon become apparent that each of the alternative “points of view” has its applications.
The Maxwell Lagrangian is given by

Lcl = −F = −1/4 Fµν F
µν = 1/2

(

E
2 −B

2
)

= 1/2
(

b2 − a2
)

. (7)

As it is obvious from Eq. (1), the correction ∆L to the Maxwell Lagrangian is conveniently
written in terms of the secular invariants a and b.

The effective action has a dispersive (real) part and an imaginary part which is associated
with pair production,

∆L = Re ∆L + i Im ∆L . (8)

In Eqs. (2)–(6) of [7] we showed that the real part of (1) can be expressed as

Re ∆L=−
e2

4π3
a b

∞
∑

n=1

[

an + dn
]

,

an =
coth(nπb/a)

n

{

Ci

(

nπm2

ea

)

cos

(

nπm2

ea

)

+ si

(

nπm2

ea

)

sin

(

nπm2

ea

)}

,

dn = −
coth(nπa/b)

2n

{

exp

(

nπm2

eb

)

Ei

(

−
nπm2

eb

)

+ exp

(

−
nπm2

eb

)

Ei

(

nπm2

eb

)}

. (9)

We also derived the following representation for the imaginary part [see Eq. (18) of [7]]:

Im ∆L =
e2ab

8π2

∞
∑

n=1

1

n
coth

(nπa

b

)

exp

(

−
nπm2

e b

)

. (10)

These results have recently been confirmed in [9]. For the special functions, we use the notation
of Abramowitz and Stegun [43]. Here, one might wonder why the cosine and sine integrals
appear in an “asymmetric” form (Ci and si instead of ci and si) in the definitions of an and dn
in (9). The reason is that the commonly accepted definitions for the cosine and sine integrals
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are “asymmetric” in the following sense [see Eqs. (5.2.1), (5.2.2), (5.2.5), (5.2.26), and (5.2.27)
of [43]]:

Ci(z) = −

∫ ∞

z
dt

cos(t)

t
,

si(z) = −

∫ ∞

z
dt

sin(t)

t
= Si(z) −

π

2
,

Si(z) =

∫ z

0
dt

sin(t)

t
. (11)

From these formulas, it is evident that “symmetric” integrals with lower limit z and upper limit
∞ require the “asymmetric” occurrence of Ci and si.

Because the imaginary part Im ∆L is generated exclusively by analytic continuation of one
of the exponential integrals – specifically, the term

Ei

(

−
nπm2

eb

)

in the definition of dn –, it is obvious how to write down a unified representation for both the
real and the imaginary part. We therefore present here the unified representation for both the
real and the imaginary part we obtained in Eq. (8) of version 2 of our preprint [44]:

∆L = lim
ǫ→0+

−
e2

4π3
a b

∞
∑

n=1

[bn + cn] ,

bn = −
coth (nπb/a)

2n

{

exp

(

−i
nπm2

e a

)

Γ

(

0,−i
nπm2

e a

)

+ exp

(

i
nπm2

e a

)

Γ

(

0, i
nπm2

e a

)}

,

cn =
coth (nπa/b)

2n

{

exp

(

nπm2

e b

)

Γ

(

0,
nπm2

e b

)

+exp

(

−
nπm2

e b

)

Γ

(

0,−
nπm2

e b
+ i ǫ

)}

.(12)

It becomes obvious from this representation that the effective action has branch cuts along the
positive and negative b axis as well as the positive and negative imaginary a axis. Here, we make
extensive use of the incomplete Gamma function defined as [see Eq. (6.5.3) of [43]]

Γ(a, z) =

∫ ∞

z
dt e−t ta−1 . (13)

For a = 0, the quantity Γ(0, z) as a function of z has a branch cut along the negative real z axis,
and we assume

lim
ǫ→0+

Im Γ(0,−x + i ǫ) = −π , x > 0 (14)

which follows from the relationships [43, Eq. (5.1.45)] E1(z) = Γ(0, z) and [43, Eq. (5.1.7)]
E1(−x± i0) = −Ei(x) ∓ iπ.

A unified expansion in terms of special functions – including infinitesimal imaginary parts –
has also been given in the final version of [9]. In this context it is perhaps worth pointing out
that it is inconsistent with standard notation to use the exponential integral Ei for such a unified
formula. The exponential integral Ei is usually defined only for real argument. It is defined as a
Cauchy principal-value integral by Gradshtein and Ryzhik [45] [see Eqs. (8.211.1) and (8.211.2)
ibid.] as well as by Abramowitz and Stegun [43] [see Eq. (5.1.2) ibid.], and also predominantly in
the mathematical literature; see, for example, Olver [46] [see Eq. (3.07) ibid.]. In contrast to the
exponential integral Ei, the incomplete Gamma function is defined in the entire complex plane
with a cut along the negative real axis.
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3 An Important Mathematical Identity

W. J. Mielniczuk [47] has outlined a proof of the representation (9) for the real part of the
effective action. However, his work suffered from a series of unfortunate typographical errors.
Here, we provide details on the intermediate steps used in our calculation [7], and we give, in
particular, a corrected version of identity (2.8) of [47]. This corrected version was also used in
obtaining the results in Eqs. (9) and (10) above and in Eqs. (2) — (6) and (18) in [7].

The corrected version of identity (2.8) of [47] reads:

x̃ ỹ u2 coth(x̃ u) cot(ỹ u) − 1 −
1

3
(x̃2 − ỹ2)u2 =

−
2 x̃3 ỹ u4

π

∞
∑

k=1

1

k

1

x̃2 u2 + k2 π2
coth

(

ỹ

x̃
k π

)

+
2 ỹ3 x̃ u4

π

∞
∑

k=1

1

k

1

ỹ2 u2 − k2 π2
coth

(

x̃

ỹ
k π

)

. (15)

In Ramanujan’s notebooks [48], this identity appears as entry (19.3) on p. 271. A proof is given
which is based on the repeated application of the well-known identities [see e.g. Eq. (19.2) of [48]
or Eq. (2.4) of [49]]

π x cot(πx) = 1 + 2x2
∞
∑

n=1

1/(x2 − n2) (16)

and

π y coth(πy) = 1 + 2y2
∞
∑

n=1

1/(y2 + n2) , (17)

respectively, to each one of the factors on the left-hand side of (15), and a skillful reformulation
of the resulting double sum.

Here, we will derive an alternative, but fully equivalent formulation of (15):

ab coth(az) cot(bz) −
1

z2
−

a2 − b2

3

=
2abz2

π

{

∞
∑

k=1

coth(kπa/b)

k [z2 − k2π2/b2]
−

∞
∑

k=1

coth(kπb/a)

k [z2 + k2π2/a2]

}

. (18)

In our derivation of identity (15) in [7], we used the so-called Partial Fraction Theorem 4.4.5
of [50]. It may be surprising that this identity can be obtained by a straightforward application
of this basic theorem to the left-hand side of Eq. (15), especially in view of the fact that the
derivation of this result represented a considerable challenge to S. Ramanujan, as it is evident
from remarks on p. 271 (top of page) of [48]. This shows that sometimes interesting new results
can be obtained by a straightforward application of theorems occurring in standard textbooks.

We quote here the Partial Fraction Theorem [50, Theorem 4.4.5 on pp. 337 - 338)]:
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Theorem 1. Suppose that g is meromorphic with simple poles at a1, a2, a3, . . . with
0 ≤ |a1| ≤ |a2| . . . and residues bk at ak, but analytic at 0. Suppose there is an
increasing sequence R1, R2, R3, . . . with limn→∞Rn = ∞ and simple closed curves
Cn satisfying

(i): |z| ≥ Rn for all z on Cn,

(ii): There is a constant S with length(Cn) ≤ SRn for all n ∈ N,

(iii): There is a constant M with |g(z)| ≤ M for all z on Cn and for all n ∈ N.

Then,

g(z) = g(0) +

∞
∑

m=1

{

bm
z − am

+
bm
am

}

. (19)

Here, it should be noted that normally the series on the right-hand side of (19) does not
converge absolutely, which implies that it must not be rearranged. In fact, the series with the
terms bm/(z − am) may even diverge (compare the remark in the third paragraph on p. 539
of [51]). Thus, the compensatory terms bm/am are necessary to ensure convergence.

Equation (19) implies eo ipso – just as the conditions of the partial fraction theorem – that
the function g(z) which is expanded into “partial fractions” must necessarily be analytic at zero
argument. In order to analyse the behaviour of the product coth(az) cot(bz) with a, b ∈ R as
z → 0, we use [52, Eq. (30:6.2)]

coth(z) =
1

z

∞
∑

j=0

4jB2j

(2j)!
z2j , |z| < π , (20)

and [52, Eq. (34:6.2)]

cot(z) =
1

z
−

∞
∑

j=1

4j |B2j |

(2j)!
z2j−1 , |z| < π . (21)

Here, Bm with m ∈ N0 is a Bernoulli number [43, Section 23].
If we now insert the leading terms of (20) and (21) into the product coth(az) cot(bz) and use

B0 = 1 and B2 = 1/6 [43, Eq. (23.1.3)], we obtain:

coth(az) cot(bz) =
1

abz2
+

a

3b
−

b

3a
+ O

(

z2
)

, z → 0 . (22)

This suggests – consistent with the renormalisation of the effective Lagrangian – the definition
of the function

f(z) = ab coth(az) cot(bz) −
1

z2
−

a2 − b2

3
, a, b ∈ R , (23)

which corresponds to the left-hand side of Eq. (18) and which satisfies

f(z) = O
(

z2
)

, z → 0 . (24)

For the determination of the poles of f(z), we use the above equations (16) and (17) which
can be reformulated as [52, Eq. (30:6.6)]

coth(z) =

∞
∑

m=−∞

z

z2 + m2π2
, z 6= ikπ , k ∈ Z , (25)
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and [52, Eq. (34:6.5)]

cot(z) =

∞
∑

m=−∞

z

z2 −m2π2
, z 6= kπ , k ∈ Z . (26)

From these expansions and from the definition of f(z) we conclude that f(z) has the simple
poles

ak = i
kπ

a
, k ∈ Z \ {0} , (27)

a′k =
kπ

b
, k ∈ Z \ {0} . (28)

Next, we want to determine the corresponding residues

bk = Res
z=ak

f(z) = lim
z→ak

[(z − ak) f(z)] (29)

and

b′k = Res
z=a′

k

f(z) = lim
z→a′

k

[

(z − a′k) f(z)
]

. (30)

For that purpose, we rewrite (25) and (26) as follows by isolating the terms that contribute
to the residues at ak and a′k, respectively:

coth(az) =

∞
∑

n=−∞

z/a

(z + inπ/a)(z − inπ/a)

=

∞
∑

n=−∞
n 6=±k

z/a

(z + inπ/a)(z − inπ/a)
+

2z/a

(z + ikπ/a)(z − ikπ/a)
, (31)

cot(bz) =

∞
∑

m=−∞

z/b

(z + mπ/b)(z −mπ/b)

=

∞
∑

m=−∞
m6=±k

z/b

(z + mπ/b)(z −mπ/b)
+

2z/b

(z + kπ/b)(z − kπ/b)
. (32)

With the help of (31), we then obtain:

bk = lim
z→ak

[(z − ak) f(z)]

= lim
z→ikπ/a

[(z − ikπ/a) ab coth(az) cot(bz)]

= lim
z→ikπ/a

2bz cot(bz)

(z + ikπ/a)
= b cot(ikπb/a) . (33)

If we now use cot(iz) = −i coth(z), we finally obtain

bk = −ib coth(kπb/a) , k ∈ Z \ {0} . (34)

Similarly, we obtain with the help of (32):

b′k = lim
z→a′

k

[

(z − a′k) f(z)
]

= a cot(kπa/b) , k ∈ Z \ {0}. (35)
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If (19) is to be used for the derivation of a partial-fraction decomposition for f(z) defined by

(23), it is natural to identify the closed contour Cn with the rectangle having the 4 sides X
(±)
n

and Y
(±)
n , where

X (±)
n =

{

zn = xn + iyn
∣

∣xn = (2s− 1)Xn, 0 ≤ s ≤ 1, yn = ±Yn

}

(36)

and

Y(±)
n =

{

zn = xn + iyn
∣

∣xn = ±Xn, yn = (2t− 1)Yn, 0 ≤ t ≤ 1
}

. (37)

Clearly, Xn and Yn have to be chosen in such a way that the poles ak = kπ/b and a′k = ikπ/a
of f(z) do not lie on this rectangle.

We are on the safe side if we choose Xn and Yn in such a way that they are located in the
middle between two neighbouring poles of f(z):

Xn =
π

b
(n + 1/2) , Yn =

π

a
(n + 1/2) , n ∈ N . (38)

We now have to show that f(z) is bounded on the rectangle Cn according to (iii) of Theorem 1.
For that purpose, we now use [52, Eq. (30:11.2)]

coth(x + iy) =
sinh(2x) − i sin(2y)

cosh(2x) − cos(2y)
(39)

and [52, Eq. (34:11.2)]

cot(x + iy) =
sin(2x) − i sinh(2y)

cos(2x) − cosh(2y)
. (40)

If s in (36) satisfies s = 1/2, which implies xn = 0 and yn = ±Yn, or t in (37) satisfies t = 1/2,
which implies xn = ±Xn and yn = 0, we obtain

coth(±iaYn) cot(±ibYn) =
−i sin(±2aYn)

[1 − cos(±2aYn)]

i sinh(±2bYn)

[1 − cosh(±2bYn)]
, (41)

which remains bounded on Cn as n → ∞, or

coth(±aXn) cot(±bXn) =
sinh(±2aXn)

[cosh(±2aXn) − 1]

sin(±2bXn))

[1 − cos(±2bXn)]
, (42)

which also remains bounded on Cn as n → ∞.
If s in (36) and t in (37) satisfy s, t 6= 1/2, f(z) remains bounded on the rectangles Cn

because of the periodicity and boundedness of cos and sin for real arguments, and we find

lim
n→∞

coth(azn) = lim
n→∞

sinh(2axn)

cosh(2axn)
(43)

and

lim
n→∞

cot(bzn) = i lim
n→∞

sinh(2byn)

cosh(2byn)
. (44)

Thus, the constant M in (iii) of Theorem 1 can in the case of f(z) be chosen according to

M = max
n∈N

(

|f(zn)|
)

, zn ∈ Cn . (45)
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Then, the Rn satisfying (i) of Theorem 1 should be chosen according to

Rn = min(Xn, Yn) , (46)

and the constant S in (ii) of Theorem 1 should be chosen according to

S = 4 max(b/a, a/b) . (47)

However, the function f(z) defined in (23) does not exactly meet the requirements of Theorem
1. Instead of a sequence of simple poles a1, a2, a3, . . . with corresponding residues b1, b2, b3, . . . ,
there are actually two sequences a±1, a±2, a±3, . . . of simple poles with corresponding residues
b±1, b±2, b±3, . . . , which implies that we have a partial-fraction decomposition of the following
kind:

F (z) = F (0) +

∞
∑

m=1

{

bm
z − am

+
bm
am

}

+

∞
∑

m=1

{

b−m

z − a−m
+

b−m

a−m

}

. (48)

If we take into account that the hyperbolic cotangent is odd according to coth(−z) = − coth(z),
we see from (27) and (34) or from (28) and (35) that the poles and residues of F (z) have to
satisfy for all k ∈ N the (anti-)symmetry relations

ak = − a−k , bk = − b−k . (49)

If we also take into account that (24) implies

f(0) = 0 , (50)

we see that (48) is to be replaced by the following partial-fraction decomposition:

F (z) =
∞
∑

m=1

{

bm
z − am

−
bm

z + am
+

2bm
am

}

. (51)

If we now insert the poles (27) and (28) and the corresponding residues (34) and (35),
respectively, into (51), we obtain the following partial-fraction decomposition:

ab coth(az) cot(bz) −
1

z2
−

a2 − b2

3

=

∞
∑

k=1

a coth(kπa/b)

{

1

z − kπ/b
−

1

z + kπ/b
+

2

kπ/b

}

−
∞
∑

k=1

ib coth(kπb/a)

{

1

z − ikπ/a
−

1

z + ikπ/a
+

2

ikπ/a

}

. (52)

By putting the expressions in curly brackets on a common denominator, we obtain (18).

4 Electric–Magnetic Duality

Electric-magnetic duality, understood as a mutual transformation of electric and magnetic quan-
tities, has attracted a great deal of attention since Dirac’s ideas on magnetic monopoles [54,55]
were introduced in classical electrodynamics. Whereas electric-magnetic duality can be formu-
lated as a continuous symmetry of the classical Maxwell equations [56] (either including both
types of charges or without any charges), we devote this section to a brief study of discrete
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duality transformations of quantum effective actions. In particular, we consider two types of
duality:

Type I: E → B, B → −E,

Type II: a → −ib, b → ia. (53)

(In a Lorentz frame where E ‖B, the Type II duality implies |B| → −i|E| and |E| → i|B|.) As
a consequence, the invariants transform as

Type I: F → −F , G → −G, =⇒ b → a, a → −b

Type II: F → F , G → G. (54)

Note that the duality of Type II preserves the invariants, so that Maxwell’s equations derivable
from Lcl = −F are trivially invariant; by contrast, the classical Lagrangian is not invariant
under Type I, but Maxwell’s equations are.1 It therefore becomes obvious that only Type I
affects physical quantities (field strengths), whereas Type II signifies a certain redundancy in
the parameterisation of physical quantities.

In fact, this redundancy exists even for a larger class of duality transformations of Type II,

a → ±i b b → ∓i a. (55)

which preserves the invariants F and G. Since the effective Lagrangian of QED is gauge and
Lorentz invariant, the effective Lagrangian for constant fields is necessarily a function of F and
G only, Leff = Leff(F ,G), implying that the duality transformations of Eq. (55) leave Leff(F ,G)
invariant. This statement is not at all tied to perturbation theory, and the duality (55) holds
therefore to all orders in the external fields and to all loop orders. From a diagrammatic perspec-
tive, each external leg of a diagram contributing to any given loop order corresponds to a field
strength tensor; and any possible contraction can be expressed in terms of F and G, ensuring
this duality invariance. In some sense, these invariants are therefore more fundamental than a
and b.

Let us now study the invariance properties of the effective Lagrangian under consideration.
From Eq. (1), it is obvious that ∆L is not invariant under Type I, similarly to the Maxwell
Lagrangian, (even a rotation of the contour in the first quadrant does not help): in an asymptotic
expansion, terms of odd order in F , G flip sign.

At a first glance, ∆L indeed seems to be invariant under the transformation (55) as ex-
pected, since the integrand is invariant.2 Nevertheless, it has recently been argued [9, 10] that
∆L is uniquely invariant only under Type II, excluding explicitly the remaining transforma-
tions of Eq. (55). The argument is based on the special function representation (12) in terms of
incomplete Gamma functions.

In our language, the argument could be rephrased in the following way: Taking the details
of the integral contour specified by η and ǫ into account corresponds to a modification a →
a exp(i δ), where δ is a small positive quantity. We discuss the apparent uniqueness of the
replacement a → −i b by way of example (see also Appendix A).

When applying the replacement a → a exp(i δ) to bn in Eq. (12), the relevant factor in the
argument of the last Gamma function in bn assumes the form i/a → (i/a) exp(−i δ), which has
complex argument π/2− δ. With attention to the fact that the incomplete Gamma function has
singularities along the negative real axis, it therefore becomes apparent that this argument could

1The transformations of a and b under Type I follow from Eqs. (2,3). Note that Eq. (4) is not meant to
participate in the duality transformations, owing to the nonlinear relation between the two sets of invariants.

2The integrand is even invariant under a larger class of duality transformations, including a → ±ib, b → ±i a,
owing to parity invariance of QED.
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only be increased by an amount of +π/2 (not −π/2), if we want to stay on the same branch of
the incomplete Gamma function. This seems to fix uniquely the replacement a → −i b because
in this case,

i

a
exp(−i δ) →

i2

b
exp(−i δ) → −

1

b
exp(−i δ) = −

1

b
+ i γ, (56)

in agreement with the last term in the definition of cn in Eq. (12). Here, γ denotes a further
infinitesimal positive quantity.

The contradiction between the required general form of the duality (55) and the seemingly
unique form of Type II can be resolved by looking at the integral representation: consider the
representation (1) of ∆L as a function of two complex variables z1 and z2:

∆L(z1, z2) = −
e2

8π2
lim

ǫ,η→0+

∞+i η
∫

i η

ds

s
e−(m2−iǫ) s

[

z1z2 coth(ez1s) cot(ez2s) −
z21 − z22

3
−

1

(es)2

]

.

(57)

The duality of Type II (53) can be formulated as the identity ∆L(a, b) = ∆L(−i b, i a). Because
a and b are real and positive, this identity is valid in a strict sense only if the function ∆L(z1, z2)
is one-valued in the relevant range of the complex arguments of z1 and z2.

In order to avoid the poles given by the cotangent and hyperbolic cotangent functions, the
complex arguments of z1 and z2 in (57) cannot be varied without restriction if we keep the class
of allowed contours fixed (recall that the limits of integration in (1) can also be chosen as i η and
∞+i η, respectively). Taking into account the infinitesimal parts ǫ and η, we are led to conclude
that the integral representation remains valid for the fixed class of contours in the argument
range

− π/2 ≤ arg(z1) < π/2 ,

0 ≤ arg(z2) < π (58)

for z1 and z2 (observe the fine difference between the < and ≤ signs!). The restriction given in (58)
identifies (as a function of z1 and z2) a “physical” or “causal” branch of the effective action for a
given contour. Among the four different replacements ∆L(a, b) → ∆L(±i b,±ia) or ∆L(a, b) →
∆L(±i b,∓ia), it is only the replacement ∆L(a, b) → ∆L(−i b, i a) which respects the restriction
set by (58) for a fixed contour. Therefore, the duality of Type II is only “unique” in connection
with a precisely specified integral representation which does not allow for an unrestricted analytic
continuation of its arguments. In other words, the seeming “uniqueness” is simply a shortcoming
of the integral representation (and also of the special-function representation being identical to
the former).

In order to achieve full invariance under the dualities (55), we have to allow for the fact that
the contour also has to be readjusted (or certain poles are allowed to be crossed without picking
up their contribution). From a different perspective, it is only natural to perform the duality
transformation first, and then specify the details of the contour. This is perfectly justified, since
the particular choice of the contour is not a result of the calculation (of the fermion determinant
in this case), but rather an additional piece of information that has to be inserted afterwards
in order to define the integral. This information arises, of course, from physical requirements:
the ±iǫ prescription is dictated by causality, and the shift by η can, e.g., be fixed by requiring
that the pair-production probability related to the imaginary part of ∆L is a number between
0 and 1. The resulting integral representation will always lead to the same special-function
representation (12).
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From another point of view, the special-function representation and the integral representa-
tion with fixed contour remove a part of the above-mentioned redundancy in the parameterisa-
tion of the field strength invariants, which is generally present in the effective Lagrangian.

At this point, let us remark that dualities of Type II or (55) can be very useful from a
technical viewpoint, although they have no physical meaning: for instance, from the effective
Lagrangian for a purely magnetic field, one can extract information about the electric case with
the aid of the substitution, |B| → −i|E| [53]. Moreover, standard-model calculations in constant
electromagnetic fields can always be checked by testing their dual invariance; e.g. in [57,58], this
dual invariance is visible in neutrino amplitudes in electromagnetic fields. Of course, to be on
the safe side, the duality of Type II suffices for such a check in order to avoid problems of the
kind mentioned before.

The question of electric-magnetic duality becomes even more interesting for systems which
are characterised by additional Lorentz covariant quantities. For example, let us consider QED
with constant fields in a heat bath; the latter involves an additional Lorentz vector uµ, the heat-
bath four-velocity, allowing for one further gauge and Lorentz invariant quantity [cf. Eq. (3.143)
of [1]]:

E = (uµF
µν)2 = uµF

µνuρFρν . (59)

Under duality of Type II, E is trivially invariant, since it is linearly independent of F and G,
and thereby independent of a and b. In fact, the known QED effective actions, depending on a,
b and E at finite temperature, show this invariance under Type II [1].

Under duality of Type I, E transforms according to E → E + 2F ; and similarly to the zero-
temperature case, the finite-temperature effective action is generally not invariant under Type I.
Nevertheless, the dominant low-temperature contribution arising at two-loop order astonishingly
exhibits an invariance under Type I. This might be related to the fact that only transversal
thermal fluctuations of the photon give rise to this contribution.

5 Acceleration of Convergence

From the asymptotic expansion of the incomplete Gamma function as z → ∞ [43, Eq. (6.5.32)],

ez Γ(a, z) = za−1

[

1 +
a− 1

z
+

(a− 1)(a− 2)

z2
+ O(z−3)

]

, | arg z| < 3π/2 , (60)

we obtain

enzΓ(0, nz)

n
=

1

n2z
−

1

n3z2
+ O

(

n−4
)

, n → ∞ . (61)

Since the cotangents in (12) rapidly approach one as n → ∞, we can conclude that terms in (12)
are essentially of order O(n−2) as n → ∞. A more detailed analysis of the large-order behaviour
of the terms in (12) can be found in Appendices A and B of [7].

An O(n−2) behaviour of the terms also occurs in the Dirichlet series ζ(s) =
∑∞

n=1 n
−s for the

Riemann zeta function with s = 2. This is a very discomforting observation since the Dirichlet
series for ζ(2) converges quite slowly – it can be shown that increasing the number of terms of
its partial sum by a factor of 10 improves the accuracy by a single decimal digit only – and in
the literature on convergence acceleration it is one of the standard test systems for checking the
capability of a transformation in the case of a slowly convergent monotonic series.

Thus, the series expansions (9) and (12) represent typical cases of monotonic series which
converge so slowly that a straightforward evaluation by adding up one term after another is
computationally very unattractive. Of course, the acceleration of the convergence of series of

13



that kind has been studied quite extensively in the literature and many techniques are known
to improve the efficiency of numerical computations (see for example [59–61] and references
therein).

Nevertheless, one should not forget that the acceleration of the convergence of a slowly
convergent monotonic series can be a very challenging problem. Moreover, numerical instabilities
due to rounding errors are likely to occur. A sequence transformation accelerates convergence
by extracting and utilising information from a finite set of input data on the index-dependence
of the truncation errors. This is normally accomplished by forming higher weighted differences.
If the input data are the partial sums of a strictly alternating series, the formation of higher
weighted differences is a remarkably stable process, but if the input data all have the same sign,
numerical instabilities are quite likely. Thus, if the sequence to be transformed are the partial
sums of a slowly convergent monotonic series, numerical instabilities are to be expected, and
most convergence acceleration methods are not able to obtain transformation results that are
close to machine accuracy.

In some cases, these instability problems can be overcome with the help of a condensation
transformation attributable to Van Wijngaarden, which converts input data having the same
sign to the partial sums of an alternating series, whose convergence can be accelerated more
effectively (compare, for instance, Appendix A of [42]). The condensation transformation was
first mentioned in [62, pp. 126 - 127] and only later published by Van Wijngaarden [63]. It was
used by Daniel [64] in combination with the Euler transformation, and recently, it was rederived
by Pelzl and King [65]. Since the transformation of a strictly alternating series by means of non-
linear sequence transformations is a stable process, it was in this way possible to evaluate special
functions that are defined by extremely slowly convergent monotonic series, not only relatively
efficiently but also close to machine accuracy [42], or to perform extensive quantum electrody-
namical calculations [40, 41]. Unfortunately, the use of this “combined nonlinear-condensation
transformation” (CNCT) [42] is not always possible: The conversion of a monotonic to an alter-
nating series requires that terms of the input series with large indices can be computed.

However, this CNCT is well suited for the acceleration of the convergence of the series
expansions (9) and (12) considered in this article.

The method consists in first rewriting the slowly convergent monotonic input series
∑∞

k=0 τ(k) into an alternating series. In the second step, the convergence of the alternating
series is accelerated via a suitable nonlinear sequence transformation. In our case, we have
τ(k) = [ak+1 + dk+1], with ak+1 and dk+1 given by Eq. (9). The partial sums

σn =
n
∑

k=0

τ(k) (62)

increase monotonically, i.e. σn+1 > σn for all n = 0, . . . ,∞ if all terms satisfy τ(n) ≥ 0. Let us
further assume that the sequence of the partial sums {σn}

∞
n=0 converges to some limit σ = σ∞

as n → ∞. Following Van Wijngaarden [63], we transform the original series into an alternating
series

∑∞
j=0(−1)jAj according to

∞
∑

k=0

τ(k) =

∞
∑

j=0

(−1)j Aj , (63)

Aj =
∞
∑

k=0

b
(j)
k , (64)

b
(j)
k = 2k τ(2k (j + 1) − 1) . (65)

The terms Aj defined in Eq. (64) are all positive if the terms τ(k) of the original series are
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Table 1: Evaluation of the real (dispersive) part of the QED effective Lagrangian
for |E| = 30Ecr and |B| = 30Bcr by evaluating the special function representation
(9) using a combination [42] of the Van Wijngaarden condensation transformation
defined in Eqs. (63) – (65) and the nonlinear delta transformation [59]. The Sn are

defined in (66), and the nonlinear delta transform δ
(0)
n

(

1,S0

)

is defined in Eq. (8.4-4)
of [59]. The result is given in units of m4. The apparent convergence of the delta
transforms in the second column is indicated by underlining. After 21 iterations, the

transforms δ
(0)
n

(

1,S0

)

have stabilised to the 15-figure result 8.393 398 582 100 617.

n Sn δ
(0)
n

(

1,S0

)

0 11.834 710 587 368 11.834 710 587 368
1 6.388 353 476 842 8.463 873 830 587
2 9.741 830 922 440 8.384 963 963 657
3 7.413 293 009 436 8.393 553 703 382
4 9.141 317 648 944 8.393 398 289 155
5 7.803 272 984 326 8.393 399 592 701
6 8.870 519 831 631 8.393 398 337 299
7 8.000 385 721 330 8.393 398 666 561
8 8.721 936 912 365 8.393 398 594 227
9 8.115 447 030 287 8.393 398 583 148
10 8.630 906 154 429 8.393 398 580 473
11 8.188 731 860 505 8.393 398 582 040
12 8.571 048 192 682 8.393 398 582 143
13 8.238 223 421 331 8.393 398 582 104
14 8.529 698 152 551 8.393 398 582 097
15 8.273 084 942 867 8.393 398 582 099
16 8.500 073 809 529 8.393 398 582 099

all positive. The quantities Aj are commonly referred to as the condensed sums, and the series
∑∞

j=0(−1)jAj is referred to as the Van Wijngaarden transformed series.
The transformation from a monotonic series to a strictly alternating series according to

Eqs. (63), (64) and (65) is essentially a reordering of the terms τ(k) of the original series. We
define the partial sums

Sn =

n
∑

j=0

(−1)j Aj (66)

of the Van Wijngaarden transformed series. As illustrated in Table 1 of [42], the Sn with n ≥ 0
reproduces the partial sum σn, Eq. (62), which contains the first n + 1 terms of the original
series. Formal proofs of the correctness of this rearrangement can be found in Ref. [64] or in the
Appendix of Ref. [65].

The series (64) for the terms of the Van Wijngaarden transformed series can be rewritten as
follows:

Aj = τ(j) + 2τ(2j + 1) + 4τ(4j + 3) + . . . . (67)

Since the terms τ(k) of the original series have by assumption the same sign, we immediately
observe

|Aj | ≥ |τ(j)| . (68)
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Consequently, the Van Wijngaarden transformation, given by Eqs. (63), (64) and (65), does not
lead to an alternating series whose terms decay more rapidly in magnitude than the terms of the
original monotonic series. However, an acceleration of convergence may be achieved if the partial
sums (66) of the Van Wijngaarden transformed series are used as input data in a convergence
acceleration process, and – as, for example, discussed in Appendix A of [42]) – the convergence
of alternating series can be accelerated much more effectively than the convergence of monotonic
series. For the acceleration of convergence we use the delta transformation given in Eq. (8.4-4)
of [59], which was found to be a very effective accelerator for Van Wijngaarden transformed
series [42].

This will now be demonstrated explicitly. From a consideration of the expressions (9) and
(12) it is obvious that the computationally most demanding special cases will be encountered for
large fields; in these cases, many terms of the representation (9) are needed in order to achieve
convergence [accordingly, for strong fields we encounter problematic oscillations in the integrand
of Eq. (1)]. We consider only one example here – Table 1 –, which describes the evaluation
of the dispersive (real) part of the effective Lagrangian at field strength |E| = b = 30Ecr

and |B| = a = 30Bcr. This does not preclude the possibility that other efficient calculational
methods exist for the evaluation of (9). However, we stress here that a suitable acceleration
of the convergence of the special function representations (9) and (12) removes the principal
numerical difficulty associated with the slow convergence of the series at large field strength. In
our example – see Table 1 –, the highest index encountered in the calculation is n̂ = 37748736,
the total number of evaluations of terms [an + dn] is 405. The ratio of these two numbers is
roughly 93000, which corresponds to an acceleration of the calculation by roughly five orders of
magnitude.

The CNCT transforms the slowly convergent series expansions (9) and (12) into the rapidly

converging sequence of the delta transforms δ
(0)
n

(

1,S0

)

(see Table 1). In general, no direct in-
terpretation is available for the delta transforms [59], just as much as Padé approximants [37]
lack a direct physical interpretation. At best, the delta transforms can be viewed as the analytic
continuations (“extrapolations”) of the partial sums (66) of the Van Wijngaarden transformed
alternating series Sn to n → ∞.

6 Conclusion

We have investigated questions related to the representation of the quantum electrodynamic
(QED) effective Lagrangian and its numerical evaluation. In Sec. 2, we recall our previous
results given in [7, 8] for special function representations of the effective Lagrangian, and we
clarify the mathematical notation used in the special function representations (9), (10) and
(12). The representation (12) unifies the real and imaginary parts.

In Sec. 3, we present a detailed description of the proof of a certain mathematical identity
(15) used in our investigations [7, 8]. In Sec. 4, we discuss the question as to whether the QED
effective Lagrangian is invariant under certain types of electric-magnetic duality. We conclude
that gauge and Lorentz symmetry guarantees invariance under a general class of dualities (55)
to all loop orders; but discrete representations of the effective Lagrangian may not realize this
general dual invariance in a strict sense, so that only a smaller duality subgroup (Type II)
remains.

In Sec. 5, we show that the convergence over the summation index n of the special function
representation (9) can be accelerated efficiently by the application of the CNCT transforma-
tion [42]. In this way, the computing time is reduced by several orders of magnitude. Based
on the results of the current paper, we expect to carry out detailed studies related to various
projected and ongoing experiments and astrophysical phenomena [1,12–14,16] involving strong
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static-field conditions (or fields with frequencies that are small as compared to the electron
Compton wavelength).

Acknowledgements

The authors wish to acknowledge very helpful conversations with Professors G. Soff, W. Dit-
trich, D. G. C. McKeon, and V. Elias. H.G. acknowledges financial support by the Deutsche
Forschungsgemeinschaft under contract Gi 328/1-1. S.R.V. acknowledges a supporting grant
from the Natural Sciences, Engineering and Research Council of Canada (NSERC).

A Model Example

Consider as a model example the integral

M(a, b) =

∫ ∞+i η

i η
dt exp(−t)

(

1

1 − i a t
+

1

1 + i a t
+

1

1 − b t
+

1

1 + b t

)

, (69)

where a and b are a priori real variables, but can be also be generalised to the complex case
a → z1, b → z2. The integrand is invariant under the four different “duality transformations”
a → ±ib, b → ±ia (∓ia), but the integral is not. Owing to the poles of the integrand, the
imaginary parts change sign when the complex arguments a and b are varied such that one of
the poles of the integrand is crossed. When considered as a function of complex arguments z1
and z2, the function M(z1, z2) has branch cuts along the positive and negative imaginary z1 axis
and along the positive and negative real z2 axis. Furthermore, by inspection of the integrand we
conclude that the argument ranges for z1 and z2 are

− π/2 ≤ arg(z1) < π/2 ,

0 ≤ arg(z2) < π . (70)

From these relations it becomes clear that if we want to stay on the principal branch in the
complex z1, z2 plane, then we have to modify the arguments of a and b in accord with the
restrictions given by (70). This singles out the duality of Type II

a → −i b , b → i a . (71)

We conclude the discussion of the model example by pointing out that it can be expressed as

M(a, b) = lim
ǫ→0+

{

i

a

[

exp

(

i

a

)

Γ

(

0,
i

a

)

− exp

(

−
i

a

)

Γ

(

0,−
i

a

)]

+
1

b

[

exp

(

1

b

)

Γ

(

0,
1

b

)

− exp

(

−
1

b

)

Γ

(

0,−
1

b
+ i ǫ

)]}

. (72)

There is a certain analogy to the special function representation (12).
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