
QED: Quick Error Detection Tests for Effective Post-Silicon Validation
Ted Hongl, Yanjing Lil, Sung-Boem Park3, Diana Muil, David Linl, Ziyad Abdel Kaleql,

Nagib Hakim3, Helia Naeimi3, Donald S. Gardner3, Subhasish Mitral, 2

Abstract

I Dept. of EE and 2Dept. of CS
Stanford University

Stanford, CA 94305 USA

Long error detection latency, the time elapsed between the
occurrence of an error caused by a bug and its manifestation as a
system-level failure, is a major challenge in post-silicon validation
of robust systems. In this paper, we present a new technique called
Quick Error Detection (QED), which transforms existing post
silicon validation tests into new validation tests that significantly
reduce error detection latency. QED transformations allow flexible
tradeoffs between error detection latency, coverage, and
complexity, and can be implemented in software with little or no
hardware changes. Results obtained from hardware experiments on
quad-core Intel® Core™ i7 hardware platforms and from
simulations on a multi-core MIPS processor design demonstrate
that:

I . QED significantly improves error detection latencies by six
orders of magnitude, i.e., from billions of cycles to a few thousand
cycles or less.

2. QED transformations do not degrade the coverage of validation
tests as estimated empirically by measuring the maximum
operating frequencies over a wide range of operating voltage points.

3. QED tests improve coverage by detecting errors that escape the
original non-QED tests.

1 Introduction
The goal of post-silicon validation is to test manufactured

chips in actual systems to ensure that no bugs escape to the field. A
wide variety of validation tests - random instruction tests,
architecture-specific focused tests, and end-user applications such
as operating systems, games, and scientific applications [Intel 03] -
are run, during which system responses are monitored for
anomalous behaviors such as crashes, hangs, exceptions, or
incorrect results. Any observed anomaly is debugged to determine
its cause. The effort to debug from observed failures dominates the
overall post-silicon validation effort for processors [Josephson 06],
especially for elusive electrical bugs. Electrical bugs manifest
themselves only under specific operating conditions (voltage,
frequency, and/or temperature) [Patra 07] and may be caused by
design marginalities, synchronization problems, noise, etc. It is
critical to detect these bugs quickly after they manifest to enable
effective debug.

Error detection latency, the time elapsed between the
occurrence of an error caused by a bug and its detection at an
observable point in the test program, can be as long as several
billions of cycles. Long error detection latencies limit the
effectiveness of existing post-silicon debug techniques that rely on
simulation, formal analysis, and tracing. Simulation is orders of
magnitude slower than actual silicon [Olukotun 98]; formal
analysis over more than hundreds of cycles can be difficult [Ho
09]; and tracing is limited by the availability of on-chip storage
[Abramovici 06]. In addition, long error detection latencies may
also result in increased error masking, i.e., an error may not
propagate to an observable point.

3Intel Corporation
Santa Clara, CA 95054 USA

Inter-core interactions in multi-core System-on-Chips (SoCs)
can result in extremely long error detection latencies. For example,
suppose that an erroneous value caused by an electrical bug in Core
I is stored into shared memory (Fig. I). Several millions of cycles
may elapse before a bug-free core (Core 2 in Fig. I) eventually
loads and processes the erroneous value, resulting in a system
failure. The time from Core I 's store to Core 2's load, the inter
core store-to-load latency, is a lower bound on the error detection
latency. Additional cycles, including additional inter- and intra
core stores and loads, may be required to propagate the error to an
observable point in the test program. Figure 2 presents the
distributions of inter-core store-to-Ioad latencies for two
representative programs from the Splash2 benchmark suite [Woo
95], executed on a simulated 4-core 4-way out-of-order MIPS
processor [Renau 05]. For FMM, more than 82% of all inter-core
store-to-Ioad latencies are greater than one million cycles and more
than 97% are greater than 100 thousand cycles. As discussed
earlier, such long error detection latencies are very challenging for
post-silicon debug.

This paper presents Quick Error /2etection tests or QED tests
to overcome the error detection latency challenge during post
silicon validation of processors. QED tests are obtained by
transforming existing post-silicon validation tests into new tests
with significantly lower (i.e., better) error detection latencies. QED
tests are enabled by a variety of QED transformations, requiring
software-only or hardware-software changes. Furthermore, QED
transformations allow flexible tradeoffs between error detection
latency, coverage (i.e., the percentage of bugs detected by a test
program), and complexity (i.e., additional hardware and software
modifications required for QED). Target error detection latencies
are configurable and can range from very few cycles to a few
thousand cycles, depending on the desired tradeoffs.

Core 1 Core 2
<code> <code>

A <- 8+8. � 0<- Mem[C]
VERY

<more code>
LONG

<more code>

Mem[C] <- A
!

E <- Mem[O]

<more code> SEGFAULT

Figure 1. Illustration of long error detection latency due to
inter-core interactions.

100% ,-------------------------------------,

»80%
u
ai 60%
:::J �40%

u..
20%

0%

• Radix • FMM

(from Splash2 benchmark)

Simulated 4-core
4-way 000 CMP

0% 0% 2% 0% 1 % 2%
[1,1K) [1K,10K) [10K,100K) [100K,1M) i!1M

Store-to-Ioad latencies (cycle count)

Figure 2. Distribution of inter-core store-to-Ioad latencies.

Paper 5.2 INTERNATIONAL TEST CONFERENCE 1

978-1-4244-7207-9/10/$26.00 ©2010 IEEE

This paper targets electrical bugs for three reasons:

I. Electrical bugs are often very time-consuming to debug
[Josephson 01].

2. Electrical bugs can be modeled as bit-flips at flip-flops. This is
an effective model because most electrical bugs eventually
manifest themselves as incorrect values arriving at flip-flops
[McLaughlin 09]. The existence of such electrical bug models
allows for simulation experiments.

3. There is little consensus about logic bug models [ITRS 09].

Results obtained from both hardware experiments and
simulations demonstrate that:

I. QED significantly improves error detection latencies by six
orders of magnitude, from billions of cycles to a few thousand
cycles or less. With such short error detection latencies, bugs in
processor cores can be detected very fast and can be effectively
analyzed using debug techniques such as IFRA [Park 09],
Backspace [De Paula 08], and trace buffers [Abramovici 06].

2. QED transformations do not degrade coverage of validation tests
as observed empirically by measuring Fmax values, the maximum
operating frequency values over a wide range of operating voltage
points [Josephson 02].

3. QED tests improve coverage by detecting errors that escape the
original non-QED tests. Coverage is often limited by silent errors
and masked errors. A silent error occurs when a bug causes an
error that is propagated to an observable point, but insufficient
checking misses the error. A masked error occurs when a bug
causes an error that is not propagated to an observable point
[Barton 90]. Since comprehensive checks are instrumented by
QED transformations, occurrences of silent and masked errors can
be significantly reduced.

The major contributions of this paper are:

1. Introduction of the QED idea for post-silicon validation of
processors.

2. Experimental results obtained from quad-core Intel® Core™ i7
platforms demonstrating six orders of magnitude reduction (i.e.,
improvement) in error detection latencies using QED. These results
are also confirmed by detailed simulations of a 4-core 4-way out
of-order MIPS processor.

3. Empirical experimental results obtained from our hardware
platforms demonstrating that a QED test can detect close to 4X
more errors compared to a test utilizing only end-result-checks that
compare actual program outputs to expected outputs.

4. Empirical analysis of QED's impact on coverage, as measured
by Fmax, showing that a) QED tests do not degrade coverage, and
b) QED tests improve coverage. These results are demonstrated
using shmoo plots, spanning a wide range of voltage and frequency
operating points, obtained from our hardware platforms.

Section 2 introduces QED transformations. Section 3 presents
hardware- and simulation-based experiments, as well as
experimental results demonstrating the effectiveness of QED.
Related work is presented in Sec. 4, followed by conclusions and
future work in Sec. 5.

2 QED Transformations
The idea of QED is inspired by concurrent error detection

used in fault-tolerant computing, e.g., [Lu 82, Mahmood 88, Oh
02a, 02b, Rotenberg 99, Saxena 00]. However, post-silicon
validation introduces unique requirements and opportunities
distinct from fault-tolerant computing:

I. Unlike fault-tolerant computing, post-silicon validation tests
do not need fault containment and recovery.

2. Unlike fault-tolerant computing where "high-level" checks are
generally preferred to reduce performance penalties, some
performance penalties may be acceptable in post-silicon validation.
Instead, minimizing error detection latency is of paramount
importance, since debug time rather than test execution time is a
major bottleneck.

3. In post-silicon validation, test program inputs may be known a
priori [Bentley 01]. This presents a unique opportunity for
aggressive checking: QED transformations may be optimized for
the corresponding test inputs.

4. Transformations for post-silicon validation tests must not
adversely degrade coverage.

Compared to fault-tolerant computing, the first three aspects
suggest that QED transformations can be "simpler." However, the
last constraint requires that QED transformations must provide
enough flexibility to avoid degradation of coverage.

The next two sections present two families of QED
transformations. Both families are based on the concept of
instruction duplication and comparison of results produced by the
original and the duplicated code. With proper granularity of
instruction duplication and checking, errors caused by bugs can be
quickly detected, provided that the original and the duplicated
blocks of instructions are not identically affected by the errors. For
intermittent electrical bugs, it is unlikely that the same error would
appear in two separate executions of the same code [Patra 07]. The
concept of QED can be further extended to reduce the likelihood of
identical error effects by executing the original and duplicated code
blocks "differently" through the incorporation of design diversity
into QED (e.g., through data, time, or algorithmic diversity) [Mitra
02, Oh 02b]. A comprehensive evaluation of such diversity
enhanced QED is beyond the scope of this paper.

2.1 Error Detection by Duplicated Instructions for

Validation (EDDI-V)

Error Detection by Duplicated Instructions for Validation
(EDDI-V) is a QED transformation that extends the EDDI
technique used in fault-tolerant computing [Oh 02a]. EDDI-V
bounds target error detection latency and provides configurability
to trade off target error detection latency for less intrusiveness.
Here, intrusiveness is loosely defined as the amount of "deviation"
in the execution behavior of a QED test from that of the original
test (due to the incorporation of QED). EDDI-V does not require
hardware modifications and can be automated.

EDDI-V strategically duplicates instructions and compares
their results. As illustrated in Fig. 3, each "block" of instructions is
duplicated and a check is inserted to compare the results of the two
blocks. If the check detects any error that occurs in these blocks,
then the error detection latency is bounded by the sum of two terms:

1. The time elapsed between the start of the original block and the
end of the duplicated block.

2. The time it takes to perform the check.

This can provide a great reduction in error detection latency
compared to the original program, which may detect errors only
after a visible failure (e.g., program crash) or using its original
checks (if available, e.g., with end-result-checks that compare
actual program outputs to expected outputs). EDDI-V and EDDI
have different tradeoffs and requirements. EDDI strikes a balance
between performance impact and the need for error containment
and recovery. As a result, duplicated instructions and checks are

Paper 5.2 INTERNATIONAL TEST CONFERENCE 2

inserted before each store and branch instruction [Oh 02a].
Targeting post-silicon validation, the performance impact of EDDI
V's frequent checking is not a primary concern. Instead, we
support flexible configurability in EDDI-V to trade off target error
detection latency for less intrusiveness. This is achieved by varying
two parameters: Inst_min and Inst_max that correspond to the the
minimum and maximum number of original instructions executed
before any instructions inserted by QED execute (Inst_min must be
less than or equal to Inst_max by definition). Increasing Inst_min
decreases intrusiveness, and vice-versa. Decreasing Inst_max
increases the target error detection latency, and vice-versa. Note
that, unlike Inst_max which can always be satisfied, Inst_min is a
"soft constraint": although we make a best effort to satisfy Inst_min,
there are some cases in which this cannot be done. For example,
Inst_min cannot be satisfied if the original code has less than
Inst min instructions.

Original code QED code

BLOCK 0 BLOCK 0
.. .,Error produced!'" ..

Short error { DUP BLOCK 0 BLOCK 1
detection" ! CHECK

latency

OBSERVED Long error
FAILURE , ., detection

• latency

BLOCK 1

DUP BLOCK 1
CHECK 1

Figure 3. Error detection latency of original vs. EDDI-V
based QED test.

EDDI-V is implemented by reserving half of the general
purpose registers and memory space for the original instructions,
while the other half is used by the duplicated instructions. For
example, in Fig. 4a, the two original instructions in the body
section of the code use four registers (A, B, C, and D). These two
instructions are duplicated, and another set of registers (A', B', C,
and D') is used by the duplicated instructions. In situations where
there are insufficient registers, values can be stored temporarily in
memory, which is also partitioned into two halves to be used by the
original and duplicated instructions, respectively. Values stored in
memory are then re-loaded for comparison (Fig. 4b). Note that,
even with large Inst_min, some intrusiveness may remain due to
the effects of the above code changes. Each half of the general
purpose registers and memory space are identically initialized so
that original and duplicated instructions perform identical
operations and obtain identical results in a bug-free system.
Checking is performed by comparing the results of the original
instructions vs. their duplicates. In the case of arithmetic and logic
operations, the contents of the destination registers in both the
original and duplicated instructions are compared; in the case of
memory access operations, values loaded from or stored to memory
are compared. Any mismatch in the comparison indicates an error.

Special analysis is required for certain code structures such as
loops, conditionals, and synchronization primitives such as locks.
For example, a small loop may contain fewer instructions than the
desired Inst_min. In this case, the loop is unrolled so that multiple
iterations are executed without intervening branches. This way,
larger blocks consisting of more than Inst_ min and less than
Inst max instructions can be constructed. These blocks are then
duplicated and checks are inserted. Likewise, it may not be
possible to divide a loop body containing more than Inst_max
instructions into blocks with more than Inst min instructions each.
In this case, the loop can also be unrolled until the unrolled loop

body can be divided into blocks that satisfy the desired Inst _min.
Figure 5 shows an example of loop unrolling, where Inst_min =

Inst_max = 4. The original code has a loop body containing only
two instructions, which is less than Inst _min. It is unrolled so that
the body has four instructions. The unrolled loop body is then
duplicated, and checks are inserted. For conditionals, we consider
each execution path (including the paths of any nested conditionals)
separately, and divide the instructions of each path into blocks of
instructions satisfying both Inst_min and Inst_max. Note that in
order to create such blocks, we may need to copy or move some
instructions before or after the conditional into each execution path
of the conditional. For locks, we ensure that the original and
duplicated code blocks are protected by the same lock. In the case
where synchronization primitives are implemented using custom
code, some manual intervention may be necessary.

Original code

Init:
Af-5
B f-1
C f-3
D f-Oxf

EDDI-V code
(a) (b)

Init:
Af-5
A' f-5.

D f-Oxf

Body:
Af-A+ B
Cf-D- B

¢ D ' f-Oxf

Body:
Af-A+B
Cf-D-B
A' f-A' + B'
C' f-D' - B'
CHECKA==A'
CHECKC ==C'

Figure 4. EDDl-V transformations: (a) with half of all general
purpose registers reserved, (b) with no registers reserved

and register values stored in memory.

Original code Unrolled code EDDI-V code

LO:
Jf-JopB
I f-I + 1
IF I < N

GOTOLO

LO:
Jf-JopB
I f-I + 1
Jf-JopB
I f-I + 1
IF I < N

GOTOLO

LO:
Jf-JopB
I f-I + 1
Jf-JopB
I f-I + 1
J' f-J' op B'
I' f-I' + 1
J' f-J' op B'
I' f-I' + 1
CHECK J ==J'
CHECK I == I'
IF 1< N

GOTO LO

Figure 5. EDDI-V loop unrolling. The number of instructions
in the original loop body is less than InsLmin = InsLmax = 4.
Additional code (not shown due to space limitations) checks

if N is odd and groups an extra loop iteration with two
instructions outside of the loop to satisfy the constraints.

2.2 Redundant Multi-Threading for Validation

(RMT-V)

Redundant Multi-Threading for Validation (RMT-V) is
another QED transformation inspired by fault-tolerant computing
[Mukherjee 02, Rotenberg 99, Saxena 98, 00, Wang 07]. Unlike
EDDI-V, which executes the original, duplicated, and check
instructions on the same thread, RMT -V executes the original
instructions on one thread and uses an additional thread to execute
the duplicated and check instructions. The two RMT-V threads can
be simultaneously executed on different cores. As a result, the

Paper 5.2 INTERNA TIONAL TEST CONFERENCE 3

execution of the original instructions would potentially be less
affected by the execution of the duplicated and check instructions
compared to EDDI-V, implying reduced intrusiveness. Like EDDI
V, RMT-V also provides flexible configurability to trade off target
error detection latency and intrusi veness.

RMT-V is implemented by creating two copies of the original
test code: a main thread and a check thread. The main thread,

containing the original instructions, is instrumented with additional
instructions to transmit its results to the check thread. The check
thread, containing the duplicated instructions, is instrumented with
additional instructions to receive the main thread's results and to
compare them against its own results. This communication occurs
via FIFO queues that can be implemented in software or hardware;
a separate queue is needed for each main thread and check thread
pair. Figure 6 illustrates the RMT-V mechanism. In this example,
the main thread executes a block of three instructions, enqueues its
results (J and K), and continues to run ahead because there is no
need for error containment. The check thread concurrently executes
its duplicated block and then dequeues the two values to compare
with its own results. Techniques exist to ensure that neither the
main thread nor the check thread execute too far apart from each
other [Mukherjee 02, Rotenberg 99]. For example, the check thread
can speed up its execution by using results transmitted from the
main thread (this way, some dependencies in the check thread's
execution can be eliminated, so more instructions can be executed
in parallel). Therefore, the target error detection latency of RMT-V,
as illustrated in Fig. 7, is bounded by the sum of two delays:

I. The time it takes the main thread to execute a block of
instructions.

2. The delay till after the check thread checks the results of the
block, which is the sum of the time it takes the main thread to
enqueue the results, the time the results wait in the queue, and the
time it takes the check thread to perform the checks.

Original code Main thread Check thread

Init:
A�.O

D�O

Body: ¢
J�AopB

K�CopD
STOREJ

Init:
A�O

D�O

Body:
J�AopB

K�CopD
STOREJ
EN QUEUEJ-

ENQUEUE K

Init:
A' �O

D'�O

Body:
J' �A' op B '

K' � C' op D'
STORE J'
DEQUEUEJ

�� CHECKJ ==J'
It DEQUEUE K

CHECK K== K'

Figure 6. RMT-V transformation.

Error� J �Aop B
produced! K � C op D

L�E op F 0
STOREJ �
ENQUEUEJ

J' �A' op B'
K' �C'op D'
L' � E' op F'
STOREJ'
DEQUEUEJ @
CHECK 'i.i>

J==J' : LlS'Error
•

detected!

Figure 7. RMT-V error detection latency illustration.

RMT-V can be flexibly configured to trade off intrusiveness
and target error detection latency by varying three parameters:

1. Inst_min and Inst_max, the minimum and maximum number of
instructions executed before an enqueue is encountered,
respectively. The effects of varying these two parameters on

intrusiveness and target error detection latency are the same as
described in Sec. 2.1 for EDDI-V. Note that, even with large
Inst_ min, some intrusiveness may remain, since the main thread
may still be perturbed by the check thread, e.g., via a shared cache.

2. Transmit overhead, the number of instructions needed to
enqueue a single register value into the FIFO. A single enqueue is
required to transmit each register value to be checked from the
main thread to the check thread. A lower transmit overhead means
that QED interrupts the flow of the original test for a shorter
amount of time per check, leading to potentially reduced
intrusiveness while maintaining target error detection latency.

Transmit overhead can range from a few instructions (RMT-V
without any hardware support) to zero (RMT-V with minor
hardware modifications). We present three possible
implementations of RMT-V below, with various options ranging
from software-only techniques to hardware-assisted techniques. A
comparison of these three techniques is presented in Table I.

Software RMT-V (S-RMT-V): RMT-V can be implemented
entirely in software with a small transmit overhead of three
instructions per enqueue operation: an add instruction to increment
a pointer to the next empty queue location, and two store
instructions that store the data into the queue and mark it as valid.
Our implementation utilizes the idea of lock-free queues [Michael
96] and does not require any locks to access the FIFO queues.

S-RMT-V with Hardware Queues (S-RMT-V-HQ): With
queues implemented as hardware FIFOs (Fig. 8), the transmit
overhead can be reduced to a single store instruction per enqueue
operation: a single store instruction is able to specify the value to
transmit in its data field and the destination FIFO in its address
field. Small hardware modifications are needed to implement the
FIFO, but no modifications to the processor cores are needed since
the FIFOs can be accessed through memory-mapped VO.

Hardware RMT-V (H-RMT-V): The intrusiveness of QED
can be greatly reduced by implementing RMT -V in hardware -
since no additional instructions are inserted into the main thread of
H-RMT-V, the main thread's execution would be "similar" to that
of the original test thread, although slight deviations between the
execution of the two threads may still be possible due to cache
effects, non-deterministic events (e.g., interrupts), and so on. To
implement H-RMT-V, each core is augmented with a monitor (Fig.
8) that automatically enqueues the results of instructions to be
checked. The monitor, similar to that used in [Mahmood 88, Nakka
04], observes committed instructions, determines if any instruction
should be checked (e.g., the monitor can be implemented to check
every store instruction, or every other add instruction, etc.), and, if
so, directly sends an enqueue command to the appropriate
hardware FIFO. This results in zero transmit overhead.

• - Logic added for S-RMT-V-HQ and H-RMT-V
D - Logic added for H-RMT-V

Figure 8. Hardware support for S-RMT-V-HQ & H-RMT-V.

Paper 5.2 INTERNA TIONAL TEST CONFERENCE 4

Table 1. Comparsion of RMT-V implementation techniques.

S-RMT-V
S-RMT-V-

H-RMT-V
HQ

Transmit overhead 3 1 0
(per enqueue) instructions instruction

Intrusiveness Small Smaller Smallest

Error detection
Flexible Flexible Small

latency

Hardware
None Very small Some

modifications

3 Hardware and Simulation Experiments and
Results
Key metrics for QED evaluation include error detection

latency and coverage. Both of these metrics are very difficult to
measure in hardware. Without sophisticated debug equipment, it is
extremely difficult to identify the exact point in time when an error
occurs. Similarly, it is very difficult to determine whether a QED
test alters the system's internal electrical state in a way that can
adversely affect coverage compared to the original test.

3.1 Hardware Experiments and Results

Figure 9 shows a quad-core Intel® Core™ i7 processor
platform used for the evaluation of QED. The BIOS of the
DX58S0 motherboard is used to vary the operating voltage and
frequency of the processor. A custom-designed temperature
controller is used to keep the chip package at a fixed temperature.
A debug tool attached to the system's debug port is used to control
and observe system states (e.g., register and memory contents, and
operating voltage and frequency values).

Figure 9. Quad-core Intel® Core™ i7 system with a DX58S0
motherboard, a temperature controller, and a debug tool.

3.1.1 Error Detection Latency Experiment

The difficulty in measuring error detection latencies in a
hardware platform lies in not being able to identify the exact point
in time when an error occurs. To overcome this challenge, we
create a vulnerability window during which conditions are set so
that errors may occur. The start of this window serves as a lower
bound on when an error (if any) actually occurs, which allows us to
obtain the injection-to-detection latency, the time between the start
of the vulnerability window and error detection. Injection-to
detection latency is an upper bound (i.e., is pessimistic) for error
detection latency.

By sweeping frequency, voltage, and temperature values, we
first identified conditions under which the system would operate
with and without errors. By programming the desired settings using
the debug tool, the window of vulnerability is created by
temporarily switching from a condition in which the system runs
without error (i.e., a reliable operating condition), to a condition in
which errors may occur (i.e., an unreliable operating condition),

and back. Therefore, any error must have occurred during the
window of vulnerability, which lasts for no more than a few
hundred million cycles.

In our vulnerability-window-injection experiment, the reliable
and unreliable operating conditions (voltage-frequency pairs) were
chosen to be (1.02V, 1.60Hz) and (1.02V, 3.20Hz), respectively,
and the package temperature was fixed at 30°C. The reliable
operating condition was chosen with large frequency margins to
ensure that the system operates without error, while the frequency
of the unreliable operating condition was chosen to be only slightly
faster than the frequency that the processor can reliably support at
1.02V. By fixing the voltage at 1.02V and reducing the frequency
by a single step of 133 MHz below 3.2 OHz, no more than two
QED checks detected error(s) during each of 10 two-hour test runs
(using the Linpack test described below). Moreover, at 1.02V and
two steps (Le., 266 MHz) below 3.20Hz, no errors were detected
for the entire duration of 10 two-hour test runs.

The validation test used in this experiment is the Linpack
benchmark, which is a widely-used high-performance computing
benchmark [Dongarra 03]. The Linpack test used in our experiment
executes a main loop for two hours, and each main loop iteration
performs the same operations. We transformed the original
Linpack program into a QED test by instrumenting EDDI-V at the
source code level. For every arithmetic or logic statement, we
duplicated the statement, stored the result in a different variable,
and compared this result to the original (Fig. 10).

Main loop
while (...) {

block 0
block 1

(a)

Original code in block k
for (i = 1; i < = N; ++i)

for (j = 1; j <= N; ++j)
b[i j = b[i j - A[i][j j* x[j j;

EDDI-V version �
for (i = 1, ip = 1; i <= N; ++i, + +ip)

for (j = 1, jp = 1; j <= N; ++j, ++ jp) {
b[i j = b[i j- A[i][j j* x[j j;
bp[ip j = bp[ip j - Ap[ip][jp j * xp[jp j;
check (b[ij == bp[ipj) ;
check (j == jp);
check(i==ip);

(b)
Figure 10. (a) Unpack program structure.

(b) Source code level EDDI-V transformation.

Figure 11 a shows the experiment flowchart:

1. We first selected t and injected a vulnerability window t cycles
after each main loop iteration. The value of t is arbitrarily chosen to
be to initially.

2. When the Linpack test finished execution after two hours I, we
examined the test log file to determine if any QED check detected
an error in any main loop iteration. Note that, although we injected
vulnerability windows in the same way for all main loop iterations,
errors were not necessarily observed in all iterations.

3. If no error was detected, we selected another arbitrary initial
value of t and repeated from Step 1. Otherwise, we performed an

I The system may crash within the two hours, before the QED test
detects and logs an error. In these cases, we restarted the test until
the cumulative test run time reached two hours. We are not able to
report the cases where the injection of a vulnerability window
resulted in a crash - the limitations of our experiment setup prevent
us from accurately capturing injection-to-detection latencies in
these cases.

Paper 5.2 INTERNA TIONAL TEST CONFERENCE 5

iterative procedure to move the start of the vulnerability window
closer to when an error was first detected:

3a. We incremented (by L'i (L'i is on the order of thousands of
cycles) and ran the Linpack test for two hours again. Vulnerability
windows were injected for every main loop iteration (cycles after
the start of the main loop iterations.

3b. We examined the test log files to determine if the same
QED check continued to be the first to detect an error.

3c. If errors continued to be first detected by the same QED
check, we repeated from Step 3a. Otherwise, we decremented (by
L'i, and obtained injection-to-detection latency by subtracting (from
(d, the cycle count from the start of the main loop iteration to when
an error was first detected. td is the absolute difference between the
cycle count when an error is first detected and the cycle count at
the start of the corresponding main loop iteration; both cycle counts
were obtained by reading a processor timestamp counter and
recorded in the test log file.

Fig. I I b illustrates the iterative procedure (Steps 3a - 3c
described above). For a specific initial value t = to, if any error was
detected by a QED check, we iteratively move the start of the
vulnerability window closer to when the error was detected, while
ensuring that the QED check that first detected an error remains the
same. This allows us to obtain an accurate estimate of the injection
to-detection latency, i.e., a tight upper bound for error detection
latency, because we ensure that manifestation of errors occurred
between the time when vulnerability windows were injected and
the time when the QED check first detected any error.

1. t = to (to arbitrarily chosen);

Inject vulnerability window t cycles after start of each
main loop iteration

o

3a. t = t +!J. (!J. is on the order of thousands of cycles);
Inject vulnerability window t cycles after start of each

main loop iteration

Yes

3c. t = t-!J.;
td = number of cycles between when an error was first

detected and the start of the corresponding
main loop iteration;

Injection-to-detection latency = td - t

(a) Vulnerability window injection experiment flow chart.

�':" t= to
\

,,'-, <' �
t=t:'''.;1:1 t=t 21:1 �

T ' Error Lt Error
Vulnerability window manifested detected

injected (iterative)

Sf II "
Vulnerability

window
removed

(b) Illustration of the iterative procedure to obtain accurate
injection-to-detection latencies.

Figure 1 1. Vulnerability window injection experiment on an
Intel® Core™ i7 platform.

3.1.2 Error Detection Latency Results

Following the systematic experiment procedure described in
Sec. 3.1.1, we obtained 75 injection-to-detection latency values.
The distribution for these 75 data points is shown in Fig. 12. Figure

12a shows the results of the EDDI-V-based QED Linpack test
when we take into account the QED checks. Results of the "non
QED" Linpack test shown in Fig. 12b were obtained by ignoring
the QED checks and only taking into account the program's end
result-checks. This allows us to compare injection-to-detection
latencies obtained by using end-result-checks only, and injection
to-detection latencies obtained by using QED checks, with respect
to the same error(s).

With QED, injection-to-detection latencies are all very short,
ranging from fewer than 1,000 cycles to - 6,000 cycles, as shown
in Fig. 12a. (Actual error detection latencies are even shorter
because injection-to-detection latency is only an upper bound). On
the other hand, without the QED checks (Fig. 12b), 72% of the
same 75 data points did not result in an error in the final program
output (when compared to pre-generated golden results), indicating
masked errors. Note that, we did not observe any case where end
result-checks detected an error but QED checks did not. For the
remaining 28%, although incorrect program results were detected
by end-result-checks, injection-to-detection latencies were on the
order of billions of cycles (even after we subtracted the latency
overhead introduced by QED instrumentation, including both the
duplicated and check statements).

100%
iJ' c:
� 50%
�

LL.
0% [0, 10K) [1 billion, 10 billion)

Measured injection-to-detection latencies with QED (cycle count)

(a) Linpack test using QED checks.

30% 72% masked 28%
>-
g20% errors
Q) :::J
1ir10%
u: 0% 0%

[0, 10K) [1 billion, 10 billion)

Measured injection-te-detection latencies
with end-result-checks (cycle count)

(b) Linpack test using only end-result-checks and not
taking into account QED checks.

Figure 12. Distribution of measured injection-to-detection
latencies for the Linpack test, which consists of 75 injection

to-detection latencies obtained from vulnerability window
injections that resulted in errors detected by QED checks but

not crashes.

Two key observations can be made from these results:

Observation (1): QED significantly reduces error detection
latencies by six orders of magnitude compared to the original
(non-QED) validation test. With QED, error detection latencies
are reduced from billions of cycles to a few thousand cycles or less.
These short latencies enable many existing debug techniques (such
as on-die trace buffers and IFRA) to be effectively used, not only
for single-core processors, but also for multi-core SoCs.

Observation (2): QED detects errors that would otherwise be

undetected by the original test program due to masking effects.

Paper 5.2 INTERNA TIONAL TEST CONFERENCE 6

In addition to reducing error detection latency, QED significantly
improves a test program's ability to detect errors.

3.1.3 Electrical Bug Coverage Analysis

We quantified the impact of QED on Fmax, which is often
used to detect electrical bugs [Josephson 06], by generating shmoo
plots across a wide range of voltage and frequency operating
points. We used two versions of the Linpack program: the original
non-QED version and an EDDI-V-based QED version (EDDI-V
was instrumented the same way as described in Sec. 3.1.1). The
non-QED version contains end-result-checks, which compare the
program's final results with golden expected outputs. Note that, the
coverage of non-QED test with end-result-checks is optimistic:
expected values needed by end-result checks may not be available
for all test programs (e.g, operating systems or games). Without
end-result-checks, silent errors may impair the coverage of non
QED tests. Since all QED tests are valid stimuli (i.e., they do not
introduce illegal states in the system), the Fmax values obtained
using QED tests are not pessimistic.

Figure 13 details the procedure for the shmoo experiment.
Both the QED and non-QED version of the test were run at least 10
times for each voltage and frequency operating point. The voltages
and frequencies were specified in the BIOS, and the package
temperature was fixed at 30°C. For each test run, the system was
reset and the program was executed for an hour or until a system
crash. Program outputs, including any errors detected by QED
checks or end-result-checks, were logged to a file for later analysis.

No

Sweep voltage (1.0125V to 1.1500V)
Sweep frequency (3.2GHz to 3.7GHz)

Run test for up to one hour
Record time stamp if an error is detected

Log final program results

Yes

Figure 13. Shmoo experiment to evaluate the coverage of
QED on an Intel® Core™ i7 platform. Two tests were run

(Lin pack with EDDI-V-based QED and the original Linpack
with end-result-checks).

3.1.4 Electrical Bug Coverage Results

Shmoo plots for the original Linpack (with end-result-checks)
and the EDDI-V-based QED Linpack test are presented in Fig. 14.
Each frequency and voltage operating point is classified as:

1. Did not boot - the machine could not boot and run the test.

2. Error detected - during at least one of the runs, an error was
detected by a check (an end-result-check or a QED check), or a
system crash occurred.

3. Passed - no errors were observed.

By comparing the two shmoo plots, we make three
observations in addition to the two presented in Sec. 3.1.3:

Observation (3): QED does not degrade coverage as quantified
by Fmax. As shown in Fig. 14, QED does not increase Fmax -
under no operating point did the QED test pass when the non-QED
test did not pass. This empirically establishes the fact that the QED
test continues to create and detect errors for the cases where the
original test creates and detects errors. We also observed the same
behavior with the MPrime stress test that performs the Lucas-

Lehmer primality test [Mersenne 10] (results are not shown due to
space limitations).

Observation (4): QED can improve coverage while significantly

improving error detection latency. This is demonstrated by the
voltage and frequency operating point in Fig. 14 that passes with
end-result-checks, but resulted in detected errors with QED
(labeled with. in Fig. 14a).

QED tests also detect errors more readily compared to non
QED tests. In Fig. 14, we annotated any operating point classified
as "error detected" with the fraction of runs in which an error was
detected or a crash occurred. For example, one operating point was
annotated with 0.9 in Fig. 14a, because QED checks detected errors
in 5 runs, the system cashed in 4 runs, and the test passed in 1 run.
The same operating point in Fig. 14b was annotated with 0.4,
because end-result-checks detected errors in 3 runs, the system
crashed in 1 run, and the test passed in 6 runs. For only one
operating point, the QED test detected errors lout of 10 runs while
the non-QED version detected errors 2 out of 10 runs. For all other
operating points, the QED test had more than or the same number
of "error detected" runs as the non-QED version.

Observation (5): Coarse-grained assertions alone may not be
sufficient to reduce error detection latencies and achieve high
coverage. By examining the test logs in which the time of each
error detection was logged, we computed the average difference
between the times it took end-result-checks to detect errors since
the start of the test run from the times it took QED checks to detect
errors. We observed that end-result-checks, which can be
considered as a type of coarse-grained assertion, took several
billion cycles longer to detect errors than QED.

Voltage (1.0125V -1.1500V)

N
'" � I--+--+-+--II--+--+-UI'-� M I--+--+-+--If-::I I
C"N �J: LL(!) N

!i
D Did not boot

• Error detected by QED or crash

Error detected by QED or crash vs. pass • for end- r esult- check due to error
masking (Le., coverage improvement)

Passed

(a) Linpack test with EDDI-V-based QED.
Voltage (1.0125V -1.1500V)

N
'" � 1-+--+-+-1-+--+-UI'-� M 1--+--+--+-+---' ::I I
C"N �J: LL(!)

N
!i

D Did not boot

• Err or detected by end- result- check
or crash

Passed

(b) Non-QED Linpack test with end-result-checks.

Figure 14. Linpack shmoo plots. Numbers in figures refer to
the fraction of runs in which errors were detected or a crash

occurred for a voltage and frequency operating point.

Paper 5.2 INTERNATIONAL TEST CONFERENCE 7

3.2 Simulation Results

We modeled a 4-core 4-way out-of-order MIPS processor
using both the SESC microarchitectural simulator [Renau 05], and
the RTL processor model from [Wang 05] that we modified to
support the MIPS instruction set architecture. We performed
simulations to achieve two objectives:

I. To estimate error detection latency values for the EDDI-V
based QED Linpack test program to confirm the hardware
experiment results in Sec. 3.1.2.

2. To characterize error detection latency values for the H-RMT
V-based QED technique from Sec. 2.2. Since H-RMT-V requires
hardware modifications, it cannot be evaluated on our existing
hardware platform.

The Linpack test program, along with two applications (FMM
and Radix) from the multi-threaded Splash2 benchmark suite [Woo
95], were used to create four different tests: Linpack with EDDI-V
based QED (described in Sec. 3.1); and Linpack, FMM, and Radix
with H-RMT-V-based QED. The microarchitectural simulator was
modified to support the H-RMT-V mechanism: memory-mapped
hardware FIFOs were added, and each core was modified to
automatically enqueue the values to be checked to a FIFO. In this
implementation of H-RMT-V, only the operands of store and
branch instructions are enqueued and sent to the check thread. The
implementation can be extended to support checking for other
types of instructions such as arithmetic and logic operations. Our
simulation results demonstrate that our current H-RMT-V
implementation enables sufficiently short error detection latencies
(Fig. 15). All H-RMT-V threads were run on different cores.

We used the RTL simulator to determine the time it takes an
error to affect the architectural state (general-purpose registers or
main memory). We injected a single-bit-flip error into one
randomly chosen flip-flop of the RTL processor model (out of a
total of 18,142 flip-flops). For 10,000 such random error injections,
errors were not masked in 36 cases (Le., the errors injected
eventually caused the architectural state to be different from that
obtained from the error-free executions); an average of 70 cycles
and a maximum of - 300 cycles elapsed before the injected errors
propagated to the architectural state. (Note that, we disregard one
case in which the injected error resulted in a deadlock before the
architectural state was affected.) These latencies are consistent with
those presented in [Wang 05]: almost all errors that eventually
affect the architectural state have affected the architectural state
within 500 instructions.

In a separate experiment, we determined the time it takes for
an error in the architectural state to reach a QED check. For each of
the four tests, we ran 15,000 experiments using the
microarchitectural simulator. For each experiment, we chose a
random instruction, flagged the instruction's result, and propagated
the flag via data dependencies until a QED check was reached.
Note that, we are not able to consider all cases of error masking
and the effects errors have on execution paths in these experiments.
However, with QED, short error detection latencies reduce the
amount of error masking that can occur before a check, and
extensive checking along all execution paths means that no matter
which path the execution follows, any error would quickly
encounter a check. Therefore, the error detection latency values
obtained from these experiments are realistic.

Figure 15 shows the distribution of latencies for errors in the
architecture state to reach a QED check. For the Linpack test with
EDDI-V-based QED, 99.4% of all non-masked errors reached a
QED check within 1,000 cycles. For the other three tests with H
RMT-V-based QED, 99.9% of all non-masked errors reached a

QED check within 1,000 cycles. A small portion of non-masked
errors (0.6% for EDDI-V and 0.1% for H-RMT-V) did not reach a
QED check within 1,000 cycles due to the limitations of our
specific implementations of QED. EDDI-V-based QED was
implemented at the source code level; therefore, we were not able
to instrument QED checks within system or library function calls.
Our implementation of H-RMT-V did not check all instructions,
but only the operands of store and branch instructions.

The distribution of error detection latencies would be similar
to that presented in Fig. 15. This is because the additional time it
takes for an error to propagate to the architectural state is very
small - even taking into account the average delay of 70 cycles or
even the maximum delay of - 300 cycles in addition to the latency
values presented in Fig. 15, the distribution remains similar. This
distribution is consistent with that obtained from the hardware
experiment discussed in Sec. 3.1.2.

100%

>u c
� 50% c:r � LL

0%

• FMM (H-RMT-V) 0 Linpack (EDDI-V)
IiiI Linpack (H-RMT-V) II Radix (H-RMT-V)

59%

[1,1K) [1K,10K) [10K, [100K, <!1M
100K) 1M)

Latencies for errors in the architecture state to reach
a QED check

Figure 15. Simulated distribution of latencies for errors in the
architecture state to reach a QED check.

3.3 Summary of Hardware and Simulation Results

Results obtained from experiments on Intel® Core™ i7
hardware platforms demonstrate that, QED not only significantly
improves error detection latencies from billions of cycles to a few
thousand cycles or less, but also reduces error masking and enables
a test to detect more errors. Results from simulations on a multi
core MIPS processor design confirmed QED's effectiveness in
improving error detection latencies. Our hardware experiments also
demonstrate that QED transformations do not degrade, but
improve, coverage of validation tests as estimated empirically by
measuring the maximum operating frequency values over a wide
range of operating voltage points: we observed that QED tests
detected errors at operating points in which non-QED tests were
unable to detect any errors.

4 Related Work
Prior research related to QED can be categorized into:

3. Post-silicon debug techniques: Long error detection latencies
pose major barriers to the effectiveness of post-silicon debug
techniques, especially for multi-core SoCs. As discussed in Sec.
3.1.2, by significantly reducing error detection latencies, QED can
enable more effective post-silicon debug. Many bug localization
techniques can benefit from QED, including those that rely on
failure reproduction [Yang 09b], simulation [Krstic 03], and
analysis of recorded signals [Park 09, 10]. Furthermore, QED can
complement many other techniques that facilitate post-silicon
debug, such as the selection of signals and intervals to be recorded
[Liu 09, Yang 08, Yang 09a], compression of recorded events

Paper 5.2 INTERNA TIONAL TEST CONFERENCE 8

[Anis 07, Vishnoi 09], and logic analysis or formal methods [De
Paula 08, Ko 08].

b. Post-silicon validation stimulus generation: QED is
applicable to and can transform a wide range of test programs into
corresponding QED tests. For example, QED can be applied to
automatically-generated functional tests [Benardi 08, Benso 08,
Krstic 02, Parvathala 02, Shen 98].

A further benefit of applying QED is that the transformed test
is "self-checking", i.e., it does not require a separate golden
response (e.g., created through simulation). Techniques presented
in [Raina 98] and [Wagner 08] can also generate such "self
checking" tests by using inverse operations to check the
correctness of test execution. QED can utilize these techniques to
incorporate diversity in its checking (which may be desirable as
discussed in Sec. 2). However, these techniques alone do not
provide mechanisms to ensure short error detection latencies, and
may not be able to check all operations (e.g., shift operations).

c. Post-silicon validation assertions: The creation and use of
assertions for validation is non-trivial: a design may have upwards
of 10,000 separate assertions, many of which are manually created
and must be kept up-to-date, and validated [Bentley 01]. While
automatic assertion generators [Ernst 07, Hangal 05, Li 10] have
been developed, the assertions they generate may not be applicable
for all system and program inputs. Furthermore, assertions may not
be able to detect all errors (for example, assertions may not be able
to check the outputs of an ALU unit). Reconfigurable logic can
ease implementation of assertions in hardware [Abramovici 06,
Boule 07, Gao 08]; however, one must be careful about selecting
the "right" set of assertions to be implemented in hardware. If
assertions are not carefully inserted, they may not be able to
achieve the desired error detection latencies (as shown in Sec. 3.1.4
for the case of end-result-check assertions).

By using transformation techniques such as EDDI-V and
RMT-V, QED overcomes the difficulties with assertions by
providing general and extensive checks that can be automatically
generated. Moreover, if any hardware assertions are available,
QED may benefit from them by "off-loading" some of its checking
to these assertions, thus introducing less intrusiveness to the
original validation test while achieving target error detection
latency.

d. Checking techniques for fault-tolerant computing: As
discussed in Sec. 2, the constraints and requirements for fault
tolerant computing and post-silicon validation are very different,
though both can utilize similar checking techniques [Lu 82,
Mahmood 88, Oh 02a]. For fault-tolerant computing, performance
impact and error recovery are major concerns. For post-silicon
validation, we must ensure that any instrumentation added to
validation tests does not adversely affect coverage and is sufficient
for low error detection latency. We may be able to reduce the
intrusiveness of QED by incorporating application-specific checks
[Huang 84, Saxena 94] developed for fault-tolerant computing.

5 Conclusions
Quick Error Detection (QED) is an effective technique that

overcomes the challenges of long error detection latencies in the
context of post-silicon validation of processors. In this paper, we
have presented results from comprehensive hardware experiments
and simulations to demonstrate that QED drastically improves error
detection latencies by six orders of magnitude, from billions of
cycles to a few thousand cycles or less. Such improvement in error
detection latencies can enable significant gains in post-silicon
validation productivity as well as significant reduction in the cost

of debug equipment. Moreover, our results empirically demonstrate
that QED improves coverage of post-silicon validation tests: by
applying QED to existing validation tests, we are able to detect
errors that would otherwise be undetected by the original non-QED
tests.

Future research directions of QED include: 1. Development of
a fully-automated framework for QED that includes an optimal mix
of a wide range of assertions and QED transformations, in addition
to the QED techniques presented in this paper. 2. Analysis and
optimization of QED's effectiveness over a wider range of
validation test suites and platforms. 3. Generalization of QED to
logic bugs. 4. Generalization of QED to uncore components of
SoCs.

6 Acknowledgements
This research is funded in part by the FCRP GSRC, SRC,

NSF, and Intel Corporation. The authors thank Rahima Mohammed
of Intel Corporation for help with hardware thermal management
and overall methodology.

7 References
[Abramovici 06] Abramovici, M., et al. , "A reconfigurable design

for-debug infrastructure for SoCs," Proc. Design Automation
Con!, pp. 7-12, 2006.

[Anis 07] Anis, E., and N. Nicolici, "On using lossless compression
of debug data in embedded logic analysis," Proc. IntI. Test Conf.,
pp. 1-10, 2007.

[Barton 90] Barton, J., et al. , "Fault injection experiments using
FIAT," IEEE Trans. Computers, 39(4), pp. 575-582, 1990.

[Bayazit 05] Bayazit, A. A., and S. Malik, "Complementary use of
runtime validation and model checking," IntI. Con! on
Computer-Aided Design, pp. 1052-1059, 2005.

[Bernardi 08] Bernardi, P., et al. , "An effective technique for the
automatic generation of diagnosis-oriented programs for
processor cores." IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, 27(3), pp. 570-574, 2008.

[Bentley 01] Bentley, B., and R. Gray, "Validating the Intel
Pentium 4 processor." Intel Technology Journal, 5(1), 2001.

[Benso 08] Benso, A., et al. , "March test generation revealed,"
IEEE Trans. Computers, 57(12), pp. 1704-1713, 2008.

[Boule 07] Boule, M., 1.-S. Chenard, and Z. Zilic, "Assertion
checkers in verification, silicon debug and in-field diagnosis,"
IntI. Symp. on Quality Electronic Design, pp. 613-620, 2007.

[De Paula 08] De Paula, F.M., et al. , "BackSpace: formal analysis
for post-silicon debug," Proc IntI. Conf. Formal Methods in
Computer-Aided Design, pp.l-I 0, 2008.

[Dongarra 03] Dongarra, 1., P. Luszczek, and A. Petitet, "The
UNPACK benchmark: past, present and future," Concurrency
and Computation: Practice and Experience. 15(9), pp. 803-820,
2003.

[Ernst 07] Ernst, M.D., et aI. , "The Daikon system for dynamic
detection of likely invariants," Science of Computer

Programming, 69(1-3), pp. 35-45, 2007.
[Gao 08] Gao, M., et aI. , "Time-multiplexed online checking: a

feasibility study," Proc. Asian Test Symp. , pp. 371-376, 2008.
[Hangal 05] Hangal S., et al . . "IODINE: a tool to automatically

infer dynamic invariants," Proc. Design Automation Con!, pp.
775-778, 2005.

[Ho 09] Ho, c.R., et al. , "Post-silicon debug using formal
verification waypoints," D V-Con, 2009.

[Huang 84] Huang, K.-H., and J. A. Abraham, "Algorithm-based
fault tolerance for matrix operations," IEEE Trans. Computers,
33(6), pp. 518-528, 1984.

Paper 5.2 INTERNATIONAL TEST CONFERENCE 9

[Intel 03] Intel Corp 2003, "Intel Platfonn and Component
Validation," http://download.intel.com/design/chipsets/labtour/
PVPT_ WhitePaper.pdf.

[ITRS 09] International Technology Roadmap for Semiconductors.
2009 ed.

[Josephson 01] Josephson, D. D., S. Poehhnan, and V. Govan,
"Debug methodology for the McKinley processor," Proc. Inti.

Test Conf, pp. 451-460, 2001.
[Josephson 02] Josephson, D. D., "The manic depression of

microprocessor debug," Proc. Inti. Test Con!, pp. 657-663,
2002.

[Josephson 06] Josephson, D., "The good, the bad, and the ugly of
silicon debug," Proc. Design Automation Con!, pp. 3-6, 2006.

[Ko 08] Ko, H. F., and Nicolici, N., "On automated trigger event
generation in post-silicon validation," Proc. Design Automation

and Test in Europe, pp. 256-259, 2008.
[Krstic 02] Krstic, A., et al. , "Embedded software-based self-test

for programmable core-based designs," IEEE Design & Test of
Computers, 19(4), pp.18-27, 2002.

[Krstic 03] Krstic, A., et al. , "Diagnosis-based post-silicon timing
validation using statistical tools and methodologies," Proc. Inti.
Test Conf, pp. 339-348, 2003.

[Li 10] Li, W., F. Alessandro, and S. A. Seshia, "Scalable
Specification Mining for Verification and Diagnosis," Proc.
Design Automation Con!, 2010,

[Liu 09] Liu, X., and Q. XU, "Trace signal selection for visibility
enhancement in post-silicon validation," Proc. Design

Automation and Test in Europe, pp. 1338-1343, 2009.
[Lu 82] Lu, D., "Watchdog Processors and Structural Integrity

Checking," IEEE Trans. Computers, 31(7), pp. 681-685, 1982.
[Mahmood 88] Mahmood, A., and E. J. McCluskey, "Concurrent

error detection using watchdog processors-a survey." IEEE
Trans. Computers, 37(2), pp. 160-174, 1988.

[McLaughlin 09] McLaughlin, R., S. Venkataraman, and C. Lim,
"Automated debug of speed path failures using functional tests,"
Proc. VLSI Test Symp. , pp. 91-96, 2009.

[Mersenne 10] "Great Internet Mersenne Prime Search."
http://www.mersenne.org/.

[Michael 96] Michael, M. M., and M. L. Scott, "Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms," Proc. Symp. Principles of Distributed Computing,
pp. 267-275, 1996.

[Mitra 02] Mitra, S., N. R. Saxena, and E. 1. McCluskey, "A design
diversity metric and analysis of redundant systems," IEEE

Trans. Computers, 51(5), pp. 498-510, 2002.
[Mukherjee 02] Mukherjee, S. S., M. Kontz, and S. K. Reinhardt,

"Detailed design and evaluation of redundant multithreading
alternatives," Proc. Inti. Symp. Computer Architecture, pp. 99-
1l0, 2002.

[Nakka 04] Nakka, N., et al. , "An architectural framework for
providing reliability and security support," Proc. Inti. Conf on
Dependable Systems and Networks, pp. 585-594, 2004.

[Oh 02a] Oh, N., P. P. Shirvani, and E. 1. McCluskey, "Error
detection by duplicated instructions in super-scalar processors,"
IEEE Trans. Reliability, 51(1), pp. 63-75, 2002.

[Oh 02b] Oh, N., S. Mitra, and E. 1. McCluskey, "ED4I: error
detection by diverse data and duplicated instructions," IEEE
Trans. Computers, 51(2), pp. 180-199, 2002.

[Olukotun 98] Olukotun, K., M. Heinrich, and D. Ofelt, "Digital
system simulation: methodologies and examples," Proc. Design

Automation Conf, pp. 658-663, 1998.

[Parvathala 02] Parvathala, P., K. Maneparambil, and W. Lindsay,
"FRITS - A microprocessor functional BIST method," Proc.
Inti. Test Conf, pp. 590-598, 2002.

[Park 09] Park, S.-B., T. Hong, and S. Mitra, "Post-silicon bug
localization in processors using instruction footprint recording
and analysis (IFRA)," IEEE Trans Computer-Aided Design
Integrated Systems, 28(10), pp. 1545-1558, 2009.

[Park 10] Park, S.-B., et al. , "BLoG: post-silicon bug localization
in processors using bug localization graphs," Proc. Design
Automation Conference, 2010.

[Patra 07] Patra, P., "On the cusp of a validation wall," IEEE

Design & Test of Computers, 24(2), pp. 193-196, 2007.
[Raina 98] Raina, R., and R. Molyneaux, "Random self-test

method - applications on PowerPC™ microprocessor caches,"
Proc. Great Lakes Symp. on VLSI, pp. 222-229, 1998.

[Renau 05] Renau, J., et al. , "SESC Simulator."
http://sesc.sourceforge.net, 2005.

[Rotenberg 99] Rotenberg, E., "AR-SMT: A micro architectural
approach to fault tolerance in microprocessors," Proc. Inti.

Symp. Fault-Tolerant Computing, pp. 84-91, 1999.
[Saxena 94] Saxena, N., and McCluskey, E. 1 . , "Linear complexity

assertions for sorting," IEEE Trans. Software Engineering,
20(6), pp. 424-431, 1994.

[Saxena 98] Saxena, N., and McCluskey, E. J., "Dependable
adaptive computing systems - the ROAR project," Proc. Inti.
Conf Systems Man and CybernetiCS, pp. 2172-2177, 1998.

[Saxena 00] Saxena, N., et al. , "Dependable computing and online
testing in adaptive and configurable systems," IEEE Design &
Test of Computers, 17(1), pp. 29-41, 2000.

[Shen 98] Shen, S., and J. A. Abraham, "Native mode functional
test generation for processors with applications to self-test and
design validation," Proc. Inti. Test Con!, pp. 990-999, 1998.

[Vishnoi 09] Vishnoi, A., P. R. Panda, and M. Balakrishnan,
"Cache aware compression for processor debug support," Proc.
Design Automation and Test in Europe, pp. 208-213, 2009.

[Wagner 08] Wagner, I., and V. Bertaco, "Reversi: post-silicon
validation system for modern microprocessors," Inti. Con! on
Computer Design, pp. 307-314, 2008.

[Wang 05] Wang, N. J., and S. 1. Patel, "ReStore: symptom based
soft error detection in microprocessors," Proc. Inti. Con!

Dependable Systems and Networks, pp. 188-201, 2005.
[Wang 07] Wang, C., et al. , "Compiler-managed software-based

redundant multi-threading for transient fault detection," Proc.
Inti. Symp. Code Generation and Optimization, pp. 244-258,
2007.

[Woo 95] Woo, S. c. , et al. , "The SPLASH-2 programs:
characterization and methodological considerations," Proc. IntI.
Symp. Computer Architecture, pp. 24-36, 1995.

[Yang 08] Yang, 1 . , and N. Touba, "Expanding trace buffer
observation window for in-system silicon debug through
selective capture," Proc. VLSI Test Symp. , pp. 345-351, 2008.

[Yang 09a] Yang, J., and N. Touba, "Automated selection of
signals to observe for efficient silicon debug," Proc. VLSI Test
Symp. , pp. 79-84, 2009.

[Yang 09b] Yang, Y., N. Nicolici, and A. Veneris, "Automated
data analysis solutions to silicon debug," Proc. Design

Automation and Test in Europe, pp. 982-987, 2009.

Paper 5.2 INTERNATIONAL TEST CONFERENCE 10

