
PH Y SIC AL REVIEW D VOLUME 22, NUMBER 2 15 JU L Y 1980

QED vacuum polarization in a background gravitational field and its effect on the velocity of
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We calculate in QED the contribution to the photon effective action from one-loop vacuum polarization

on a general curved background manifold, and use it to investigate the corrections to the local propagation
of photons. We find that the quantum corrections introduce tidal gravitational forces on the photons which

in general alter the characteristics of propagation, so that in some cases photons travel at speeds greater
than unity. The effect is nondispersive and gauge invariant. We look at a few examples, including a
background Schwarzschild geometry, and we argue that although these results are controversial they do not
in fact exhibit any obvious inconsistency.

I. INTRODUCTION

In QED the one-electron loop gives rise to the
Euler-Heisenberg effective Lagrangian for the
electromagnetic field. For low frequencies this
ls
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for polarizations respectively coplanar with and
perpendicular to the plane defined by B and the
direction of propagation. Here ~ is the angle be-
tween B and the direction of propagation.

In this paper we study the analogous problem of
how photon propagation in a background gravita-
tional field is influenced by vacuum polarization.
We again work in the one-loop approximation. If
vacuum polarization is ignored the properties of

photon propagation can be inferred from the equi-
valence principle, namely, that the photon travels
at the speed of light in a manner independent of
its polarization state, which itself remains un-

changed. Vacuum polarization is an effect in
which the photon exists for part of the time as a
virtual e e pair. This virtual transition confers
a size on the photon which is O(A.,}, where A, is

where m is the electron mass. As shown by Ad-
ler, the resulting equations of motion imply that
electromagnetic waves passing through a region of
intense magnetic field B will exhibit birefringence.
The velocities at which they travel are

II. THE EQUATION OF MOTION FOR THE PHOTON

FIELD

The equation of motion for the electromagnetic
field is

6W

w, (x)

where the effective action W is given by

W= Wo+ Wg

with

(2.1)

(2.2)

d'xv'-g S'„„~",

F,„=B„A„—Bg„.
(2.3}

the Compton wavelength of the electron. Having

by this means acquired a size, the photon can be
influenced in its motion by the curvature of the
gravitational field. The equivalence principle is
not applicable to such tidal effects.

We find, for example, that photon propagation
can be polarization dependent (gravitational bire-
fringence) and also that in certain circumstances
the speed of propagation is "faster than light. "
This is a surprising result and we discuss
carefully (1}the extent to which it implies an ob-
servable alteration of the causal structure of
events in space-time and (2) whether or not such
an alteration is in conflict with fundamental prin-
ciples.

In Secs. II and III we set up the machinery and
derive the equation for photon propagation in a
gravitational field. We present two independent
derivations, each of which serves to highlight a
different aspect of the argument. In Sec. IV-VI
we examine the consequences of our equation in
different gravitational backgrounds. We present a
general discussion and conclusions in Sec. VII.
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The second contribution to Eq. (2.2), Wq, incor-
porates the effects of virtual electron loops. It is
given by

FIG. 1. Flat-space vacuum polariz ation amplitude.

(2.4)

where &"' "" is the sum over one-particle-irre-
ducible Feynman diagrams. Since we are only
concerned with the propagation of individual pho-
tons, we need only consider the contribution
which is quadratic in &„(x). Gauge invariance
implies that W~ depends on E„„rather than A„
directly.

As indicated in the Introduction, the effect of
virtual electron loops is to give the photon a "size"
proportional to ~, . In order to calculate these
effects we will expand W~ in powers of ~, =m
and retain only the lowest term.

Since ~, is the only'length scale in the theory,
the coefficients in the expansion will be local func-
tionals of &„and g„„with a definite total number
of derivatives acting on them. More strictly, we
shouM argue that they will be algebraic combina-
tions of such functionals. However, this more
complicated possibility would imply a disconnec-
tedness structure which is not appropriate to the
one-particle-irreducible amplitudes G"&"'"~ we
are considering when we discuss Wq. In Sec. DI
the locality of the functional is verified by direct
calculation.

The lowest term in the expansion for Wq is
O(m ) and the appropriate number of derivatives
is four. There are only four independent gauge-
invariant and coordinate-invariant terms satisfy-
ing these criteria. They may be chosen to be

Wg —~ d & -g aRE„,P + bR„„E"E"~

magnetic fields.
The last coefficient d may be obtained from the

flat- space vacuum polarization amplitude associa-
ted with the diagram in Fig. 1. It yields the re-
normalized amplitude

The effective action W will yield the same result
to O(1/m ) provided

g2

120'' (2 ~ 'I)

(2.8)

where Vo" is the standard matrix element for
the free electromagnetic field given by

In fact, the precise value of d will not be impor-
tant to our argument. The fact that it is O(e') is,
however, important.

The coefficients a, h, and c may be obtained
from the coupling of a graviton to two on-mass-
shell photons in the flat-space limit; that is,
from the matrix element

&r(q&, p) I
8""(0)Ir(qi, o')&,

where 8'"(x) is the energy-momentum tensor.
This matrix element has be.en calculated by Ber-
ends and Gastmans from the diagrams in Fig. 2.
We can express their result to O(m ) in the form

&~(q~, &) I
e""(0)

I ~(qi, &)&= I'0" (qi qg) (1+0 gi)

-I '(q, q, )(g,&""+g,B'"),

+ cR„„~F"'"F + dD„F~"D,P'„) .
(2.5)

[Our sign conventions are g "=(+---)for the
metric, and R"„=I ', —~"„., +I'")„I'"„,
—I' „,I'"„,for the curvature tensor. ] The first
three terms reveal the influence of the curvature
functional. The fourth survives even in flat space
and represents off- mass- shell effects in the vacu-
um polarization. We evaluate a, b, c, and d to
O(e ). In this section we calculate these numbers
by comparing W~ with results obtained in the
weak-gravitationil-field limit, by means of con-
ventional Feynman diagram techniques. In Sec.
III we evaluate directly the asymptotic expansion
for the one-loop effective action for electrons in
the presence of external gravitational and electro-

=& (m'q~&

&"+n n )

(+&4+ qM) + q~ qg'9

+qiqkn" +q~qi& +qlqln"

V

P
+1 similar

q,

FIG. 2. Matrix elements of the energy-momentum
tensor. Renormaliz ation is effected by multiplication
by Z3 for each external photon where Z3 is the usual
flat-space photon renormalization factor.
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n 1 p'-6 1+0 ~360m m m
(2.1O)

The form factors (g,j are
where & is the fine-structure constant. Using
the equation

(y(q» p) l8 "(0) ly(q» o))(2m') 5(qs —q2 —p) = jl d xd y d ze

53W

(-g)' (~) ()&.(~)M,(v)()z..(~)),„„=.„.' (2.ii)

we obtain the same results from W~ provided

Q

720m

5

-26 (2.i2)

6$'gD„F""+
( )

0. - (2.i3)

This shows that D„F'" is 0(e ) and that, there-
fore, we can omit the term with coefficient d in
Eq. (2.5) for Wq since it will only influence the
motion to O(e ). From Eq. (2.13) we then obtain
the result

D„F""+ D [4aRE""+2b(R" I '" —R' F")1

+ 4eR""„P j = 0, (2.i4)

where a, b, and e are given by Eq. (2.12). The
argument above for the omission of terms con-
taining &„F""is, of course, formal. It must be
supplemented by a bound on the derivatives of

A sufficient condition is that the signals
comprise wavelengths ~ & ~,. We shall return to
this point later.

We may immediately observe that, in general,
the curvature is not isotropic, and so Eq. (2.12)
can be expected to modify photon propagation dif-
ferently in different directions. The simplest
example to consider is ther efor e the de Sitter
gravitational background for which the curvature
is isotropic, i.e. ,

IlP()T (RIIO gltT g))Tg)j()) t (2.15)

It is clear from this discussion that the first
three terms on the right-hand side of Eq. (2.5)
are related to the three gravitational form factors
of the photon.

We are now in a position to obtain the gravita-
tionally modified equation of motion for the elec-
tromagnetic field. From Eqs. (2.1) and (2.2) we
see that it has the form

l

where K is a constant. We find from Eqs. (2.12)
and (2.14) that

90mm
&

(2.15)

A„„=P. (2.17)

We should emphasize that the photon is treated
as a test particle, and its effect on the metric is
assumed negligible. In this case we find from
Eqs. (2.12) and (2.14) the result

D E "+$'R"" D E'=0
gT

where

$' = o/90mm, ' .

(2.i8)

(2.i9)

We have taken advantage of Eq. (2.17) and the
Bianchi identities to move the covariant deriva-
tive through the curvature tensor. For conven-
ience we note at this point the remaining Maxwell
equation

D F~„+D„E„+D„F„=0. (2.2o)

Before going on to discuss the implications of
these equations for photon propagation, we con-
sider a second derivation of the one-loop effec-
tive action W&.

III. ALTERNATIVE DERIVATION OF THE EFFECTIVE
ACTION

The derivation of the effective action presented
in Sec. II emphasized its relationship to the pho-
ton's gravitational form factors. In this section
we follow a procedure developed by Schwinger
and D eWitt and evaluate the one- loop eff ective

and so Maxwell's equation is only altered by a
trivial change of normalization. Vacuum polari-
zation therefore does not affect the propagation
of individual photons in a de Sitter background.

More interesting results are obtained from cer-
tain fields which satisfy the Einstein vacuum equa-
tion,
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action in terms of the electron propagator in ex-
ternal gravitational and electromagnetic fields.
The calculation which we give in outline below re-
produces results consistent with a geometrical
calculation by Gilkey. We will work in n dimen-
sions in order to regularize the integrals which
appear in the calculation.

Following standard arguments, we can write

f,(x, x') = n, '"(x,x')I(x, x'),

.where

(3.12)

~(„,) -det(-o, ~,, (x,x'))
k(x)a(x')l"'

with f q =0. Taking into account the boundary con-
dition Eq. (3.9), Eq. (3.11}has for the case r=0
the solution

It d"x(-g) Tr lim S(x, x'), (s.i) and I(x, x') is the para, llel-displacement matrix
for spinors. Note that & satisfies

Q = r'e, "(x)(&„+—,'(o„~o" +ieA„),

where

o"= 4[x', r'],
V V

+it bc ebv~tt e c + ~ Xgesve c y

(s.s)

(3.4)

where S(x, x') is the Dirac propagator which obeys

(iQ- m)S(x, x') =i5(x x )/( g)'I'(x). (S.2)

Here P is the covariant derivative including both
the gravitational and electromagnetic fields:

(s.is)

In order to calculate Wq from Eq. (3.1), we re-
quire the coincidence limits f„(x,x). These may
be calculated in the standard way by repeated dif-
ferentiation of Eqs. (3.8), (3.11), and (3.13).
Some relevant details are given in Table I and
in the Appendix. The particular results we need
are

and e,"(x) is an appropriate vierbein field.
Following DeWitt, we set

S(x, x'}= (if+ m)G(x, x'), (s.5}

Trf2(x, x) =-—,'2" e (- ,'E zE ~),—

g2
Trfz(x, x) —= 2"~ (5RF ()F ~ —26R ~F „Fz"

(S.i4a)

We can express 6 in the proper-time representa-
tion'

oe

G(x, x') =, ,„„dtt""E(x,x', t)
4~

~exp ———t'm t . 3.7tg
2t )

Here e=e(x, x') is the standard world function
which satisfies

0',g 6 = 20'~

o(x, x) =0.
(3.6}

The bispinor E(x, x', t) is a regular function of t
at t=0 with the property

E(x, x, O}=i.
If we expand

(s.9)

where the bispinor G(x, x') satisfies

(D'+ ice'"E„„--',R+ m')G(x x')t

=-i5(x —x')/(-g)'~'. (3.6)

))'r= (dm I d"x(—X) Tr ))m [()()+m)G(x, x')j
x'~x

+ const. (s.15)

It is not hard to verify that the coincidence limits
of f„(x,x') and its derivatives involve combinations
of even numbers of 7 matrices. The trace in the
integrand of Eq. (3.15) then eliminates the contri-
bution from P. On performing the m integration
and using the integral representation for & and
the expression for +, we find that

(3.14b)

Here 2" is the dimension of the Dirac 'Y matri-
ces. We have included on the right-hand side of
Eqs. (3.14a) and (3.14b) only those terms which
are at most linear in the curvature. These re-
sults are consistent with those of Gilkey, who
considered the more general case of a non-Abelian
gauge field and retained higher orders in the cur-
vature.

From Eqs. (3.1), (3.5), and (3.V) we conclude
that

E(x, x', t) =g (a) f„(x,x'),
g=o

then Eq. (3.V) implies

2(er)) rI'~fr+ fr + er)re +fw-irk

(3.10)

x
Jt d"x(-g)'" Trf„(x, x),l. (s.i6)

+(ieo""F„„-+R)f ~
——0, (3.11) Since we are concerned with photon propagation,



@ED VACUUM POLARIZATION IN A BACKGROUND. . . 347

Bztensor (x,x )

TABLE I. Some coincidence 1imits.

Coincidence limni. t x'

0

~k»V
~i/2

~i/2
t p

~i/2
s pp

i
6 Rpp

Iy pp

Iy»p

kgjtf V

k g pIyk g P

0
1
2 Wpv
i
~(w», , + ~'~...)
i
P(g„gW„V + Wkp+'yP + ~~V ~»

+ +gg, pp ~gp, gp ~KP»~

~([(R ~„~+R"ppg) W~„+(R „up+R pv~Wn&

+(R kp), +R"ypk)~nP++ kP&+ »k
R+e)'~gr &g„&+3R g~ Ws&+3 W ~Bony ~

+4g~BW"& +3 ~ '&+'ee, y-sR ~~y' 8
g 4 8 2 0(8

we shall ignore the contributions to Wq from fo,f
and the unlisted curvature terms in Eqs (3 4»
and (3.i4b), which only influence the vacuum»&-
ue of Wi. It is easily verified that the contribu-
tion from Eq. (3.14a) is removed by the standard
photon wave-function renormalization:

(s.lv)

The third term is finite at n =4 and yields

t d x(-g)" [-—,
' Trf&(x, x)].

(4v m

(s.is)

By referring to Eq. (3.141) we see that this is
identical to the result of Sec. II.

In ignoring the vacuum contribution to Wi we do
not mean to imply that it does not represent a
problem for quantum field theory in a gravitation-
al background. On the contrary, it is very much
bound up with the problems of calculating the
back reaction of the quantum field theory on the
metric. However, if it is a valid approximation
(as we presume) to take the space-time manifold
as given, then the problems of the vacuum func-
tional can be separated from those of calculating
the renormalized Green's functions for quantum

fields propagating in that space-time.
A final point concerns the use of the asymptotic

expansion for G(x, x') implied by Eqs. (3.V) and
(3.10). Of course, this refers only to the singu-
lar part of G(x, x'). It adequately represents all
local effects due to the curvature. However, it is
insensitive to the effects of boundary conditions
on the electron field. We shall make some brief
comments on this point in Sec. VII.

g8E„„=f„„e (4.i)

IV. GRAVITATIONAL-WAVE BACKGROUND

In order to derive the equation for the charac-
teristics of photon propagation we make the sim-
plest geometrical- optics plane-wave approxima-
tion. ' We should emphasize that although this is
an approximation for the actual solution of the
field equation for the photon, it exactly deter-
mines the characteristics of propagation and hence
the causal structure of the solution. We also
carry through the derivation in a gauge-invariant
manner to demonstrate that the results do not
depend in any way upon a choice of gauge, although
the same results can in fact be obtained with a
little less effort when working in the I orentz
gauge.

We set
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k f'"+JR"" k f =0

and from Eq. (2.20)

kf„„+k„f„P+ k„fP„——0.

(4.2)

(4.s)

and regard f„„as slowly varying in comparison
with 8. If we now put k, =D„~ and ignore all
other derivatives, we obtain from Eq. (2.17) (we
are interested in the Ricci-flat case)

f, =Q f„, i=1, 2, s

and note that

2Pi pg '

Equation (4.12) then becomes

(k + 4) (o bp2 )f2=0,

(k —4$ ~ bp2 )f2=0,

(4.is)

(4.14)

(4.15)

Combining these two equations we find

k f'" —2$ k~PRv'", k~f =0. (4.4)

4~'~'b(p2 p2f2-p2. p,f2)+k'f2=o.

The determinantal condition on k is therefore
This is a homogeneous equation for f, and in

order that it have nontrivial solutions k must
obey a determinantal condition. From Eq. (4.S)
it follows that

fp„=k„a„-k„ap (4.5)

&ev =~u v+ ~uv ~ (4.5)

where h, „vanishes except for the components
k;,. (i, j=1, 2) and the matrix (k,,j is symmetric
and traceless. It is sufficient for the purposes
of illustration to consider the case

k„=—k22
—b —= & cos~(x'- x'),

~12 —@21—0 ~

(4.V)

The components of the curvature tensor are zero
apart from those given by

(4.a)

for some vector a„. Hence, for given k', f„„has
three independent components (two polarizations
and one magnitude).

It is illuminating to see how the above analysis
works in specific cases. Consider a background
which is a plane gravitational wave traveling in
the 3 direction. In the transverse traceless gauge
the metric is

k2(k2+ 4)2 2bp 2)(k2 4)2 2bp 2) 0 (4.ia)

The root k =0 implies that either k, = 0 or f2
=f2 = 0. Using Eq. (4.5) we see that the latter
implies

P1'O=Pg ' Q=O.

From Eq. (4.2) we find then

(4.iv)

k a'-k'k a+4) &u b(p", p&'a-p2p2 a) =0,
(4.ia)

and, theref ore, that k ' a vanishes. There are
now two possibilities:

(i) If e"„k, p,", and p2 are linearly dependent
it is easy to deduce that k" is parallel to e', (given
the above conditions), and so k, = 0.

(ii) Otherwise, express a as a linear combina-
tion of these four vectors. Contraction with 0",
p1, and P2 then shows that

(4.19)

for some &, and f,„vanishes. The root k =0
therefore corresponds either to f„„=0or to the
special case of photons propagating parallel to
the gravitational wave.

The second root is

0","=e', e", —e",e', , i =1,2, 3 (4.9)

where a, b=0, 3 and i, j =1,2. On introducing the
orthonormal tetrad (eo, e„e2, e2j and the bivectors

k —4)2&v bk, =0.
If A', = 0 then also k = 0 and again we have k"

parallel to e, . Otherwise we have

(4.20)

where e, = —,'(eo + e2 ), we can write

RPv" = 2&v'b(Q;"Q~ —0"'Q~) (4.10)

=0,
k2f2+ 2k,f2 = 0.

(4.2i)

to within the weak-field approximation.
Now set

QPv pppv I vpg

Equation (4.4) becomes

k2fPv + 2 $2+2b(p vfitFPT QPvfIPT)f 0

(4.ii)

(4.i2)

We can express Eq. (4.12) in terms of three in-
dependent components of f,„. We write

2k,[(l —$ (u b)ko —(1+ $ (u b)k2] =0. (4.22)

The solution k+ —0 again corresponds to a photon
propagating parallel to the gravitational wave
with speed unity. The other solution is a photon
traveling antiparallel to the gravitational wave,
and to 0(e ) .it has velocity

When k1 ——k2 ——0 these conditions are satisfied by
a photon polarized in the 1 direction. The charac-
teristic equation, Eq. (4.20), becomes
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k()/kg = 1 + 2 $ (() b . (4.2s}

The speed of travel therefore is greater than
unity in those regions where b is positive and
less than unity in those regions where b is nega-
tive. The other polarization behaves in a com-
plementary fashion so at least one type of photon
has a speed greater than unity at each point in
space. It must be emphasized that the propagation
is nondispersive —the phase and group velocities are
the same. In other words, although the light cone
has been modified [Eq. (4.20)], it nevertheless
remains a cone, and depending on the photon
polarization the cone may lie outside the original
light cone except for certain special directions of
propagation.

We will now turn to the Schwarzschild metric,
being of particular physical interest, where we
will find similar results occurring.

It follows from Eq. (5.8) that

(k + g.l )g=0,
(k'- ~m')h=0,

&(kgk„g —k, kgh) + k f= 0.
The determinantal condition is

k'(k'+ ~l')(k' —~m') =0.

(5.io)

(5.11)

As in Sec. IV, the root k =0 may be ignored for
general directions of propagation.

The second root yields the modified light cone

then Eq. (5.4} has the form

k'f'"+ g E[(k'l" —k"le)g —(k'm' —k"m')h] = 0, (5.8)

where

e = (6MG ('/2) (1+ l

= . (5.9)

V. SCHWARZSCHILD BACKGROUND (1 —&)(k, —k„)—kg —kg =0. (5.i2).

In standard coordinates the Schwarzschild met-
ric is"

It is easily checked that the corresponding solu-
tion is (for some X)

f,„=&(k, l„—k„l, ) .
The third root yields

(5.is)

—r (d8 + sin 8d(() ) . (5.1)

If we introduce the orthonormal tetrad (e„e„,eg, eg].
and the bivectors and

k, '- k„'- (1- ~)(ke'+k, ') =0 (5.i4)

U '=e, e„'- e,'e„,
V =eg e& —eg e+

we can express the curvature tensor as

gib Vg& [g
I)' gg V1'

g !Ktg 4&MG

(5.2)
f.„=~(k, m„- k„m„) . (5.15)

(5.18)

and Eq. (5.1S) yields

For transverse photon motion, say k„=k6 = 0,
Eq. (5.12) implies to 0(e } that

lk~/k. I= I+-'~

+ s(U""U"—v""v")]. (5.s) f „[k,(e„)„—k„(e,)„]. (5.IV)

The important components of f,„are
g= U""f~. )

h = V""f~„.
(5.5}

A third component may be chosen arbitrarily to
be

f= (eg eg —e( eg )f

If we introduce the vectors

l" =k„U~,
m" =k~ V"",

(5.8)

(5.7)

Equation (4.4) becomes, in this case,

t'[k'f~

]'(ke'V"'" V" 9 U"' U")k,f., = 0. (5.4)

f„„~[k, (ee)„-k„(ee),]. (5.io)

Hence the photon with transverse polarization
travels with a velocity less than unity. Since for
a radially directed photon l =-k and m = 0, it is
obvious from Eqs. (5.12) and (5.14) that such a
photon will travel with unit velocity whatever its
polarization.

We have thus demonstrated gravitational bire-
fringence in the plane-wave and Schwarzschild
metrics. In order to lend some reality to the ef-
fect, we calculate the polarization dependence of
the bending of light in a Schwarzschild metric.

That is, the photon with radial polarization travels
with a velocity greater than unity. Equation (5.14)
implies that

[ k, /k, [
= I - -,'~, (5.18)

and Eq. (5.15) yields
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For a null ray in a metric

ds =B(r)dP A-(r)dr —r (da + sin 8dg )

the angular deflection &P is given by
'

~ 112

v+4@=2 —.p B( )ro ' —1
r, B(r)

(s.ao)

(s.al)

where ro is the minimum value of x on the orbit.
For the Schwarzschild metric itself this yields

the Einstein deflection

&P = 4MG/rp ~ (s.aa)

Since the determination of the deflection of the
classical trajectory from the relation (5.12) is
reduced to a problem in differential geometry,
the simplest procedure is to take the wave vector
as a null vector in an effective metric with

2MG'I "
A(r)= (1- ~

(1+r);
(5.22)

5A(r) = 5B(r) = 4 = (6MG/r ) $2 . (s.a4)

Now under a perturbation 6&, ~& of the metric,
the deflection is changed by an amount

I

"dr 5A r SB(rp) —bB(r)~(
J r (r'/r, '- I)'~ ~r, (r'/r, ' I)'" j'-

Yo

(s.as}

Relative to the Schwarzschild metric, we have to
lowest order in G and e,

more nearly comparable to &,.
The result (5.2V) appears to be rather different

from the related result of Berends and Gastmans,
and this deserves some comment. Berends and
Gastmans in effect calculated the matrix element
of (Wp+ W1) between asymptotic photon states with
a massive scalar field as the gravitational source,
and obtained O(&) corrections to the helicity-flip
and helicity-nonf lip amplitudes. Now one might
at first suppose that the helicity-nonf lip differen-
tial cross section could be related to a classical
trajectory with impact parameter b via the rela-
tion

b db =- — sin~ d~ .do
dQ

(s.a9)

For theO(1) term this reproduces E(l. (5.22}, but
for the 0(&) correction it gives the dispersive
result

~c (BMG)21
2MG 4MGI~

45m rp rp rp
(s.so)

V(r)~ r". (s.31)

Then for small-angle scattering the classical
trajectory gives a deflection:

where & is the photon energy; the corresponding
classical quantity is the average of the equal and

opposite deflections (5.26) for the two polariza-
tions, namely, zero. The reason for this apparent
contradiction is that E(l. (5.29) is a highly arti-
ficial way of relating the classical and quantum
pictures, and, in fact, it only works for a Cou-
lomb-type potential. As a simple example, con-
sider nonrelativistic scattering by a potential:

If we insert the values for 6A and 5B in E(l. (5.24),
we find then

sp b(x", (s.sa)

~ 'I'(4MG)
45m rpj ( rp j

(5.25)
whereas the quantum approach via the Born ap-
proximation and E(l. (5.29) gives

(s.av}

If we use solar -parameters in the above formula
then we find

sy -=ax 1 p-4'zy. (s.as)

Clearly this is immeasurably small. A substan-
tial effect might, however, be observed near a
small black hole whose Schwarzschild radius is

(It is also straightforward to verify that the same
correction is obtained by direct calculation, in the
usual Schwarzschild metric. )

The deflection of the photons polarized trans-
versely to the orbit is equal and opposite. The
two beams acquire a separation angle

2 I'X 'I (4MG'I
457I' (rpj ( rp j

5 (t ~ b""" (1 ~ n & 2) . (s.ss)

These only agree for n =1. Further, when the
tail of the potential falls sufficiently quickly at
large r (but does not vanish), the total (luantum
cross section will be finite, leading to a finite up-
per bound on b from E(l. (5.29), whereas classi-
cally it is clear that there will always be some
deflection for any b. We therefore expect the two
methods to agree for the leading contribution to
the photon deflection, but not for the O(n) correc
tion, which is tidal in nature and behaves like an

potential.
In order to determine which of the calculations

is appropriate to our discussion we must examine
the situation more closely. The quantum calcula-
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tion assumes initial and final photon states which
are asymptotic pure-momentum states; it is im-
plicit in this case that wave packets have a size

. which is large compared with the impact param-
eter. Physically speaking, it corresponds to
viewing the deflection of light at a sufficiently
great range from the Sun so that we see the dif-
fraction pattern as described by do/dQ. (Note
that this is the diffraction pattern caused by the
curvature of space and has nothing to do with the
diffraction pattern as an edge effect on an opaque
Sun, which we are ignoring. )

If, on the other hand, we are quite close to the
Sun-on the Earth's orbit-then we assume that it
is a reasonable approximation to regard the photon
as a wave packet whose dimensions are small
compared to the impact parameter and whose
trajectory lies along a fairly localized path in
the gravitational field. (A corresponding analogy
in ordinary particle physics is the difference be-
tween the elastic scattering of two particles in
an accelerator, and the deflection of a beam of
electrons in a cathode-ray tube. ) We therefore
maintain that the result (5.27) is the appropriate
one for the Earth-Sun system, though there may
be additional difficulties arising from constraints
on frequencies, which we discuss in Sec. VII.

In support of the consistency of this view, we
notice that the helicity-nonf lip amplitude leading
to the nonzero correction (5.30) depends only on
the contribution

(5.34)

from Eq. (2.8), which in turn depends only on the
form factor gz(P ), and this form factor can be
identified with a linear combination of the two
terms R~„F' ~ and R~~+

~ in the effective
action Wz. Thus the correction to do/dQ for un-
polarized photons comes only from the interac-
tion with the region of nonvanishing ~", i.e. ,
the gravitational source. So if we assume that
the photon wave packet can consistently be con-
structed so as to "miss" the source when ob-
serving close to the Sun, then we would expect a
null result for Eq. (5.30). The interaction with
the source must of course be included in the cal-
culation of the diffraction pattern seen at large
distances, and the calculation of do/dQ by Berends
and Gastmans is then appropriate. The diffrac-
tion pattern can also be expected to depend on the
ratio of the wavelength of light to the length scale
of the source, c.f. , the dispersive factor (&M&)
in Eq. (5.30). The leading-order term is nondis-
persive because the Coulomb-type potential is the
only one which does not contain an intrinsic
length scale.

VI. ROBERTSON-WALKER BACKGROUND AND
FRIEDMANN COSMOLOGY

The constant & can take the values -1, 0, and +1
corresponding to open, spatially flat, and closed
universes. The coordinate t gives the proper
time of a comoving observer, and R(t) is a scale
factor for the universe. [In the case of a closed
universe K=+1, R(t) is just the radius of the
hypersphere. ] The Riemann curvature tensor
can be expressed in the form

R'+Z
Rm ar 6 = z —

I (u ur gas - %ur g~ 6Rj

+ ugu6 g~r u~uy ggy)

R'+Z't
z l(gnr gjg —gas gar}i'R (5.2)

where u. = (e,}"= (1, 0, 0, 0) in a comoving ortho-
normal frame.

s b~fo~~, we now take +„„=f„,e' (*) w|th
= (9 „, and consider only the derivatives on the
phase factor, The argument is identical to the
argument of the previous sections, except that
we now have contributions from R z and R as well
in Eq. (2.14}; so we will only quote the result.
For physical polarizations we find

(e.s)

where g is given by Eq, (2.19). The velocity of
the photons in an orthonormal frame is therefore

~ ~

k zz z R +K Rii (5.4)

This velocity is the same in all directions and

for all polarizations, which is to be expected be-
cause the Robertson-Walker metric describes a
general isotropic homogeneous space. If we now

follow the standard Friedmann cosmological mod-
el, we assume that space-time is filled with a
homogeneous isotropic fluid, with energy density
p and isotropic pressure P, so that the energy-
momentum tensor &'" is given by

r'" =(p+p)U" U"-pg'".
The Einstein field equations then give

R2+ @i
s ., i=swap,

R R +Kt
2 —+ ., i=en'Gp,

(5.5)

In standard form the Robertson-Walker metric
is given by

ddsz=dt -R (f) 1 K, +)p(d& +sin ed/ ) l. (6.1)1-KX' j
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from which one derives

A
~ = --', wa(p+2p), (6.v)

L&&X, .
Since the velocity shift &u is given by

5g=O(aX, /L ),

(v.3)

(v.4)
and so

ko
=1+22) mG(p'+p) .

lkl
(6.6)

The photon velocity is therefore clearly greater
than one for all physically reasonable pressures.
Further, we can make the usual assumption that
the early universe is radiation dominated with

it is necessarily small, though not zero.
The important point to establish is whether or

not this velocity shift implies an alteration in the
causality structure of events. Obviously the ans-
wer depends on the wave-front velocity and this in
turn depends on the velocity of the very-short-
wavelength signals for which

p=sp ~ (6.9) X, & X=0. (v.6)

(This is believed to be valid before about 10 sec.)
The first law of thermodynamics gives

p& =constant (6.10)

for radiation. It then follows that the Universe had
a singularity at a finite proper time in the past,
with

(6.11)

the value of the constant & becoming unimportant
as f -0. Equation (6.4) finally gives

k =1+(/f (6.12)

and the velocity of photons increases like t as
we go back in time towards the big-bang singu-
larity. Of course, we do not believe Eq. (6.12)
once the O(e ) correction becomes really large.
This only happens at t =10 sec.

VII. GENERAL DISCUSSION AND CONCLUSIONS

X&X, . (v. l)

In obtaining the characteristics of the modified
wave equation [Eq. (2.14)] we are implicitly con-
sidering wavelengths such that

X &cL, (v.2)

where L is a typical curvature size. It follows
that to apply the velocity analysis [as opposed to
deriving Eq. (2.14) itself] we require

So far we have discussed in detail the propaga-
tion of photons in some specific gravitational fields
and have found that the effect of vacuum polariza-
tion in these cases may be to increase the velocity
of photons beyond the flat-space value. Such a
controversial result clearly requires very care-
ful consideration.

There are some obvious constraints under which
the result was obtained. As indicated in Sec. II,
the derivation is applicable only to wavelengths
~ which satisfy

Since our derivation was for signals which do not
satisfy this condition, it would seem that we can-
not draw an immediate conclusion. However, the
effect of vacuum polarization is to make space act
as a dispersive medium. In that case the long-
wavelength (low-frequency) velocity is related to
the short-wavelength (high-frequency) velocity
by absorption in such a way that the latter velocity
is always greater than the former. This is usual-
ly stated in terms of the frequency-dependent re-
fractive index n(&u), where from dispersion rela-
tions we have

(v.6)

Since absorption measured by Inn(&u) is never
negative, it follows that n(~) & n(0), which implies
the above conclusion. If we are justified in apply-
ing these ideas in the curved-space context, then
we can conclude that our calculation of the long-
wavelength velocity is a lower bound on the wave-
front velocity. It follows then that the causal re-
lationships of events are no longer constrained by
the null cone of the background metric but by an
effective light cone which may lie outside the for-
mer cone. It does not, of course, make sense to
consider renormalizing the "speed of light" con-
stant c because the correction depends on several
variables —the local curvature, the direction of
polarization, and the direction of propagation.

The usual objection to faster-than-light trans-
mission of information is that one can set up a
paradox involving backwards travel in time. If an
observer at event & sends a signal to an observer
at event & by a spacelike vector, then there can
be another observer ~ with an ordinary timelike
motion who sees & happen before &. Relativistic
invariance of the laws of physics ensures that if a
spacelike velocity with travel backwards in time
is possible from 6 to & (as seen by C), then &
can send a signal back to the world line of & which
ar rives bef ore & emitted its first signal, and this
is clearly unreasonable. However, the key to
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this problem is the very assumption of relativistic
invariance of the laws governing the motion. The
crucial point about the faster-than-light motion
calculation in this paper is that it depends on the
frame of reference. The change in the velocity
is a strictly tidal effect, and different observers
will see different tidal effects according to their
motion-determined, of course, by the usual
Lorentz transformations on the Riemann curva-
ture tensor. In the particular frames we chose
we found that the spacelike photon velocities cor-
responded to motion forward in time only, so in
that frame it would be impossible to set up a para-
dox in the manner described, and, therefore, it
would be impossible in any frame. Although it
would be possible to find an observer with time-
like motion who saw the light signal propagating
causally in one direction backwards in time, the
return signal in the other direction could only go
forward in time in such a way as to arrive at the
source after the emission of the original signal.

Arising out of this is the very important point
that as soon as quantum effects are introduced on
a curved background manifold, it seems to be
impossible to divorce the discussion of the causal
structure of the manifold from the choice of
frames of reference, in the sense that the curva-
ture effects distinguish between frames.

This brings us to the question of compatibility
with the equivalence principle, which is at the
foundation of general relativity. We believe that
there is no contradiction here either, since the
equivalence principle amounts to the statement
that each point of the manifold has a Minkowski
tangent space. It specifically determines the be-
havior of a particle when all curvature effects
are ignored, whereas the corrections to photon
propagation calculated here are tidal in nature.
Nevertheless it may seem strange that the tidal
effects should alter the causality structure of the
manifold, and so we offer a possible heuristic ex-
planation. One might well expect that tidal forces
acting on a large "classical" body would not alter
the light cone because the classical body can be
regarded as a set of pointlike elements bound by
forces which themselves respect the light cone.
But for a "large" photon the binding forces are
genuinely quantum in nature, being one-loop ef-
fects, and are represented by a sum over possible
momenta of virtual electrons. - The difference
here is that the virtual electrons can have space-
like momenta. This is, of course, a very loose
argument, but it indicates that a little care is
needed in extending classical concepts about the
effects of tidal forces to the quantum level.

%e may go further and conjecture that in general
the equivalence principle may only be relevant to

the "classical limit" of interacting quantum theo-
ries, because if there is a mass scale in the
theory-and here, it is the electron mass-then
as soon as Planck's constant is introduced, the
elementary particles in the theory acquire in their
description a length scale corresponding to the
Compton wavelength of that mass, and we would in
general expect to find tidal forces acting on those
elementary particles. Expressed another way, at
the quantum level there may be no such thing as
an observable elementary particle in the sense
required by the equivalence principle.

In terms of the usual quantum-mechanical for-.
mulation of field theory, the results imply that
the commutativity properties of interacting and
free quantum fields differ. There will be a region
outside the original null cone but inside the effec-
tive light cone where the interacting fields will
not commute. Since perturbation-theory calcula-
tions are expressed in terms of free fields, one
might worry that the incompatibility of the two
sets of commutation relations reflects an incon-
sistency in the formulation of the theory. How-
ever, to set up the perturbation theory it is only
necessary to have a set of spacelike slices of the
manifold, on each member of which the fields at
different points commute (or anticommute). Our
choice of spacelike slices is not restricted very
much [only to O(8')] by the modification of the
"causality cone" which is implied by our result.
On the other hand, it would appear to raise doubts
about the adequacy of perturbation theory based
on the original null cone. Although this point re-
quires further analysis, we could argue that there
is no immediate problem in relation to micro-
causality.

Even while accepting that no general principle
is violated by the result, one might still find it
unattractive and question the technical aspects of
the derivation. Firstly, we note that the whole
calculation was formulated in a gauge-invariant
fashion throughout, and in a coordinate-invariant
fashion up to the point where a frame was choserf
to express the curvature tensor in a simple form,
so there can be no query against it on these
grounds. Secondly, the two expansions used,
namely, that in the fine-structure constant and
that in the Compton wavelength of the electron,
seem to be innocuous. The former is used in a
perfectly conventional way. The latter amounts
to no more than the power-series expansion of the
photon's gravitational form factors at a typical
momentum transf er P =~, which is determined
by the length scale of the curvature and its deriva-
tives. From Eq. (7.3) we have that p «m .
Hence, given the analyticity properties of these
form factors, we can expect the expansion to be
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If we wish to resolve this angle at wavelengths
~ = ~, then the lateral dimension d of the beam
must satisfy

d
(v.a)

However, this implies that

(v.9)

from which it follows that the width of the beam
d must be immensely greater than the radius xp

at which we are trying to measure the split. This
is a hopeless situation for the observation of the
split which requires wavelengths much shorter
than ~, for its resolution.

The second case concerns the position discrep-
ancy of a signal 6s, which is induced by the velo-
city shift &v in the Friedmann-Robertson-Walker
(FRW) model considered in Sec. VI. We consider
a time interval &,«tp~ t ~

t& during which the red-
shift caused by the expansion does not seriously
alter the frequency content of the signal. In that
case we have

5s& „t 5vdt.
J,,

Now [see Eq. (6.i2)]

5v =ol o.'~

(v.io)

(v.ii)

convergent.
From numerical. estimates in the text it is evi-

dent that the effect cex'tainly has no observational
consequences in the gravitational fields appropriate
to present-day astrophysics and cosmology.
Equally, it may be of great importance in, say,
the very early universe. For example results
such as (6.12) could have consequences for the
isotropy of the 2.7 'K microwave background.
However, we feel that the main significance of the
result is theoretical and does not depend on its
observability.

Nevertheless, from one point of view the weak-
ness of the effect does create a problem of prin-
ciple in relation to observability. It would be
quite reasonable to take the attitude that since the
derivation was applicable to signals satisfying the
wavelength restriction Eq. (V.l), one should seek
changes in causal structure consistently in terms
of such signals. We will examine two cases in
detail.

In the Schwarzschild metric the angular split of
the photon beam was [see Eq. (5.2V)]

(V.V)

Therefore,

(V.12)

%his implies 5s « ~„a discrepancy which cannot
be resolved with long-wavelength signals alone.

Roughly speaking, what is happening here and
in a number of other cases is the following. In a
situation where the curvature length scale is L,
the length of time available for examining signa, ls
of long wavelength is also I-. From Eq. (7.4), we
see that the position discrepancy is

5s = 1.5v = Ol o.k,
l

-s (V.is)

This argument tends to suggest that the altera-
tion in causality cannot easily be observed purely
in terms of long-wavelength signals. In order to
get a significant effect for these wavelengths it
would seem necessary to arrange for the photon to
retraverse its path (e.g. , with the use of mirrors)
a number of times which is large compared with
I-/&„and it is not entirely clear that it would be
possible to introduce such a theoretical artifice
without intr oducing other theor etical complications
at the same time. A possible position would then
be to say that there is no problem of causality at
all. However, we feel that this does not give
proper weight to the idea discussed above that the
absorptive processes will raise the wave-front
velocity above the low-frequency velocity. In the
end, however, a resolution of this question de-
pends on a direct examination of short-wavelength
signals. Within the framework of quantum field
theory this is tantamount to examining the opera-
tor-product expansion for j„(x)j„(y),where j„(x)
is the electric current in a curved-space back-
ground. This is in any case a problem of intrinsic
interest, which we feel our discussion has in-
creased.

Our calculation of the electron Green's func-
tion took no account of the effect of any boundary
conditions that might have to be imposed. We
would expect any such effects to depend on the size
of the manifold rather than on the local curvature,
and to be rather different. in nature, since the
local curvature can be varied continuously in a
region of the manifold without altering the bound-
ary conditions. Ford has calculated in@ED
the effect of boundary conditions for spinors on
the propagation of photons in a periodic flat space-
time, and he also found corrections to the photon
velocity. There, however, the corrections are
dispersive and the characteristics of propagation
remain on the original light cone, which is a very
different sort of behavior from the one we have
calculated in this paper.

In conclusion, we have calculated the one-loop
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electron contributions in QED to the photon effec-
tive action on a general curved-background mani-
fold, and we have found that the tidal effects so
generated can result in photons propagating faster
than light. They are best described by saying
that the effective light cone produced lies outside
the null cone of the metric in some places. We
have argued that there is no logical or experimen-
tal inconsistency in these results. It seems likely
that either perturbative QED is inadequate as a
theory when extended to a general-relativistic back-
ground, or that photons indeed can travel "faster
thanlight". In view of the enormous success of
perturbative QED as a theory, this latter possi-
bility should be considered quite seriously. In
either case the implications for a satisfactory
quantum theory of gravitation would seem to be
rather far-reaching.
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APPENDIX: DETAILS IN THE CALCULATION OF V

The natural "field" in the calculation of 8'~ in
Sec. III is the commutator of two covariant deri-
vatives on a charged spinor. '

(Ai)

where

(A2)

In terms of this we get the coincidence limits
listed in Table I for the covariant derivatives of
charged and uncharged quantities. Note that all
derivatives are with respect to x, and that terms
of second order or higher in the Riemann curva-
ture have been dropped.
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