
The VLDB Journal

DOI 10.1007/s00778-010-0202-x

REGULAR PAPER

QFilter: rewriting insecure XML queries to secure ones using
non-deterministic finite automata

Bo Luo · Dongwon Lee · Wang-Chien Lee · Peng Liu

Received: 4 October 2009 / Revised: 5 August 2010 / Accepted: 18 August 2010

© Springer-Verlag 2010

Abstract In this paper, we ask whether XML access

control can be supported when underlying (XML or rela-

tional) storage system does not provide adequate security

features and propose three alternative solutions —primitive,

pre-processing, and post-processing. Toward that scenario, in

particular, we advocate a scalable and effective pre-process-

ing approach, called QFilter. QFilter is based on non-deter-

ministic finite automata (NFA) and rewrites user’s queries

such that parts violating access control rules are pre-pruned.

Through analysis and experimental validation, we show that

(1) QFilter guarantees that only permissible portion of data is

returned to the authorized users, (2) such access controls can

be efficiently enforced without relying on security features

of underlying storage system, and (3) such independency

makes QFilter capable of many emerging applications, such

as in-network access control and access control outsourcing.

Keywords XML · Security · Access control · NFA

This paper is extend from earlier conference version [35].

B. Luo (B)

The University of Kansas, Lawrence, KS, USA

e-mail: bluo@ku.edu

D. Lee · W.-C. Lee · P. Liu

The Pennsylvania State University, University Park, PA, USA

e-mail: dongwon@psu.edu

W.-C. Lee

e-mail: wlee@cse.psu.edu

P. Liu

e-mail: pliu@ist.psu.edu

1 Introduction

The eXtensible Markup Language (XML) [8] has emerged

as the de facto standard for storing and exchanging infor-

mation on the Internet. As the distribution and sharing of

information over the Web becomes increasingly important,

the needs for efficient yet secure access of XML data nat-

urally arise. It is necessary to tailor information in XML

documents for various user and application requirements,

while ensuring confidentiality and efficiency at the same

time. However, document (file) level access control is not

suitable for today’s XML applications, where data access

is typically performed at element and attribute levels. To

remedy these shortcomings, various proposals in support of

fine-grained XML access control have appeared. Most of

them can be categorized as either view-based or DBMS-

based. View-based approaches (e.g., [3,4,12,16,24]) iden-

tify accessible XML nodes for each user (role) to create a

view and evaluate user queries on the view. Such approaches

provide fast access to the authorized data (especially when

views are materialized) but need to deal with view mainte-

nance issues. DBMS-based approaches (e.g., [9,15,54]) tag

each node with an authorization list and check accessibil-

ity for each candidate answer node during query evaluation.

They are less complicate to maintain but require support from

database engines. However, to our best knowledge, there are

no off-the-shelf XML databases that provide fine-grained

security features yet. Furthermore, when RDBMS is used

to manage XML data, there is a compatibility issue between

RDBMS and XML access control models [31]: (1) the data

models are inherently incompatible, and not all data conver-

sion algorithms fully preserve structural properties of XML

data; (2) XML nodes are hierarchically nested, while cells in

the relational model are impartible; hence, relational access

control does not consider propagation issues; and (3) XML

123

B. Luo et al.

model requires fine-grained access control, while traditional

RDBMS access control is only enforced at column level.

Although record/cell level access control could be enforced

with views or Virtual Private Databases (Oracle VPD), it can

get very complicated when there are multiple polices that

involve the same base table.

The goal of this study is “to devise pragmatic solu-

tions for implementing fine-grained XML access control that

use no view-based access controls and require no secu-

rity support from underlying databases.” We analyze and

examine three different classes of solutions for XML access

control, namely, primitive, pre-processing, and post-pro-

cessing. In particular, we advocate a practical and scalable

pre-processing solution, called QFilter, as an external com-

ponent to the database engine. QFilter checks XML queries

against access control rules and rewrites them such that parts

violating access control policies are pre-pruned. Since QFil-

ter does not use views, it entirely avoids the issues of stor-

age and maintenance costs. Furthermore, since QFilter does

not rely on security-related features of underlying databases

(e.g., GRANT/REVOKE in RDBMS), it can work with any

off-the-shelf XML databases. This property makes QFilter a

very practical and flexible solution, especially in distributed

environments.

Our contributions are as follows: (1) We examine three

alternative solutions to support XML access control; (2)

We propose a novel technique, QFilter, that utilizes an

NFA to rewrite insecure XML queries to secure ones; (3)

QFilter enforces access control completely independent from

underlying XML engine, hence provides remarkable flexibil-

ity; and (4) Through extensive experiments, we validate that

QFilter is a practical and effective solution for XML access

control enforcement.

2 Background

2.1 Related work

Two research areas are the most relevant to this paper—

XML access control models and enforcement mechanisms.

The focus of this paper is on the latter.

1. Models. Most XML access control models inherit the

framework of either role-based access control [47], in which

users are assigned with roles and thus can exercise certain

access rights characterized by the roles, or credential-based

access control, where each user features a set of attributes

and access rights are denoted based on the values of attri-

butes. The difference between two models is mainly the way

they identify subjects, i.e., users. However, this is not closely

related to our topic, since we focus on access control enforce-

ment, which mainly considers objects, i.e., XML documents

and nodes.

Recently, several authorization-based XML access con-

trol models are proposed. In [16], an authorization sheet is

associated with each XML document/DTD to express autho-

rizations. Later, the authors extend this model by enriching

authorization types and providing a complete description

of the specification and enforcement mechanism [12]. This

model is further extended in [51] to handle XQuery [5]. On

the other hand, in [4], an access control environment for XML

documents and techniques to deal with authorization prior-

ities and conflict resolution is proposed. In terms of XML

data objects, a general framework has been proposed in [22]

to normalize data object specification in XML access control

using XPath. Moreover, languages for access control pol-

icy are developed in XACL [28] and XACML [25]. More

recently, ACCOn [7] considers inconsistency and security

flaws introduced by XML write-access policies. Finally, the

use of authorization priorities with propagation and overrid-

ing is related to similar techniques studied in OODB [19,46].

The above XML access control models can specify the autho-

rizations of a subject against an XML data object with-

out ambiguity. While an XML access control model can

be enforced in various ways, the model cannot tell which

enforcement mechanisms are better ones.

2. Enforcement. Run-time access control enforcement

mechanisms implement security check inside database

engines and enforce access control along with query evalua-

tion. They first tag each XML node with a label [9,15,52,54]

or an authorization list [27,53]. During query processing,

XML engines traverse the subtrees of candidate answers

and eliminate inaccessible nodes from the final answer. The

traversal seriously slows down query processing. Recently,

dynamic predicate [32] has been introduced to integrate

security check into the query plan through dynamically

constructed conditions. To further optimize query process-

ing with access control, security-conscious indices are con-

structed for access control rules to speed up node-level

security check [52]. However, this requires building an effec-

tive index for every rule, which is not practical. Otherwise,

for queries that hit un-indexed rules, the engine still needs

to take excessive efforts for node-level security checking.

More importantly, since all the approaches patch on kernels

of XML engines, none of them is adopted or could be eas-

ily adopted by commercial or open-source XML database

vendors.

View-based approaches create and maintain a separate

view for each role. Earlier approaches, such as [3,12,16,24,

50], check the authorization at each node and compute a

user view (the accessible portion of the XML document) to

the requestor. Queries are then safely evaluated against such

pre-built materialized views. With materialized views, query

processing is usually very efficient since it bypasses on-the-

fly security check, and queries are evaluated on a smaller

XML document. However, it is challenging to maintain a

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

large number of (frequently updating) views (one for each

role): storage and view synchronization are major concerns.

Incremental view adaptation [1] proposes to reduce the cost

of view maintenance. Security views [18,29,30] propose to

avoid view materialization by enforcing schema (DTD)-level

access control through “virtual” security views. They publish

a “safe schema”, which only represents user accessible por-

tion of the XML document (the view) for users to write que-

ries. They translate user queries (against the security view) to

equivalent queries against the original XML document. On

the other hand, our proposal aims at avoiding using views

entirely.

Pre-processing approaches check user queries and enforce

access control before query evaluation, e.g., static analysis

approach [41,42], function-based approach [45], access con-

dition table approach [43] policy matching tree [44], secure

query rewrite (SQR) approach [40]. Meanwhile, client-based

access control [6] resembles post-processing approach. It

enforces access control for streaming XML data at the client

side using a filtering approach.

The Static Analysis approach [41,42] is the first attempt of

non-view-based XML access control. It first converts an input

query q to an NFA Mq and access control rules r to another

NFA Mr . At static analysis, it (1) accepts q if Mq ⊆ Mr (i.e.,

q asks for data that are “entirely” authorized) or (2) rejects

q if Mq ∩ Mr = ∅ (i.e., what q asks for is “entirely” pro-

hibited). However, when q and r partially overlap, access is

statically indeterminate, and run-time security check needs

to be enforced. As shown in Sect. 5, since the majority of

q and r belong to the partial-overlapping cases, the perfor-

mance of [41] suffers. Inspired by [41], our QFilter approach

(first appeared in [35]) discovered that although the access

decision may not be made statically (without touching the

data), a safe query could still be constructed. For instance,

assume that access control rules allow user to read phone

numbers of managers, but not employees. When a user asks

for phone number of John, the access decision could not

be made without retrieving the role of John from the data.

However, we could rewrite the query into a safe one: the

phone number of a manager named John. In the case that

John is an employee (not a manager), such a query yields

NULL answer. Therefore, the partial-overlapping case can

also be handled without relying on security features from

underlying databases.

Inspired by security view and query rewriting, a more

recent work [14] annotates XML schema with access rights

and converts it into a finite state automaton to rewrite queries.

It requires the presence of original XML schema, which is not

always available, especially in distributed environments, and

in the case access control is provided by a third party (e.g.,

[33]). It eliminates wildcards and thus may cause unneces-

sary rewrite. In rare cases, such rewrite may change the order

of nodes in the answer, which is considered wrong (XML

nodes are defined as ordered). The proposal has not been

implemented and tested in [14].

Finally, another emerging branch of XML access con-

trol focuses on sensitive information contained in XML

tree structures [11,20,39]. Meanwhile, some recent works

[7,13,21,23,38] propose to study XML access control for

update operations. However, they are outside the scope of our

research: access control of XML nodes against read opera-

tion.

2.2 Preliminaries

Since an XML document can be represented as a hierarchy of

nested nodes, fine-grained access controls at node level are

desired. Authorization in our study is specified via 4-tuple

access control rules (ACR) = {subject, object, action, sign},

where (1) subject is to whom an authorization is granted (i.e.,

role); (2) object is set of XML nodes specified by an XPath

expression; (3) action consists of read, write, and update;

(4) sign ∈ {+,−} refers to access “granted” or “denied”,

respectively. A node without explicit authorization is con-

sidered to be “access denied.” When a node has multiple rel-

evant rules, and conflict occurs between “+” and “−” rules,

“−” rules take precedence.

Compared with the 5-tuple access control policy [12]

used in many related works, we do not have the “type”

field. The original 5-tuple ACR is represented as: AC R =

{subject, object, action, sign, type}. Particularly, type ∈

{LC, RC} refers to either local check (LC) or recursive check

(RC). In local check, authorization is applied to only textual

data of the context nodes, or sometimes attributes as well—

“self::text() | self::attribute()”. In RC,

authorization is applied to context nodes and propagated to all

the descendants—“descendant-or-self::node()”.

[41] converts AC R with RC type to a combination of three

LC rules. In our model, “RC” type is enforced by default, i.e.,

access control specified on a node affects the whole subtree

rooting at that node. This setting complies with the XML

semantics, where a node is defined to include all the descen-

dants that are nested between the starting and ending tags

of the node. In other words, nodes are by default “RC” in

XML standard [8]: querying for a node will yield the whole

subtree (without the presence of further constraints such as

access control). If a rule only applies to the text child of

the context node, “/text()” is appended to the end of the

XPath expression (object). In this way, we exactly follow

XPath specification to identify XML nodes.

Like other XML access control approaches, we use XPath

[2] instead of XQuery [5] to specify queries and AC rules,

since XQuery uses XPath to access data. Table 1 summa-

rizes the notations used throughout the paper. Particularly,

XML nodes covered by positive rules and not covered by

any negative rule are considered safe data. XML query that

123

B. Luo et al.

Table 1 Notations

Term Meaning

Q User’s input query in XPath

Q′ Re-written query from Q

D XML document

Q(D) Answers of evaluating Q against D

SQ/SD Safe XML query/ safe document

U A/U D Un-safe XML answer/un-safe document

R A 4-tuple access control rule

R+/R− R that has sign +/−, respectively

AC R {Ri }, set of access control rules

AC R+/AC R− All {R+} / {R−} of the AC R

only requests safe data is called safe query; and the answer

is safe answer.

Example 1 We use the XMark [48] schema (Fig. 1a) and

access control rules of Table 2 for running examples. The

schema demonstrates an online auction scenario. Rules R1

toR8 say thatrole1 is permitted to access “categories”

information, some of “item” and “person” information.

Initially, we only consider positive rules without predicates

in the XPath of their object field. Then, R5’ is referred when

we demonstrate how predicates are processed. R9 and R10

are added to discuss negative rules.

Currently, XPath handles operands of set operators as a

sequence of node IDs. However, in the context of XML

access control, the formal XML set operators are not suf-

ficient. For instance, consider an XML tree with nodes

<a> and their descendants . Suppose there is a positive

rule R1: (admin, //a, read, +) and a negative rule

R2: (admin, //b, read, -). Conceptually, admin
is granted to read “//a EXCEPT //b” (all nodes <a>

and their descendants except nodes and their descen-

dants). However, since node IDs for <a> and cannot

be identical, the result of “//a EXCEPT //b” is always

“//a”. When is a descendent of //a, the answer vio-

lates the specified access control rules since R2 blocks .

In other words, the standard semantics of XML set operators

do not ensure correct XML access control. To remedy these

shortcomings, in [36], we defined deep set operators with

extended semantics: DEEP-EXCEPT, DEEP-UNION, and

DEEP-INTERSECT, denoted as
D
−,

D
∪, and

D
∩, respectively.

Semantics of deep set operators are illustrated in Fig. 1b. For

instance, the semantics for “P1 DEEP-EXCEPT P2” are as

follows: (1) when P2 nodes are descendants of P1, subtrees

corresponding P2 are pruned from P1 and the remainders are

returned; (2) when some P1 nodes are descendants of P2,

nodes covered by P2 are eliminated from the answer; and (3)

otherwise, it degenerates to the regular except operation, i.e.,

“P1 EXCEPT P2”. In our experimentations, deep set oper-

ators are implemented as user-defined functions of XQuery,

which does not require any extra support from underlying

Fig. 1 a The XMark DTD;

b Deep set operators
site

peoplecategoriesregions catgraph open_auctions closed_auctions

africanamerica

item item item

person person

name address creditcard

D

D

D

name description quantity

(b)(a)

Table 2 Example rules
R1: (role1, /site/categories, read, +)

R2: (role1, /site/regions/*/item/location, read, +)

R3: (role1, /site/regions/*/item/quantity, read, +)

R4: (role1, /site/regions/*/item/name, read, +)

R5: (role1, /site/regions/*/item/description, read, +)

R5’: (role1, /site/regions/*/item[quantity>0]/location, read, +)

R6: (role1, /site/people/person/name, read, +)

R7: (role1, /site/people/person/address, read, +)

R8: (role1, /site/people/person/emailaddress, read, +)

R9: (role1, /site/regions/asia/item/location, read, -)

R10: (role1, /site/regions/africa/item/location, read, -)

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

XML engine. Detailed descriptions and implementations of

deep set operators can be found in [36].

3 XML access control enforcement mechanisms

Our goal is to devise practical XML access control mech-

anisms without using security features from underlying

DBMS. Given AC R and Q, a desirable XML access control

mechanism would answer Q with only “safe data”. In partic-

ular, we consider three approaches: (1) Primitive: AC R is

merged to the query Q to yield a new query Q′ = Q
D
∩ AC R,

and the deep set operators are processed by DBMS; (2) Pre-

processing: Parts of the Q that conflicts with AC R are pre-

pruned to yield Q′, which is processed by DBMS as usual

to return safe answers; (3) Post-processing: Q is processed

by DBMS to produce unsafe answers, which goes through

post-filtering process to prune out the parts that violate AC R,

and return only safe parts.

Figure 2 illustrates the current practice of XML query pro-

cessing (i.e., without access control) and the three approaches

described above, using Galax [49] as the XML database. We

introduce an abstract mechanism AFilter for post-processing

of answers. Later we will show that, with some modification,

YFilter [17] could be used as an implementation of AFilter .

We will first introduce the three approaches briefly and go

into details of the pre-processing approach.

3.1 Primitive approach

The idea of the primitive approach is to view both query

and security policies written in AC R as constraints to

satisfy. Therefore, security is enforced by “merging” two

constraints to form tighter constraints. For instance, in Exam-

ple 1, consider user “John” of role1, who surveys the items’

location information with a query Q://item/location.

The meta-semantics of Q and a positive rule R+ is that

users are allowed to access the regions scoped by “Q

DEEP-INTERSECT R+”. Conversely, that of Q and a nega-

tive rule R− is “Q DEEP-EXCEPT R-”. Collectively, John

is allowed to read:

(Q DEEP-INTERSECT (R1 DEEP-UNION R2...

R8))

DEEP-EXCEPT (R9 DEEP-UNION R10)

Note that only R2, R9 and R10 are related to John’s query.

However, the primitive approach does not analyze the object

field of rules to distinguish related rules. On the other hand,

the primitive approach is built on deep set operators; hence,

it does not require any security support from the underly-

ing XML engine (deep set operators are implemented as

user-defined functions). The semantics and algorithm of the

primitive approach is simple and clear and thus can be

easily implemented. However, the primitive approach may

generate complex safe queries that are expensive to evaluate,

especially when there are a large number of access control

rules.

3.2 Pre-processing approach

One may improve the primitive algorithm by further

optimizing the safe query. That is, instead of simply gen-

erating a complicated Q′ with multiple deep set operators

interweaved, one may “pre-process” it by exploiting the spe-

cifics of XML model and access controls. If what users ask for

are entirely prevented by AC R, we can reject the query out-

right. Similarly, if users ask for data that are entirely granted,

no further security check is needed. Lastly, if users ask for

partly accessible data, it is beneficial to rewrite Q such that

fragments asking for illegal data are pruned. With deep set

operators, pre-processing approach is described as:

S A = SQ(D)

SQ = Q
D
∩ [(R+

1

D
∪ R+

2

D
∪ · · ·

D
∪ R+

m)
D
− (R−

1

D
∪ · · ·

D
∪ R−

n)]

3.3 Post-processing approach

The post-processing approach extends regular query

processing by going through a “post-filtering” stage, named

as AFilter, to filter out un-safe answers. Despite their poten-

tial inefficiency for unnecessarily carrying unsafe data till

the last step, this approach is simple to implement. More-

over, when AC R and data are stored separately in a dis-

tributed environment (e.g., database-as-a-service model),

this approach can be useful. Post-processing approach is

described as follows.

S A = AC R(U A)

= AC R(Q(D))

= [(R+
1

D
∪ · · ·

D
∪ R+

m)
D
− (R−

1

D
∪ · · ·

D
∪ R−

n)](Q(D))

As shown in Fig. 2d, the AFilter is used to process

AC R(U A), i.e., to extract authorized XML nodes from the

intermediate unsafe answer. Hence, it is somewhat similar

to an XML query processor. In practice, AFilter could be

implemented in different ways. In our experiments, we adopt

YFilter [17], an query processor for streaming XML data, as

an implementation of AFilter.

However, despite the simple look on the surface, its

implementation needs to overcome a technical issue. Let

us again look at John’s query Q: //item/location.

R9 and R10 disallow John to access location informa-

tion of Asia or Africa items. When Q is first evaluated

on an XML document, it projects out only the <loca-

tion> nodes without any ancestors. Therefore, in post-

filtering, when R9 and R10 are to be enforced against

123

B. Luo et al.

Galax

GalaxQ

Q UD

UD AFilter SD

(a)

(c)

(b)

(d)

GalaxQFilterQ Q’ SD

Galax SDQ ACR

Fig. 2 Ways to support XML access control without using security features of DBMS: a no presence of access control mechanisms; b primitive

approach; c pre-processing approach; and d post-processing approach

such intermediate answers rooting at <location> nodes,

they cannot check whether the <location> satisfies

/site/regions/africa/item/location or not.

However, if the underlying XML database can produce

<location> as well as all its “ancestor” tags (e.g., using

a recursive function of XQuery), then the post-processing

approach by AFilter can be applied without any further secu-

rity support from databases. Finally, to produce correct XML

answers, the extra ancestor tags need to be removed after

AFilter is applied.

4 QFilter: an implementation of pre-processing

approach

In this Section, we present our NFA-based implementation of

the pre-processing approach, named QFilter. QFilter reads a

query Q and access control rules AC R as input and returns

a modified safe query Q′ as output:

Q′ = QFilter(Q, AC R) (1)

This can be re-written by separating positive and negative

rules as follows:

Q′ = QFilter(Q, AC R+)
D
− QFilter(Q, AC R−) (2)

That is, the Pre-Processing approach can be implemented

by two invocations of QFilter function and aDEEP-EXCEPT

operator. Two stages of QFilter, construction and execution,

are elaborated in this section. Let us take a bird’s eye view

of QFilter before going into details. A QFilter is constructed

from AC R. At runtime, it “filters” out illegal fragments from

incoming queries to produce only “safe” queries. In the filter-

ing stage, QFilter has three types of operations: (1) Accept: If

answers of Q are contained by that of AC R+ (i.e., Q asks for

nodes granted by AC R+) and disjoint from that of AC R−

(i.e., Q does not ask for nodes blocked by AC R−), then

QFilter accepts the query as it is: Q′ = Q; (2) Deny: If

answers of Q are disjoint from that of AC R+ (i.e., no answers

to Q are granted by AC R+) or fully contained by that of

AC R− (i.e., all answers to Q are blocked by AC R−), then

QFilter rejects the query outright: Q′ = ∅; and (3) Rewrite:

if only partial answer is granted by AC R+ or partial answer is

blocked by AC R−, QFilter rewrites Q into the AC R-obey-

ing output query Q′.

Example 2 In Example 1, a user submits three queries:

Q1:/site/categories//*

Q2:/site/regions/asia//location
Q3:/site/people/person/*

When ACR of Table 2 is enforced on these queries:

(1) Q1 is accepted by R1;

(2) Q2 is accepted by R2 but rejected by R9 and is finally

rejected since negative rules override positive rules;

(3) Q3 is rewritten by R6, R7, and R8 into:

/site/people/person/name
D
∪

/site/people/person/address
D
∪

/site/people/person/emailaddress.

4.1 QFilter construction

In a nutshell, QFilter builds an non-deterministic finite auto-

mata (NFA) from Object fields (in the form of XPath expres-

sions) of AC R and processes an input query Q according to

one of the three operations. More specifically, we are con-

structing a special type of NFA—a Mealy Machine [37]. In

a Mealy Machine, an output is generated at each automata

state, and the output is determined by the current state and

the input.

In QFilter construction, we first take XPath expressions

from all the positive rules for a particular role (AC R+) to

construct a “positive QFilter”. To tokenize XPath expres-

sions, we view them as compositions of four basic build-

ing blocks: /x, /*, //x, and //*. The NFA element for

each building block is shown in Fig. 3. XPath expressions

with predicates are further described in Sect. 4.3. For a com-

plete XPath, NFA fragments are constructed for path ele-

ments and then linked in sequence. For a set of rules that

form the AC R, NFA fragment sequence for each rule is con-

structed and all of them are combined such that identical

states are merged. The construction process is similar to that

of regular NFA. For instance, Fig. 4a shows the state tran-

sition map for AC R+ in Example 1, and Fig. 4b shows the

corresponding NFA.

In our implementation, the QFilter NFA holds a state tran-

sition table at each state, mapping acceptable tokens (ele-

ment names of XPath steps) to transition states. Moreover,

the predicates are also captured in QFilter. The data structure

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

Fig. 3 NFA element for each

XPath building block
Element State transition NFA contruct Element State transition NFA contruct

/x

//x

/*

//*

1 2
x x 1 2* *

1 2 3

*
x x 1 2 3

*
* *

1 2 1 2

0

1

2

categoriessite

3regions 4* 5item

6

lo
ca

tio
n

7

8

name

quantity

description

10

p
e
o
p
le

911
person

12

name

13address

14

emailaddress

site

categories

regions

people

person

item

2

3 4

location

quantity

name

description

7

name

address

emailaddress

0

1

10

11

7

6

8

9

12

13

14

site

categories

regions

people

person

item

2

3 4

name

quantity

description

location

5.1

name

address

emailaddress

0

1

10

11

7

6

8

9

12

13

14

5.2

quantity>0

4p

(a) (b) (c)

Fig. 4 a State transition map of the QFilter; b NFA of the QFilter; c NFA of the QFilter with predicate processing states

for QFilter (illustrated in Fig. 5) consists of: (1) A state transi-

tion table (stateT ransi tionT able) maps acceptable tokens

to a predicateT able, which maps predicates to correspond-

ing child QFilter State; (2) A ε-transition child state (may

be null), to handle “//” steps; (3) A binary flag to indicate

accept state (e.g., state 6 of Fig. 4); and (4) A binary flag to

indicate a “//” state, which recursively accepts tokens, i.e.,

with a * transition to itself (e.g., state 2 in Fig. 3 row 2).

Taking AC R as input, we construct QFilter from the root

state and hold this state for all future access (e.g., add a rule

or filter a query). We first create an empty root state and then

add each rule to the root state one by one. Algorithm 1 shows

QFilter construction (at state level) in details. The general

idea for adding each rule is to follow the existing NFA states

as much as possible, until no existing state is reusable, and

then new states are created. At each state, the add Rule()

function takes in the current XPath step (token). In case we

reach the end of the XPath, the current state is marked as

accept state and the rule is added (lines 1–3). In the case of //

steps, we first add ǫ-states and then process as regular steps

(lines 4–10). If the token is not in the state transition table,

we create a new entry for it (lines 14–17, we process * sepa-

rately). Similarly, if the predicate (may be NULL) is not in the

predicate table, we also add a new entry and a pointer to the

next state (lines 19–23). And then we move to the next token.

Example 3 Let us demonstrate the construction of QFil-

ter for AC R+ in Example 1. Construction starts from

/site/categories. State 0 in Fig. 4 is first cre-

ated for the XPath step /site. Then, state 1 is created

for the step /categories, and state 2 is created and

marked as “Accept”. At this time, the QFilter contain-

ing 3 states are shown in Fig. 5b. Next, we add another

rule R2: /site/regions/*/item/location. For

the first step “/site”, since identical key is detected at state

Algorithm 1: QFilterState.addRule

Input: XPath expression of Access Control Rule: R

if R.E O S() then1

mark as accept state: accept State = T rue;2

return3

if (R.current Step is “//”) & (NOT R.doubleSlash Processed)4

then

if ε − transi tionChild does not exist then5

Create ε − transi tionChild State;6

mark ε − transi tionChild State as DSState;7

R.doubleSlash Processed ←− true;8

ε − transi tionChild State.add Rule(R);9

return10

T oken ←− R.element Name;11

Predicate ←− R.predicate;12

R.next Step();13

if DSState & T oken = “∗′′ then14

addRule(rule); return;15

if NOT stateT ransi tionT able.hasK ey(T oken) then16

stateT ransi tionT able.put (T oken, empty PredicateT able);17

predicateT able ←− stateT ransi tionT able.get (T oken);18

if NOT predicateT able.hasK ey(Predicate) then19

create new filterState newState;20

predicateT able.put (Predicate, newState) ;21

stateT ransi tionT able.put (T oken, predicateT able);22

newState.add Rule(R);23

else24

(PredicateT able.get (predicate)).add Rule(R);25

0, it is reused. Then at state 1, element name “regions”

is not in the state transition table. State 3 is created, and a

new entry is inserted into the state transition table at state 1.

Subsequently, states 4, 5, and 6 are created in the same way.

Finally, after we add all eight rules in AC R+ to this QFilter,

state 1 is constructed as shown in Fig. 5c.

123

B. Luo et al.

φ

P1

...

T1

φ

...
T2

φT3

ID

εDSState 0/1

Accept? 0/1

φsite

0

ε NULLDSState? 0

Accept? 0

φcategories

1

ε NULLDSState? 0

Accept? 0

NULL

2

ε NULLDSState? 0

Accept? 1

φsite

0

ε NULLDSState? 0

Accept? 0
φpeople

1

ε NULLDSState? 0

Accept? 0

φregions

φcategories 2

3

10

(a)

(b)

(c)

Fig. 5 a Data structure of a QFilter state; b QFilter constructed for rule /site/categories; c QFilter constructed for more rules

4.2 QFilter execution

Given a query Q as input, QFilter prunes unsafe fragments

of Q to generate a safe query Q′. The filtering principle con-

sists of: (1) If AC R allows all data that Q requests, keep Q

as it is; (2) If what Q asks for is entirely prohibited by AC R,

then reject Q outright; and (3) Otherwise, modify Q such

that Q′ returns a precise “deep-intersection” of Q and AC R.

The filtering process becomes complicated when either Q or

AC R has non-deterministic operators such as “// ” and “*”.

At microlevel, we first split Q into XPath steps, tokenize

them, and pass to the root state of QFilter to start NFA (Mealy

Machine) execution. As a Mealy Machine, each state gener-

ates an output, which is determined by the input token and

the state transition. A query is accepted when it reaches an

accept state, and the intermediate outputs are concatenated

to generate a safe query as NFA output. Queries with wild-

cards may go through several rules (being rewritten by each

rule), and the result of QFilter execution becomes an array

of safe queries. Each element in the array reflects a rewrit-

ten branch of Q. Finally, QFilter weaves the array of XPath

queries through using
D
∪. The details of QFilter execution,

shown in Algorithm 2, are as follows:

– At each state, the (tokenized) element name from Q is

matched against the keys in the state transition table.

When a “match” is found, we keep the intersection of

the element name and the key as the output of this

state. For instance, when “*” matches “regions”, their

intersection “regions” becomes the output. Predicates

from AC R and Q are both kept in the output (details in

Sect. 4.3).

– When a “match” is processed, QFilter locates the corre-

sponding “next state” from the state transition table and

continues with the next XPath step from Q as input.

– Q is accepted at the accept state. We then link the output

of each state sequentially to obtain a final “filtered” output

query.

– At each step, multiple matches may exist (e.g., a “*”

in Q matches all the keys in the state transition table).

Then, QFilter execution splits into branches, and the final

output of each branch (if not null) is put into the result

array. On the other hand, when multiple predicates exist,

QFilter execution is also split into branches. Finally, mul-

tiple outputs (in the array) are connected by
D
∪.

Example 4 Let us use the QFilter in Example 2 (Fig. 4b)

to check query Q: /site/people/person/name. At

state 0, since the first token “site” matches the key “site”,

“/site” becomes the output, and execution continues to

state 1. In this way, Q goes through states 0, 1, 10, and 11 and

is finally accepted at state 12 as “/site/people/per-

son/name”.

Example 5 We process Q: /*/*/person/name with

the same QFilter. The first /* is accepted by state 0,

and the output is “/site”. The next /* is accepted by

state 1, and the execution continues into 3 branches: (1)

to state 2, with output “/site/categories”; (2) to

state 3, as “/site/regions”; and (3) to state 10, as

“/site/people”. Branch 1 is accepted at state 2 as

“/site/categories/person/name”. Note that this

query is not valid in XMark schema and will be rejected at

query processing (static analysis phase). In Sect. 4.7, we will

further discuss how QFilter could be combined with XML

schema. Branch 2 goes through state 3 and is rejected at

state 4, since “name” does not match anything in the state

transition table. Finally, branch 3 goes through states 10 and

11 and is accepted at state 12, as “/site/people/per-

son/name”.

4.3 Handling predicates

Predicates such as “[b=10]” in “//a/[b=10]/c” fre-

quently occur in Q or AC R. When Q has predicates in it, they

are kept intact initially. Whenever an XPath step is accepted

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

Algorithm 2: QFilterState.filter

Input: XPath query Q (with pointer to current step); its filtered

part: prefix

Output: String array of filtered query branches: arrayQ′

if Q.E O S() then1

if is accept state then2

return pre f i x ;3

else4

return NULL;5

if Q is double slash then6

arrayQ′ ←− Q Filter State.DSFilter();7

return arrayQ′;8

if ε − transi tionChild State!=NULL then9

Q′ ←− ε − transi tionChild State. f ilter(Q);10

if Q’ != NULL then11

arrayQ′.insert (Q′);12

T oken ←− Q.element Name;13

Predicate ←− Q.predicate;14

Q.next Step() ;15

if current state is a DSState then16

pre f i x ′ ←− pre f i x+“/”+Token+Predicate;17

Q′ ←− f ilter(Q, pre f i x ′);18

if Q’ != NULL then19

arrayQ′.insert (Q′);20

foreach match between Token and (key[i] in21

stateTransitionTable) do

if key[i]=“*” then22

T oken′ ←− T oken;23

else24

T oken′ ←− key[i];25

predicateT able ←− stateT ransi tionT able.get (key[i]);26

foreach predicate[i] in predicateTable do27

pre f i x ′ ←−28

pre f i x + “/′′ + T oken′ + Predicate + predicate[i];

next State ←− predicateT able.get (predicate[i]);29

Q′ ←− next State. f ilter(Q, pre f i x ′);30

if Q’ != NULL then31

arrayQ′.insert (Q′);32

or re-written, then the predicate (if any) is attached to it. Oth-

erwise, if a path is rejected, the predicate is also rejected.

For predicates in AC R, from Fig. 5a, we can see that each

element name is mapped to a table, holding all the pred-

icates affixed with it. During QFilter execution, when the

input matches a token in the state transition table, we further

process the predicates: (1) AC R predicate in the predicate

table is attached to the output of the current state; (2) Mul-

tiple entries in the predicate table are not exclusive. That is,

QFilter execution is split into multiple branches, and each

takes an entry in the predicate table; and (3) For each branch,

QFilter execution continues at the “next state” corresponding

to the entry in the predicate table.

Example 6 Let us replace R5 of Example 1 by R5’ in Table 2.

Then, the QFilter of Fig. 4b is re-constructed to Fig. 4c. Each

non-leaf non-ε state carries an empty predicate processing

state “ϕ” but omitted for simplicity.

Example 7 Let us use the QFilter of Example 6 and Fig. 4c

to process Q: “/site/regions/namerica /item/

location”. Q first goes through states 0, 1, 3, and

4, with an intermediate output as “/site/regions
/namerica/item” (Note that, at state 3, “*” in the

transition table matches with the current element name

“namerica”, and their intersection, “namerica”, is kept

in the output). Then, QFilter execution splits into two

branches at predicate state 4p. Branch 1 (intermediate

output: “/site/regions/namerica/item”) goes to

state 5.1, while branch 2 goes to 5.2, with intermediate out-

put: “/site/regions/namerica/item[quantity

>0]” (predicate from rule R5’ is attached). Branch 1 is

rejected at state 5.1, while branch 2 is finally accepted at

state 9. Finally, the QFilter output is /site/regions

/namerica/item[description]/name/text()

4.4 Handling queries with //

The descendant-and-self axis in XPath (“//x”) asks for ele-

ment “x” with any path(s) preceding it. The//x step (respec-

tively, //* step) in Q matches the key x (respectively, any

key) in the current NFA state, or any of its descendant state.

Therefore, either “//x” or “//*” in Q triggers the state tran-

sition from the current state to all of its subsequent states and

then matches “x” or “*” with keys in their state transition

table. In this case, Q is split into branches that continue at

each of the subsequent states of the current state (where the

“//” input is detected). Such a query needs to be rewritten. In

general, we rewrite “// ” with the path from the current state

to the destination state, where the branch continues to be exe-

cuted. Then, each branch of the QFilter execution restarts by

matching the input element name (“x” or “*”) with keys in

the state transition table.

Example 8 Let us use the aforementioned QFilter to pro-

cess the query “/site/people //name”. The first two

steps “/site/people” trigger the state transition from

0 → 1 → 12. Then, when it encounters the “// ”, Q

breaks into the following six branches, each having the

input element “name”: (1) /site/people restarts at state

12; (2) /site/people/person restarts at state 13; (3)

/site/people/person/name restarts at state 14; (4)

/site/people/person/address restarts at state 15;

(5) /site/people/person/emailaddress restarts

at state 16; and (6)/site/people/person/address/

restarts at state (17/18). Obviously, only the states 13

(branch 2) and 17/18 (branch 6) can accept the input

token name. Thus, the final output is “/site/people/

person/name UNION /site/people/person/

address //name”.

123

B. Luo et al.

Table 3 “// ” transition look-up table

Start Destination Re-written query

10

11 /person

10 12 /person/name

13 /person/address

14 /person/emailaddress

To speed up the traversal, we can build a look-up table for

each state. It is an index to all the sub-states, together with a

string to rewrite “// ” into a safe path. As an example, the look-

up table of state 12 is shown in Table 3. On the other hand,

a “//” state in query triggers multiple matches in QFilter,

yielding extra overhead. However, note that the computation

is not as excessive as it looks like. For a “//x” query, most

of the redundant branches are rejected at the next state, since

x does not match anything in the state transition table. On

the other hand, “//*” states are not commonly used in real-

world queries. Moreover, they should only appear at the end

of XPath queries. Otherwise, a “//*/x” state can be easily

written into //x.

4.5 Handling negative rules

Unlike engine-level or view-based methods, pre-process-

ing XML access control approaches need special handling

for negative rules. However, as we have shown, traditional

“except” operations defined in XPath is not sufficient, since it

is not capable of creating new nodes. In our approach, shown

in Eq. 2, for AC R set with negative rules, a separate QFilter−

is built. Hereafter, we call the QFilter for positive rules the

positive QFilter and the QFilter for negative rules the nega-

tive QFilter. The construction and execution of the negative

QFilter is the same as those of the positive QFilter (minor

differences in operations at accept states will be discussed

in next subsection). The output from both QFilters are con-

nected by the deep-except operator, as we have described

in Sect. 2.1. As we have implemented deep set opera-

tors through XQuery user-defined-functions (UDF), the new

query could be answered by any state-of-art XML engine

that supports XQuery. In our implementation, for better per-

formance, instead of passing the original query through the

negative QFilter , we use the output from positive QFilter as

the input to the negative QFilter. Therefore, we have:

Q′ = QFilter(Q, AC R+)

D
− QFilter(QFilter(Q, AC R+), AC R−)

In this way, input to negative QFilter has been pruned

by positive QFilter, so that they contain fewer wildcards.

Therefore, sub-queries are more likely to be dropped at neg-

ative QFilter, or the result safe queries require less com-

putation in query evaluation. For instance, if we have rules

{user, /a//*, read, +}, {user, //c, read,
-}, and query /*/c, our implementation drops the query

without evaluation, instead of returning /a/c
D
− /*/c (this

query will yield NULL eventually).

Now we analyze the properties of negative rules,and show

that not all negative rules require deep set semantics. In prac-

tice, a good portion of negative rules could be handled by

regular except semantics. As we described in Sect. 2.1, deep-

except operator is used to remove inaccessible nodes from

the answer. Recall that, in our XML access control model, all

nodes are inaccessible by default. When a user is prohibited

to access a node, there is no need to write a negative rule (R−)

to revoke its accessibility, unless the node has been granted

access by positive rules (AC R+). In this way, negative rules

are only used to specify exceptions to global permissions, i.e.,

“revoke” access proposed by AC R+. Deep-except operator

is used to enforce such revoke operation. However, it depends

upon the type of the negative rules whether we need to use

deep except or regular except. In particular, we distinguish

two types of negative rules:

Definition 1 (NE vs. DE negative rules) A negative rule

in ACR restricts users from accessing a set of nodes

{r−
1 , . . . r−

n }. If none of the nodes is a descendant of the

context node of a positive rule, i.e.:

r−
i �∈ 〈R+//∗〉, ∀r−

i ∈ {r−
1 , . . . r−

n }; ∀〈R+〉 ∈ 〈AC R+〉

then it is called a Node Elimination (NE) negative rule. Else,

if one of the nodes is a descendant of the context node of a

positive rule, i.e.:

r−
i ∈ 〈R+//∗〉, ∃r−

i ∈ {r−
1 , . . . r−

n }; ∃〈R+〉 ∈ 〈AC R+〉

it is called a Descendant Elimination (DE) negative rule.

Intuitively, a “Node elimination” (NE) negative rule

removes context node from 〈AC R+〉, while a “descendant

elimination” (DE) negative rule removes descendants from

context node of 〈AC R+〉.

Example 9 Let us revisit our example AC R in Table 2. Pos-

itive rule R2 grants users access to <location> nodes.

Correspondingly, negative rule R9 revokes access to some of

these <location> nodes. Since R9 revokes access to con-

text nodes of R2, it is an NE negative rule. On the other hand,

assume we add another negative rule: Rx: (role1,/

site/people/person/address/zipcode,read,

-). In this way, R7 grants access to <address> nodes,

while Rx revokes access to one of its children <zipcode>.

Hence, Rx removes descendants from context node of R7

and therefore is an DE negative rule.

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

In [34], we show that deep except is only needed when

answers are partially blocked by DE negative rules, in which

descendants of the original context nodes are removed.

Therefore, deep-except concept needs to be employed to con-

struct new XML nodes.

4.6 Accept state operations and QFilter output

The notions of answer-by-node and answer-by-subtree have

brought extra burdens in access control design and imple-

mentation. It also caused confusion and misunderstanding.

In this work, we follow XML and XPath specifications

[2] to implement the answer-by-subtree model: a node has

everything between the starting and closing tags. In the tree

concept, an XML node includes the subtree with all its

descendant nodes. Hence, we inherently employ recursive

check: granting access to a node is effective to the entire sub-

tree. In this way, our approach could be seamlessly adopted

by any XML database systems and access control models

that comply with the XPath standard.

Operations at accept states are more complicated than reg-

ular states, partly due to the answer-by-subtree model. As

shown in Sect. 2.2, access control rules that only applies to

text child of the context node are called text()-only rules,

in contrast to regular rules. In QFilter, we have two types

of accept states: regular accept states and “text()-only”

accept states. In implementation, they are distinguished by a

flag.

1. Positive QFilter

(a) Query ends at an accept state: the query is accepted.

All the outputs from its path in the QFilter are con-

catenated to give the final output. A special case is

when the accept state is a “text()-only” accept

state, then “/text()” is appended to the end of

the output XPath expression.

(b) Query exceeds an accept state: in this case, the

query reaches an accept state, but there are more

XPath steps yet to be processed by the NFA.

For instance, when ACR allows /a and query is

/*/*/c, the query reaches an accept state after its

first XPath step is accepted by QFilter. When it is

a regular accept state, the query is accepted since

it asks for a subtree of an accessible node. Out-

puts from previous QFilter states are concatenated,

and the unprocessed XPath steps from the query are

appended to construct the final output. In the exam-

ple, output from previous QFilter states is /a and

residues from the query is /*/c, thus making the

full output: /a/*/c. On the other hand, when

the accept state is a “text()-only” accept state,

the query is rejected unless its remaining part is also

“text()”.

(c) Query ends at middle states: we encounter a design-

ing choice for those queries that stop at non-accept

states. In traditional automata theory, such strings

are rejected. However, in our application, such sce-

nario happens when a query asks for a node, while

the user is only allowed to access a portion of the

subtree. For instance, user asks for /a, while he

only has access to /a/b/c. In such cases, it is a

design choice whether to reject the query or to return

accessible portion of the answer (e.g., /a/b/c).

2. Negative QFilter

As shown in Sect. 4.5, with the presence of neg-

ative rules, accepted sub-queries from the positive

QFilter are further processed by the negative QFil-

ter. Here, we use the word “accept” from NFA per-

spective. Note that a query accepted by negative

QFilter indicates that it is to be denied access (i.e.,

“rejected” from access control perspective)

(a) Query ends at an accept state: the query is accepted,

and the output is generated in the same way as pos-

itive QFilter.

(b) Query exceeds an accept state: when it is a regu-

lar accept state, the query is accepted. The output

is generated in the same way as positive QFilter.

When the accept state is a “text()-only” accept

state, the query is rejected unless the remaining part

is also “text()”.

(c) Query ends at middle states: in this case, access to

some descendants of the answer nodes is prohib-

ited by negative rules. We automatically follow the

QFilter to all the descendent accept states and gen-

erate the complete outputs. Note that this is a clear

case of descendant elimination; thus, deep-except

operator will be employed to remove the inaccessi-

ble nodes.

4.7 QFilter with XML schema

Until now, we have made no assumption on the availability

of XML schema. We have not used XML schema since it

may not be available with the access control enforcement

mechanism, especially when access control is enforced out-

side of the data server, e.g., [33]. In this way, only AC R

and Q are required for QFilter to enforce access control,

making it independent and universally applicable. How-

ever, the disadvantage is that processing a wildcard query

may result in many sub-queries that are not valid in the

schema. For instance, running query “//name” through our

example QFilter will yield a sub-query “/site/people/

123

B. Luo et al.

person/address/name” which is not valid in XMark

(<address> nodes do not have any <name> children).

This does not mean that QFilter is wrong—such invalid sub-

queries will be efficiently eliminated by the XML engine

in the static analysis phase, so that they do not hurt the

security or efficiency of the system. However, large amount

of unnecessary sub-queries are annoying, especially when

users intend to read the safe queries. Moreover, when QFil-

ter is implemented outside the XML data server [33], such

queries also bring communication overhead. Fortunately, we

can easily replicate the XPath validation process in the XML

engine to eliminate such queries. In our approach, we build

an automata to capture the XML schema and make all the

states accept states (each state represents an XPath expres-

sion that is valid under the schema). We validate all the

sub-queries generated by the QFilter through the schema

automata. A sub-query is valid if and only if it stops at

one or more accept states. Therefore, with the schema auto-

mata, invalid subqueries, such as “/site/people/per-

son/address/name”, are dropped.

On the other hand, some follow-up works of the original

QFilter paper [35] solves the problem by combining the

schema with AC R and unfolds all wildcard queries to com-

binations of valid simple queries. This approach may not be

the best since it may change the order of the nodes in the

answer when it is not necessarily (note that XML is defined

as ordered). This approach may create many piddling sub-

queries for a wildcard query, when it is not necessary. For

instance, with the XML schema, //person/* will be re-

written into//person/name UNION //person/age
UNION //person address UNION

4.8 Storage and computation

For a single QFilter, the (in memory) size is proportional

to the number of NFA states, which is proportional to the

number of rules in the ACR and number of XPath steps in

each rule. [10] has shown that real- world DTDs are small.

Meanwhile, when recursive XPath and predicates are not

considered, the total number of possible rules (valid XPath

expressions) for a schema is limited. On the other hand, since

the rules are manually designed, it is expected that the size

of ACR is relatively small. More importantly, there exists

path sharing as we have described in QFilter construction,

which reduces the size of the QFilter. In practice, an QFil-

ter constructed from 50 (XMark) rules consumes approxi-

mately 40 KBs in our implementation.

For a system with multiple roles, we create one QFil-

ter for each role. QFilters are identified with their root states

and stored in an array. In extreme cases, when QFilters are

employed in a web-scale application, there may be a huge

number of roles and hence introduce a storage issue. To over-

come this problem, we have introduced Multi-Role QFilter

[33], which merges QFilters on the same schema (to inten-

sively utilize path sharing) and attaches an access list (imple-

mented as a bitmap) to each state. In this way, we save large

amount of memory with the price of minimum run-time over-

head.

Computational cost of QFilter includes time for both QFil-

ter construction and execution. For QFilter construction, the

complexity is O(N), where N is the number of steps of XPath

expression in AC R. For QFilter execution, (1) When there

is no wildcard in Q, filtering Q costs O(M), where M is

the number of steps of Q. The worst case occurs when Q is

accepted or rewritten; (2) When the wildcard “*” exists in Q,

filtering costs O(|N F A|). The worst case occurs when Q is

“/*/*· · · /*”, since it requires the traversing of the entire NFA;

(3) For Q with “// ” step, the cost becomes O(M ∗ n1 ∗ n2 ∗

· · ·∗nk), where k is the number of wildcards “// ” in Q and ni

is the size of the child QFilter at the state which first meets

the i th “// ” path. Note that this is an acceptable cost since the

worst case query of “//*//*· · · //*” is rather rare in real-world

XML queries. Overall, QFilter is computationally practical

since the worst case query never occur. In the next section,

we validate this claim in the experimentation.

4.9 Comparison with static analysis

As we have briefly discussed in Sect. 2.1, Static Analysis

[41,42] is the most similar approach with QFilter. Now we

compare both methods from a theoretical perspective.

An XML access control rule set (AC R) defines a set of safe

XPath expressions. If we treat each AC R rule as a grammati-

cal rule, the AC R set then defines a regular language LACR,

in which each XPath step is a token, and each safe XPath is

a valid word. In both approaches, ACR automata are used to

capture LACR.

If we only consider simple path (without wildcards or

predicates) and atomic nodes, such an XPath query is a word

wQ , which could be validated in L AC R : Q is safe when

wQ ∈ LACR. However, the query may contain wildcards

(e.g., /*/a), and the context node may have descendants

(e.g., /b may have /b/c, /b/d, etc). Such a query rep-

resents multiple words on the same alphabet as LACR and

therefore also defines a language: LQ . In Sect. 3, we rep-

resent the safe query with deep set operators. Similarly, in

Static Analysis, the safe query is represented as a new lan-

guage: L′
Q

= LQ∩LACR. However, to be evaluated against

any XML engine, a valid XPath/XQuery expression needs to

be derived from L
′
Q

: (1) when LQ ⊆ LACR, L
′
Q

= LQ.

Since LQ is deducted from Q, we can use Q as the safe

query. (2) when LQ ∩ LACR = NULL, L
′
Q

= NULL and

access is denied. (3) finally, when LQ ∩ LACR! = NULL,

we have a more general case that requires converting LQ′

back to XPath. A viable approach is to construct an NFA

for LQ′ , convert the NFA to a regular expression, and

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

further translate it to comply with XPath. However, the

conversion is expensive [26] and does not guarantee an opti-

mal, human-readable XPath expression as output. Unfor-

tunately, static analysis does not derive such a safe query

and therefore requires run-time check from the underlying

XML engine (to our best knowledge, no commercial XML

DBMS currently delivers fine-grained access control func-

tion).

Compared with Static Analysis, we take a different path.

Naturally, automata are used to check whether words (in this

case, XPath queries) are valid under the grammar. We follow

this route to use QFilter to check if the input is valid in LACR.

In the case that the input word contains wildcards but LACR

accepts only specified pathes, we make use of the output func-

tion of the Mealy machine to rewrite it into a valid word in

LACR. In summary, Static Analysis approach works with two

languages, while QFilter uses one language to validate (and

rewrite) input words (queries). Therefore, QFilter is capable

of providing a relatively more human-friendly safe query in

all cases and is theoretically more efficient. Note that, in some

re-write cases of QFilter, access control decisions are stati-

cally indeterminable. Nevertheless, we are able to construct

a safe query so that no security enforcement mechanism

is required from the underlying XML engine. For instance,

comparing a positive rule //item[quantity>3] and a

user query //item[name=‘laptop’], although access

control decisions cannot be made without accessing the data,

we are able to construct Q′=//item[quantity>3 and

name=‘laptop’] as a safe query.

5 Experiments

To use QFilter for XML access control, we first constructs

QFilter based on access control rules. Then, input queries are

processed by QFilter to generate safe queries; and safe que-

ries are sent to underlying XML engine to retrieve the answer.

According to this process, we test QFilter in the following

aspects: (1) QFilter construction, (2) QFilter execution, and

(3) end-to-end query processing (including security check

and evaluation). Since we have discussed the storage cost of

QFilter in Sect. 4.8, the other major concerns of performance

are computation efficiency. In this section, we focus on the

evaluation of the speed of QFilter from the aforementioned

three aspects.

5.1 Setup

We used the well-known XMark DTD and document gener-

ator [48] to generate synthetic XML documents. As a pre-

processing approach, QFilter performance is irrelevant to

size of XML documents, we use a 5 MB document for our

experiments. We used Galax 0.3.1 [49] for XQuery/XPath

query evaluation. QFilter was implemented in Java (JDK

1.4.2) and communicated with Galax through its Java-API.

For post-processing approach, we used the YFilter [17]

from UC Berkeley as an implementation of AFilter (as shown

in Fig. 2d). A YFilter is an NFA constructed from XPath

queries in a way that is very similar with QFilter. How-

ever, the execution mechanisms are entirely different and

hence introduce some differences in construction as well. For

instance, YFilter captures and processes predicates in a dif-

ferent way than QFilter. As we have introduced, QFilter uses

a special, non-reject NFA state to handle both value-based

and structure-based wildcards. On the other hand, YFilter

has developed an approach, namely Inline, to process value-

based predicates when the host elements in the XML stream

are matched with the XPath expressions in the NFA. Mean-

while, structure-based predicates are decomposed and con-

stituent paths are matched separately; a collection operator

is employed to handle the “join”.

YFilter was originally introduced as an query processor

for streaming XML data. It matches XML messages against

users’ queries (i.e., XML documents vs. XPath). In our case,

YFilter is constructed with AC R and then takes intermediate

unsafe XML answer as inputs and produces safe documents.

Authors of [17] have helped us to modify YFilter so that

it outputs only matched nodes (instead of the entire XML

document) and hence serves the functionality of an AFilter.

The types of queries and number of access control rules are

important in our experimentation and thus carefully selected

and measured. Both user-defined (denoted as UD) and syn-

thetic (denoted as SN) XPath expressions were used. Hence,

we have four test cases by combining two factors in two

dimensions: UD-Q/UD-ACR, UD-Q/SN-ACR, SN-Q/UD-

ACR, and SN-Q/SN-ACR. Note that user-defined queries

over synthetic rules does not really make sense. Therefore,

we only tested other three combinations. All synthetic XPath

expressions were generated by YFilter [17] package. The

Customer Advertisement Manager (CAM) role (extended

from our running example) is created for user-defined ACR.

CAM is in charge of delivering advertisements to customers

thus is permitted to access items’ and users’ basic informa-

tion except for credit card and user profile. This policy can

be captured by the rules shown in Table 4.

In order to show the impact of predicates in ACR, we

test both rules with and without predicates. Hereafter, we

use “user-defined rules with predicate” to indicate rules

shown in Table 4. On the other hand, we use “rules without

predicates” indicates the remaining rules after “[@quan-
tity>0]” fragment is removed from them. User-defined

queries are mainly used to validate the correctness of QFil-

ter. In addition, we also created queries with the synthetically

generated XPath expressions as shown in Table 5 to evaluate

the scalability. We have created 500 queries for each query

set of Table 5.

123

B. Luo et al.

Table 4 User-defined AC R:

CAM case No. Rule

1 (CAM, /site/regions/*/item[@quantity>0]/location, read, +)

2 (CAM, /site/regions/*/item[@quantity>0]/quantity, read, +)

3 (CAM, /site/regions/*/item[@quantity>0]/name, read, +)

4 (CAM, /site/regions/*/item[@quantity>0]/description, read, +)

5 (CAM, /site/categories, read, +)

6 (CAM, /site/people/person/*, read, +)

7 (CAM, /site/people/person/creditcard, read, +)

8 (CAM, /site/people/person/profile, read, +)

Table 5 Synthetically generated 10 user query sets (QS1–QS10) with different probabilities of “*” and “// ” at each XPath step, and total number

of predicates in the XPath expression

QS * // P QS * // P QS * // P QS * // P

1 0 0 0 2 0 0 2

3 0 10% 0 4 10% 0 0 5 10% 10% 0 6 10% 10% 2

7 0 20% 0 8 20% 0 0 9 20% 20% 0 10 20% 20% 4

0

100

200

300

400

500

600

700

Rule #

Q
F

ilt
e
r

C
o
n
s
tr

u
c
ti
o
n
 (

µ
s
)

QFilter construction with predicates

QFilter construction w/o predicates

Fig. 6 QFilter construction using one single user-defined rule

5.2 Evaluating QFilter construction

In real-world applications, QFilter is likely to be constructed

offline. Once the service starts, we do not need to modify

or reconstruct QFilter unless AC R is changed. Thus, QFil-

ter construction speed is of less importance to users. Nev-

ertheless, experiments show that QFilter construction is fast

enough, even to be done online.

We first construct QFilter with user-defined rules (eight

rules for the role CAM, as shown in Table 4) and record the

construction time. We construct QFilter using each of the

rules with and without predicates and compare the speed.

According to Fig. 6, QFilter construction time for differ-

ent rules mainly depends on the complexity of the XPath

expression, i.e., number of QFilter states to be built. QFilter

construction is faster for shorter and simpler rules, since less

parsing time is spent and less states are created. We also see

that predicates bring more overhead to QFilter construction,

since an additional predicate processing state is created.

Note that, in real-world applications, QFilters are not cre-

ated for each individual rule. Rather, one QFilter is created

for all the + rules and another QFilter for all the − rules. For

CAM role, one QFilter for all the “+” rules is constructed in

1,155µs, and one QFilter for all the “−” rules is constructed

in 496µs.

Next, we construct QFilter with synthetic rules and record

the construction time. In each experiment, we generate 10,

50, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000

rules (distinct rules), respectively, each with the maximum

length of 10 path elements. We use uniform distribution in

selecting child elements. Different groups of synthetic rules

are defined in Table 6.

Figure 7 shows that QFilter construction is fast and scal-

able. * or // paths do not slow down the construction. On

the contrary, when we set higher * or // probability in rules,

QFilter construction becomes faster. There are two reasons

for this: (1) since XPath string parsing takes much of the

QFilter construction time, the existence of * and // in the

path makes the string shorter: as one path step, * is shorter

than a string value path name; moreover, the XPath generator

we used tends to generate shorter XPath expressions (with

less steps) upon existence of //; and (2) in QFilter imple-

mentation, * and // paths are processed separately (not in the

state transition hash table); thus, we do not search or insert

the state transition table, which makes it faster.

For predicates, QFilter construction is faster with

small number of predicates, because predicate states are

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

Table 6 Synthetically generated AC R with different probabilities of “*” and “// ” at each XPath step and number of predicates

RS * // P RS * // P RS * // P RS * // P

(a) 1.1 0 0 0 1.2 10% 0 0 1.3 20% 0 0 1.4 30% 0 0

(b) 2.1 0 0 0 2.2 0 10% 0 2.3 0 20% 0 2.4 0 30% 0

(c) 3.1 0 0 0 3.2 0 0 1 3.3 0 0 2 3.4 0 0 3

(a) impact of * path; (b) impact of // path; and (c) impact of predicates

0 200 400 600 800 10000 200 400 600 800 10000 200 400 600 800 1000

of rules

RS3.1
RS3.2
RS3.3

RS3.4

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

of rules

Q
F

ilt
e

r
c
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
µ

s
)

of rules

RS2.1

RS2.2
RS2.3
RS2.4

RS1.1
RS1.2
RS1.3
RS1.4

Fig. 7 QFilter construction using synthetic rules. From left to right: impact of (1) * path; (2) // path; (3) predicates

of rules

per role
of roles

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n

(M
 B

y
te

s
)

×10

of rules

per role

of roles

×10

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n

(M
 B

y
te

s
)

(a) (b)

Fig. 8 Memory consumption of multiple QFilters: a AC R with no wildcard; b 10% probability of wildcard

constructed faster than regular NFA states. For XPath strings

of similar length, those with predicates are processed faster.

But many predicates (e.g., 3 predicates in RS3.4) may

increase the length of the XPath strings and thus slow down

QFilter construction.

As we have described in Sect. 4.1, in a system with mul-

tiple roles, multiple QFilters are constructed accordingly.

In our implementation, they are hold in an array. As shown

in Fig. 8, memory consumption of the QFilter array is pro-

portion to the number of roles (i.e., number of QFilters) in

the system. Although the actual memory consumption heav-

ily depends on the actual implementation, the linear memory

cost is very acceptable in most cases. In extreme cases, where

there are a huge number of roles with many rules per role,

or when the system memory is very limited, we have intro-

duced Multi-role QFilter in [33] to further reduce memory

consumption.

5.3 Evaluating QFilter execution

After QFilter is created with AC R, we use it to filter the input

query Q to yield safe query Q′. Using the CAM role, we first

test how the properties of user query Q affect the filtering

speed. That is, we prepare ten different query categories (as

shown in Table 5), and for each category, we generated 500

synthetic queries based on the XMark DTD. Using these

random XPath expressions as input to QFilter, we measure

the number of accepted, denied, or rewritten queries in each

group. We also separate a category “minus” to indicate the

queries that are rewritten by negative rules. Then, we mea-

sure the average QFilter execution time for each group and

for each output type (accept, deny and rewrite). The results

are shown in Figs. 9 and 10.

From Fig. 9, we can summarize: (1) for rules without any

predicate(left), queries in set 1 (no “*”, no “// ”) are either

123

B. Luo et al.

0

50

100

150

200

250

300

350

400

QS 1 QS 2 QS 3 QS 4 QS 5 QS 6 QS 7 QS 8 QS 9 QS 10QS 1 QS 2 QS 3 QS 4 QS 5 QS 6 QS 7 QS 8 QS 9 QS 10
0

50

100

150

200

250

300

350

400

Accept Deny Rewrite Minus Accept Deny Rewrite Minus

Fig. 9 Summary of QFilter outputs: number of accept/reject/rewrite/minus rewrite queries. Left rules without predicate; right rules with

predicate(s)

0

0.02

0.04

0.06

0.08

0.1

0.12
Accept Deny Rewrite AverageAccept Deny Rewrite Average

0

0.02

0.04

0.06

0.08

0.1

0.12

Q
u

e
ry

 f
ilt

e
ri
n

g
 t

im
e

 (
m

s
)

QS 1 QS 2 QS 3 QS 4 QS 5 QS 6 QS 7 QS 8 QS 9 QS 10QS 1 QS 2 QS 3 QS 4 QS 5 QS 6 QS 7 QS 8 QS 9 QS 10

Fig. 10 QFilter execution speed for three types of outputs and their average. Left rules without predicate; right rules with predicate(s)

rejected or accepted, since there are no wildcards to be rewrit-

ten; for rules with predicates, they may be rewritten: pred-

icates can be inserted; (2) queries with higher probability

of wildcards “*” and “// ” are more likely to be rewritten;

(3) fewer queries in set 6 and 10 are rewritten than sets 5

and 9: existence of predicates in queries causes less regular

path steps in each query; thus, these queries generally have

a lower probability of “*” and “// ”; (4) Comparing two fig-

ures, we can see that emergence of predicates in rules do not

affect denied queries, but some originally accepted queries

are rewritten (predicates are inserted).

Here, let us explain more about (2). Queries in sets 3–10

are generated with 10 or 20% probability of having “*” or

“// ” at each step. However, the probability does not auto-

matically indicate that generated queries should have one or

more “*” or “// ” steps. When we manually look into the gen-

erated queries and the QFilter results, we found that some

of these queries do not have any “*” or “// ” steps, and most

of them are either accepted or denied. From Fig. 10, we can

summarize the following: (1) QFilter is generally faster in

accepting and denying queries, but slower to rewrite queries

with wildcards, especially with “// ” paths. This is because

QFilter needs to traverse more states to process “*” and

“// ”; and (2) Predicates in rules does not bring much overhead

to QFilter execution. Average processing time is quite simi-

lar, and query rewriting time is even reduced, since some of

the originally accepted queries are just rewritten at predicate

state, which is faster than “*” amd “// ” rewritten.

Next, we test how QFilter execution performance degrades

as the number of rules in AC R increases. We constructed a

QFilter using 20–500 synthetic rules based on XMark DTD

(SN-ACR) and tested with random queries (SN-Q). We cre-

ate two sets of rules as follows: RS1 contains rules with no

* path, no // path, and no predicates; and RS2 contains rules

with 10% * probability, 10% // probability, and 2 path-based

predicate. On the other hand, we pick query sets 1, 2, 9,

and 10 and then process them using QFilter with the above

rules. Figure 11 shows the average QFilter execution time for

each rule set By and large; as the number of rules in AC R

increases, the QFilter execution time to filter out conflict-

ing parts from Q increases too. This is understandable since

there are more branches to test in QFilter. However, note that

the longest time it took to rewrite Q, when QFilter has 500

synthetic rules, was still within only 10 millisecond.

5.4 End-to-end query processing and comparison

Finally, we compare the end-to-end processing time among

four approaches of Fig. 2: (1) No security check is made (thus

final data is un-safe); (2) Primitive approach; (3) AFilter; and

(4) QFilter. End-to-end query processing time denotes the

total time needed to process Q: from receipt of query until

123

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

0

1

2

3

4

5

6

7

8

9

10

of rules

Q
F

ilt
e
r

E
x
e
c
u
ti
o
n
 T

im
e

 (
m

s
)

0

1

2

3

4

5

6

7

8

9

10

20 50 100 200 300 400 500 20 50 100 200 300 400 500

of rules

QS1

QS2

QS9

QS10

QS1

QS2

QS9

QS10

Fig. 11 QFilter execution time for synthetic rules and synthetic queries. Left rule set 1, right rule set 2

0

500

1000

1500

2000

2500

3000

Q
u

e
ry

 E
v
a

lu
a

ti
o
n
 T

im
e
 (

m
s
) Accept Deny Rewrite Accept Deny Rewrite

0

500

1000

1500

2000

2500

3000

QS 1 QS 2 QS 3 QS 4 QS 5 QS 6 QS 7 QS 8 QS 9 QS 10QS 1 QS 2 QS 3 QS 4 QS 5 QS 6 QS 7 QS 8 QS 9 QS 10

Fig. 12 End-to-end query processing time for QFilter approach: (left) query processing with QFilter; (right) query processing without QFilter

Fig. 13 End-to-end query

processing time comparison of

all approaches, in logarithmic

scale

100000100001000100101

Accepted

Denied

Rewritten

End-to-end process time (ms)

No Access Control Primitive Approach YFilter Approach QFilter Approach

answer is returned. Note that we do not count the I/O time

of the query input and the answer output. Note that for (d),

since XML engines return only queried nodes without their

ancestor tags, we manually wrote an external script to recover

ancestor tags for UD. But to be fair, that extra time for run-

ning script was not counted in. However, it is worthwhile to

point out that if one uses the recursive function of XQuery to

implement this in XML databases, the cost would have been

even higher. Thus, what we report here for post-processing

approach is an “under-estimate”.

Figure 12 shows the categorized end-to-end query eval-

uation performance for QFilter approach and compares

it with no-access-control approach (baseline). The original

5 MB XMark document is used. Figure 13 summarizes the

comparison of the four approaches. In this experiment, due

to the high computation of primitive approach, we used a

smaller size (1.5 MB) document. QFilter-based pre-process-

ing approach is a clear winner regardless of the query catego-

ries, and thus a promising solution for XML access control. It

significantly outperforms the primitive approach. Note that

many re-written queries contain wildcards (* or //); hence,

they are evaluated less efficiently. An interesting phenome-

non is that QFilter even outperforms no security check case

on re-written queries. This implies that when Q is filtered to

Q′ by QFilter, as a side effect, Q′ was “optimized” so that Q′

is processed more efficiently than Q. That is, when Q′ is pro-

cessed by Galax, since its query constraints have been tight-

ened by additional conditions added by QFilter, it contains

less wildcards and yields less amount of XML nodes. Please

also note that QFilter approach does not directly exploit

123

B. Luo et al.

XML indices, which is usually constructed inside the XML

engine. However, since the safe queries are submitted to the

XML engine in the form of XPath/XQuery, all the engine-

level optimization mechanisms, including indexing, are still

applicable.

Since the post-processing approach requires a data fil-

tering stage after Q is evaluated, it is surely slower than

the original query processing and much slower than QFil-

ter approach. In many cases, QFilter can quickly determine

whether the query is fully “Accepted” or “Denied” where the

query filtering time is negligible compared to potential save

from unnecessary query evaluation time.

6 Conclusion

Three dimensions of novel solutions are presented to

support XML access controls without using views or

security support of underlying databases. In particular, a

pre-processing-based method, called QFilter, has been elab-

orated and shown to be particularly efficient and effec-

tive. QFilter, based on non-deterministic finite automata

(NFA), rewrites user’s insecure queries to secure ones not

return any data violating access control rules. We validate

QFilter by showing its guarantee not to return any violat-

ing data via theoretical analysis and by demonstrating its

effectiveness through extensive experiments. As a result,

QFilter demonstrates efficient and effective XML access

control capabilities: (1) it does not require support from

underlying database engine, which makes it feasible for any

XML DBMS, native or RDBMS-based; (2) it consumes

very small amount of memory, especially comparing with

traditional view-based approaches; and (3) its execution

time is very short so that it is practical in real-world applica-

tions.

Acknowledgments Liu was supported by Air Force Office of Scien-

tific Research (AFOSR) FA9550-07-1-0527 (MURI), Army Research

Office (ARO) W911NF-09-1-0525 (MURI), and National Science

Foundation (NSF) CNS-0905131.

References

1. Ayyagari, P., Mitra, P., Lee, D., Liu, P., Lee, W.C.: Incremental

adaptation of xpath access control views. In: ASIACCS ’07: Pro-

ceedings of the 2nd ACM Symposium on Information, Computer

and Communications Security, pp. 105–116 (2007)

2. Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay,

M., Robie, J., Siméon, J.: XML Path Language (XPath) 2.0. W3C

Working Draft (2003). http://www.w3.org/TR/xpath20

3. Bertino, E., Castano, S., Ferrari, E.: Securing xml documents with

author-x. IEEE Int. Comput. 5(3), 21–31 (2001)

4. Bertino, E., Ferrari, E.: Secure and selective dissemination of

XML documents. ACM Trans. Inf. Syst. Secur. (TISSEC) 5(3),

290–331 (2002)

5. Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J.,

Simeon, J.: XQuery 1.0: An XML Query Language. W3C Working

Draft (2003). http://www.w3.org/TR/xquery

6. Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-based access con-

trol management for XML documents. In: VLDB. Toronto, Canada

(2004)

7. Bravo, L., Cheney, J., Fundulaki, I.: Accon: checking consis-

tency of xml write-access control policies. In: Proceedings of the

11th International Conference on Extending Database Technology,

pp. 715–719 (2008)

8. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,

Yergeau, F.: Extensible Markup Language (XML) 1.0, 5th edn.

(2008)

9. Cho, S., Amer-Yahia, S., Lakshmanan, L.V., Srivastava, D.:

Optimizing the secure evaluation of Twig queries. In: VLDB.

Hong Kong, China (2002)

10. Choi, B.: What are real dtds like? In: WebDB (2002)

11. Cuppens, F., Cuppens-Boulahia, N., Sans, T.: Protection of rela-

tionships in xml documents with the xml-bb model. In: First Inter-

national Conference on Information Systems Security (ICISS),

pp. 148–163 (2005)

12. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati,

P.: A fine-grained access control system for XML documents. ACM

Trans. Inf. Syst. Secur. (TISSEC) 5(2), 169–202 (2002)

13. Damiani, E., Fansi, M., Gabillon, A., Marrara, S.: Securely

updating xml. In: Knowledge-Based Intelligent Information and

Engineering Systems, 11th International Conference (KES),

pp. 1098–1106 (2007)

14. Damiani, E., Fansi, M., Gabillon, A., Marrara, S.: A general

approach to securely querying xml. Comput. Stand. Inter-

faces 30(6), 379–389 (2008)

15. Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.:

Securing xml documents. In: 7th International Conference on

Extending Database Technology, pp. 121–135 (2000)

16. Damiani, E., Vimercati, S.D.C.D., Paraboschi, S., Samarati,

P.: Design and implementation of an access control processor for

XML documents. Comput. Netw. 33(6), 59–75 (2000)

17. Diao, Y., Franklin, M.J.: High-performance XML filtering: an over-

view of YFilter. IEEE Data Eng. Bulletin (2003)

18. Fan, W., Chan, C.Y., Garofalakis, M.: Secure xml querying with

security views. In: SIGMOD ’04: Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data, pp.

587–598. ACM Press, New York, (2004). http://doi.acm.org/10.

1145/1007568.1007634

19. Fernandez, E., Gudes, E., Song, H.: A model of evaluation

and administration of security in object-oriented databases. IEEE

Trans. Knowl. Data Eng. (TKDE) 6(2), 275–292 (1994)

20. Finance, B., Medjdoub, S., Pucheral, P.: The case for access control

on xml relationships. In: 14th ACM International Conference on

Information and Knowledge Management, pp. 107–114 (2005)

21. Fundulaki, I., Maneth, S.: Formalizing xml access control for

update operations. In: 12th ACM Symposium on Access Control

Models and Technologies, pp. 169–174 (2007)

22. Fundulaki, I., Marx, M.: Specifying access control policies for xml

documents with xpath. In: Ninth ACM Symposium on Access Con-

trol Models and Technologies, pp. 61–69 (2004)

23. Gabillon, A.: An authorization model for xml databases. In: 2004

Workshop on Secure Web Service, pp. 16–28 (2004)

24. Gabillon, A., Bruno, E.: Regulating access to xml documents. In:

Das’01: Proceedings of the Fifteenth Annual Working Conference

on Database and Application Security, pp. 299–314. Kluwer Aca-

demic Publishers, Norwell (2002)

25. Godik, S., Moses, T. (Eds): eXtensible Access Control Markup

Language (XACML) Version 1.0. OASIS Specification Set (2003).

http://www.oasis-open.org/committees/xacml/repository/

123

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xquery
http://doi.acm.org/10.1145/1007568.1007634
http://doi.acm.org/10.1145/1007568.1007634
http://www.oasis-open.org/committees/xacml/repository/

QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata

26. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Auto-

mata Theory, Languages, and Computation. Addison-Wesley,

Reading (2007)

27. Jiang, M., Fu, A.W.C.: Integration and efficient lookup of

compressed xml accessibility maps. IEEE Trans. Knowl. Data

Eng. 17(7), 939–953 (2005)

28. Kudo, M., Hada, S.: XML document security based on provisional

authorization. In: ACM Conference on Computer and Communi-

cations Security (CCS) (2000)

29. Kuper, G., Massacci, F., Rassadko, N.: Generalized xml security

views. In: the Tenth ACM Symposium on Access Control Models

and Technologies, pp. 77–84 (2005)

30. Kuper, G., Massacci, F., Rassadko, N.: Generalized xml security

views. Int. J. Inf. Secur. 8(3), 173–203 (2009)

31. Lee, D., Lee, W.C., Liu, P.: Supporting XML security models

using relational databases: a vision. In: XML Database Sympo-

sium (XSym). Berlin, Germany (2003)

32. Lee, J.G., Whang, K.Y., Han, W.S., Song, I.Y.: The dynamic pred-

icate: integrating access control with query processing in xml dat-

abases. VLDB J. 16(3), 371–387 (2007)

33. Li, F., Luo, B., Liu, P., Lee, D., Mitra, P., Lee, W.C., Chu, C.H.: In-

broker access control: towards efficient end-to-end performance of

information brokerage systems. In: IEEE International Conference

on Sensor Networks, Ubiquitous, and Trustworthy Computing,

pp. 252–259 (2006)

34. Luo, B., Lee, D., Liu, P.: Pragmatic XML access control using off-

the-shelf RDBMS. In: 12th European Symposium On Research in

Computer Security (ESORICS). Dresden, Germany (2007)

35. Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: fine-grained run-

time XML access control via NFA-based query rewriting. In: ACM

CIKM. Washington (2004)

36. Luo, B., Lee, D., Lee, W.C., Liu, P.: Deep set operators for XQue-

ry. In: Second International Workshop on XQuery Implementation,

Experience and Perspectives (XIME-P). Baltimore (2005)

37. Mealy, G.H.: A method for synthesizing sequential circuits. Bell

Syst. Tech. J. 34, 1045–1079 (1955)

38. Mella, G., Ferrari, E., Bertino, E., Koglin, Y.: Controlled and

cooperative updates of xml documents in byzantine and failure-

prone distributed systems. ACM Trans. Inf. Syst. Secur. 9(4),

421–460 (2006)

39. Mohan, S., Klinginsmith, J., Sengupta, A., Wu, Y.: Acxess—access

control for xml with enhanced security specifications. In: 22nd

International Conference on Data Engineering, p. 171 (2006)

40. Mohan, S., Sengupta, A., Wu, Y.: Access control for xml: a dynamic

query rewriting approach. In: 14th ACM International Conference

on Information and Knowledge Management, pp. 251–252 (2005)

41. Murata, M., Tozawa, A., Kudo, M.: XML access control using static

analysis. In: ACM Conference on Computer and Communications

Security (CCS). Washington (2003)

42. Murata, M., Tozawa, A., Kudo, M., Hada, S.: Xml access con-

trol using static analysis. ACM Trans. Inf. Syst. Secur. 9(3), 292–

324 (2006)

43. Qi, N., Kudo, M.: Access-condition-table-driven access control

for xml databases. In: Samarati, P., Ryan, P.Y.A., Gollmann, D.,

Molva, R. (eds.) ESORICS, Lecture Notes in Computer Science,

vol. 3193, pp. 17–32. Springer (2004)

44. Qi, N., Kudo, M.: Xml access control with policy matching tree.

In: ESORICS 2005, 10th European Symposium on Research in

Computer Security, pp. 3–23 (2005)

45. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based

access control model for xml databases. In: 14th ACM Interna-

tional Conference on Information and Knowledge Management,

pp. 115–122 (2005)

46. Rabitti, F., Bertino, E., Kim, W., Woelk, D.: A model of authoriza-

tion for next-generation database systems. ACM Trans. Database

Syst. (TODS) 16(1), 89–131 (1991)

47. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based

Access Control Models. IEEE Comput. 29(2) (1996)

48. Schmidt, A.R., Waas, F., Kersten, M.L., Florescu, D., Manolescu,

I., Carey, M.J., Busse, R.: The XML Benchmark Project. Tech.

Rep. INS-R0103, CWI (2001)

49. Simeon, J., Fernandez, M.: Galax V 0.3.5 (2004). http://db.

bell-labs.com/galax/

50. Stoica, A., Farkas, C.: Secure xml views. In: Gudes, E., Shenoi,

S. (eds.) DBSec, IFIP Conference Proceedings, vol. 256, pp. 133–

146. Kluwer (2002)

51. De Capitani di Vimercati, S., Marrara, S., Samarati, P.: An access

control model for querying xml data. In: Workshop on Secure web

services, pp. 36–42 (2005)

52. Xiao, Y., Luo, B., Lee, D.: Security-conscious XML indexing.

In: International Conference on Database Systems for Advanced

Applications (DASFAA). Bangkok, Thailand (2007)

53. Yu, T., Srivastava, D., Lakshmanan, L.V., Jagadish, H.V.: Com-

pressed accessibility map: efficient access control for XML. In:

VLDB. Hong Kong, China (2002)

54. Zhang, H., Zhang, N., Salem, K., Zhuo, D.: Compact access con-

trol labeling for efficient secure xml query evaluation. Data Knowl.

Eng. 60(2), 326–344 (2007)

123

http://db.bell-labs.com/galax/
http://db.bell-labs.com/galax/

	QFilter: rewriting insecure XML queries to secure ones using non-deterministic finite automata
	Abstract
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Preliminaries

	3 XML access control enforcement mechanisms
	3.1 Primitive approach
	3.2 Pre-processing approach
	3.3 Post-processing approach

	4 QFilter: an implementation of pre-processing approach
	4.1 QFilter construction
	4.2 QFilter execution
	4.3 Handling predicates
	4.4 Handling queries with //
	4.5 Handling negative rules
	4.6 Accept state operations and QFilter output
	4.7 QFilter with XML schema
	4.8 Storage and computation
	4.9 Comparison with static analysis

	5 Experiments
	5.1 Setup
	5.2 Evaluating QFilter construction
	5.3 Evaluating QFilter execution
	5.4 End-to-end query processing and comparison

	6 Conclusion
	Acknowledgments
	References

