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Abstract. Following the seminal works of Asorey–Ibort–Marmo and Muñoz–Castañeda–
Asorey about selfadjoint extensions and quantum fields in bounded domains, we com-
pute all the heat kernel coefficients for any strongly consistent selfadjoint extension of the
Laplace operator over the finite line [0, L]. The derivative of the corresponding spectral
zeta function at s = 0 (partition function of the corresponding quantum field theory) is
obtained. To compute the correct expression for the a1/2 heat kernel coefficient, it is nec-
essary to know in detail which non-negative selfadjoint extensions have zero modes and
how many of them they have. The answer to this question leads us to analyze zeta func-
tion properties for the Von Neumann–Krein extension, the only extension with two zero
modes.
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1. Introduction: Basic Formulas and Results

The physical system on which we will focus is a free massless scalar quantum
field theory defined over the finite interval [0, L]. The quantum Hamiltonian that
describes the one particle states of this quantum field theory is given by the
Laplace operator over the finite line [0, L]. It is a very well-known fact that the
Laplace operator over the finite line [0, L] is not an essentially selfadjoint opera-
tor, but instead admits an infinite set of selfadjoint extensions. We will denote by
M the set of all the selfadjoint extensions of � over the finite line [0, L]. Phys-
ically speaking this means that there is an infinite set of possible quantum field
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theories that describe the behavior of a free quantum massless scalar field con-
fined to propagate in the interval [0, L]. To respect the unitarity principle of quan-
tum field theory we must only take into account those selfadjoint extensions of the
Laplace operator that give rise to non-negative selfadjoint operators (see [1]). As
described in [1] among the set of non-negative selfadjoint extensions we can dis-
tinguish between two different types:

1. Non-negative selfadjoint extensions of � over [0, L] that are non-negative only
for certain values of the finite length L of the interval. Typically, these selfad-
joint extensions are non-negative for L ≥ L0 for a given L0 that depends on
the selfadjoint extension. When L < L0 these selfadjoint extensions have nega-
tive eigenvalues and thus give rise to non-unitary quantum field theories. We
will call these selfadjoint extensions weakly consistent selfadjoint extensions.

2. Non-negative selfadjoint extensions of � over [0, L] that are non-negative for
any value of the finite length L of the finite line. These selfadjoint exten-
sions have only zero and positive eigenvalues for any value of L ∈ (0,∞).
We will call these selfadjoint extensions strongly consistent selfadjoint extensions
and following [1] we denote by MF the set of strongly consistent selfadjoint
extension.

In this paper, we will focus only on those free massless scalar quantum field the-
ories defined by selfadjoint extensions of � over [0, L] that are non-negative for all
L ∈ (0,∞). Hence, we will only be interested in the selfadjoint extensions contained
in MF . This restriction is very natural from a quantum field theoretical point of
view because the space MF is stable under the renormalization group transfor-
mations. On the other hand, the whole set of non-negative selfadjoint extensions
for fixed length L is not stable under renormalization group transformations since
there are non-negative selfadjoint extensions that will loose the non-negativity con-
dition under a renormalization group transformation giving rise to non-unitary
quantum field theories (see Ref. [2]). Typically, one distinguishes separated and
coupled boundary conditions [3], but in the formulation of [1] this will not be nec-
essary (an extension of the AIM formalism was first addressed in the first chapter
of Ref. [4] and later on reformulated in a more rigorous approach in Ref. [5]).

To be able to characterize the selfadjoint extensions of MF , we will use the
Asorey–Ibort–Marmo (AIM) formalism (see [6]) to characterize the selfadjoint
extensions of � over the finite line [0, L]. From the first AIM theorem (see
[6,1]), the set of selfadjoint extensions of � over [0, L] is in one-to-one correspon-
dence with the group U(2). Given any U ∈ U(2), we will denote the correspond-
ing selfadjoint extension by �U . Each selfadjoint extension �U is defined by its
domain of functions DU ⊂ H2([0, L],C) being H2([0, L],C) the Sobolev space of
functions over the finite interval that are L2 together with their derivatives up to
second order. The domain DU ⊂ H2([0, L],C) that defines the selfadjoint extension
�U is given in terms of the matrix U ∈U(2) (see [1,6]) by

DU ={ψ ∈ H2([0, L],C)/ϕ− i ϕ̇=U (ϕ+ i ϕ̇)}, (1.1)
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where ϕ and ϕ̇ are the boundary data1 for ψ ∈ H2([0, L],C):

ϕ≡
(
ψ(0)
ψ(L)

)
, ϕ̇≡

(−ψ ′(0)
ψ ′(L)

)
. (1.2)

Following the notation in [1] for any ψ ∈ H2([0, L],C), we introduce the two-
dimensional column vectors ϕ±(ψ):

ϕ±(ψ)≡
(
ψ(0)∓ iψ ′(0)
ψ(L)± iψ ′(L)

)
. (1.3)

We can write the boundary condition given in Equation (1.1) in terms of ϕ±(ψ)
as

ϕ−(ψ)=U ·ϕ+(ψ). (1.4)

Following the conventions and notation used in [1] we parameterize the elements
U ∈U(2) using five parameters:

U (α,β,n)= eiα[cos(β)I+ i sin(β)(n ·σ )], (1.5)

where I is the 2 × 2 identity matrix, σ = (σ1, σ2, σ3) are the Pauli matrices, n is a
three-dimensional unit vector (n2

1 + n2
2 + n2

3 = 1) and the angles α and β are such
that

α∈[−π,π ]; β ∈[−π/2, π/2]. (1.6)

Using this parameterization, we can characterize the non-zero part of the spectrum
for any �U ∈M including multiplicities of eigenvalues (see the consistency lemma
in [1]). The secular equation obtained in [1] for any �U ∈M is given by

hU (k)=2ieiα[sin(kL)((k2 −1) cos(β)+ (k2 +1) cos(α))

−2k sin(α) cos(kL)−2kn1 sin(β)]. (1.7)

The non-zero part σ̃ (�U ) of the spectrum of �U ∈M is given by

σ̃ (�U )={k2 ∈R−{0}/hU (k)=0}={k2 ∈R−{0}/k ∈Z(hU )−{0}}, (1.8)

where Z(hU ) denotes the set of zeroes of the function hU (k). For any non-zero
root of hU (k) the multiplicity dU (k2) of the corresponding eigenvalue is

∀k ∈Z(hU )−{0} : dU (k
2)= Res

(
d
dz

log(hU (z))

)∣∣∣∣
z=k

. (1.9)

1 It is worth noting that for spacetime dimension higher than 1 + 1 the maximal domain of
the symmetric operator � defined over the compact manifold M with smooth boundary ∂M is the
Sobolev space H2(M,C) and the domain of its adjoint �† is H2(M,C)⊕ ker(�†). This is of cru-
cial importance from a physical point of view because boundary values of the fields that have sin-
gularities represent important physical situations as for example point charge distributions over the
boundary. Nevertheless, in the case of spacetime dimension 1+1 and M =[0, L] things become sim-
pler because the space of boundary data is the linear vector space C

2 (see Refs. [4,5]).
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Figure 1. This graphic shows the set MF in the αβ-plane. In the top corner of the rhom-
bus are placed the Dirchlet boundary conditions, the bottom corner corresponds to Neumann
boundary conditions meanwhile the left and right corners correspond to periodic (left for
n1 =1 and right for n1 =−1) and anti-periodic (left for n1 =−1 and right for n1 =1).

Let us mention that the bound states of a given selfadjoint extension �U ∈ M
are given by zeroes of hU (z) of the form k = iκ with κ > 0, i.e., k2 < 0. Further-
more, note that from Equation (1.7) it is easy to see that limk→0 hU (k)= 0. This
fact does not ensure that the corresponding selfadjoint extension �U admits zero
modes. The question about which selfadjoint extensions of MF admit zero modes
will be solved in the next section.

Once all the selfadjoint extensions of M have been explicitly characterized using
the AIM formalism (see [6] for details), following [1] we can characterize all the
selfadjoint extensions that belong to MF and hence that give rise to strongly con-
sistent quantum field theories.2 One of the main results in [1] is the characteriza-
tion of the set MF ⊂M of non-negative selfadjoint extensions ∀L ∈ (0,∞) (“strong
consistency lemma”):

MF ={U (α,β,n)∈U(2)=M/ 0≤α±β≤π}. (1.10)

In Figure 1, we can see a representation of the set MF in the αβ-plane. Whereas
extensive results on the spectral zeta functions and the heat kernel are available for
the standard boundary conditions like Dirichlet, Neumann, Robin or periodic [7–
11], general boundary conditions as described in (1.4) have not been analyzed in
comparable detail. This is the topic of the current paper. Generic interest in the

2 Given that the AIM formalism (first AIM theorem in [1,6]) ensures the one-to-one correspon-
dence between selfadjoint extensions of � over [0, L] and unitary matrices of U(2) from now on we
will not make a distinction between selfadjoint extensions �U ∈M and unitary matrices U ∈ U(2)
(see the appendix).
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analysis of spectral functions stems from their relevance in global analysis [8,12]
and quantum field theory topics such as the Casimir effect [13–20].

The paper is organized as follows. In Section 2, we will answer the question
which selfadjoint extensions within the strongly consistent extensions allow for zero
modes. This is necessary as the details of the zeta function analysis depend on this
input. Based upon the function hU (k), Equation (1.7), a contour integral repre-
sentation of the zeta function for any strongly consistent selfadjoint extension will
be derived. As usual, residues and certain values of the zeta function determine
the associated heat kernel coefficients. The cases with and without zero modes are
treated in different subsections of Section 3. Results for standard boundary condi-
tions are verified as a check. In Section 4, we use the integral representation of the
zeta function to compute its derivative at s = 0, once again for all possible cases.
Checks for known results are provided. In the conclusions, we summarize the most
important aspects of our work together with possible future directions of research.

2. Zero Modes of �U ∈MF

The purpose of this section is to study the zero mode structure of selfadjoint
extensions contained in MF . In particular, we will focus our attention on two
main questions:

• Characterize the subset M(0)
F ⊂ MF of selfadjoint extensions that have zero

modes,

M(0)
F ≡{�U ∈MF/ 0∈σ(�U )}. (2.1)

• Study the zero mode structure and compute dim(ker�U ) of any �U ∈M(0)
F .

The motivation to study these two questions about the zero modes of the selfad-
joint extensions contained in MF is to obtain a correct result of the a1/2 heat ker-
nel coefficient, for which we must know explicitly dim(ker�U ). There are no con-
tributions of zero modes to residues of the zeta function.

The differential equation for the zero modes is

d2

dx2
ψ0(x)=0, (2.2)

and its general solution is given by

ψ0(x)=a +bx, (2.3)

where a and b are complex constant numbers. Notice that:

• When � is defined over the whole real line, the only solution to Equation (2.2)
given by (2.3) with finite L2 norm is given by a = b = 0. Hence, when � is
defined over the real line there are no zero modes.
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• On the other hand, when � is defined over the finite line [0, L], due to the finite
length of the interval the general solution (2.3) has always finite L2 norm. Hence
when � is defined over the finite interval there exists the possibility of having
constant and linear zero modes.

Given a selfadjoint extension �U ∈MF , to decide if it admits zero modes of the
general form (2.3) we must impose over (2.3) the corresponding boundary condi-
tion given by (1.1). From Equation (1.3) we obtain for ψ0(x)

ϕ±(ψ0)≡
(

a ∓ ib
a +b(L ± i)

)
=

(
1 ∓i
1 L ± i

)
·
(

a
b

)
. (2.4)

Using (2.4) in the boundary condition (1.4), we obtain the linear system
[(

1 i
1 L − i

)
−U ·

(
1 −i
1 L + i

)]
·
(

a
b

)
=0. (2.5)

This linear system is nothing else than the boundary condition for the zero modes.
Given its importance in this section, let us call the matrix of the linear system DU :

DU =
(

1 i
1 L − i

)
−U ·

(
1 −i
1 L + i

)
. (2.6)

Next, we investigate the solutions of the linear system (2.5).

2.1. THE FIRST QUESTION: CHARACTERIZATION OF M(0)
F

From basic algebra, we know that �U ∈MF will admit zero modes if and only if
the linear system (2.5) has non-trivial solutions, i.e.,

ker(�U ) 
=0 ⇔ ker(DU ) 
=0 ⇔ det(DU )=0. (2.7)

Hence, the characterization of M(0)
F is given by

M(0)
F ={U ∈MF/ det(DU )=0}. (2.8)

To explicitly compute all the selfadjoint extensions contained in M(0)
F , we need to

solve the secular equation of the linear system (2.5)

det(DU )=0. (2.9)

Introducing the parameterization (1.5) in (2.6) and simplifying we obtain

det(DU )=2eiα[L(cos(α)− cos(β))−2(sin(α)+n1 sin(β))]. (2.10)

Therefore, neglecting the global factor 2eiα that is never, zero the equation to solve
is

L(cos(α)− cos(β))−2(sin(α)+n1 sin(β))=0 (2.11)
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with the restrictions ensuring that the corresponding solution gives a matrix U that
is in MF :

n1 ∈[−1,1]; α∈[0, π ]; β ∈[−π/2, π/2]; 0≤α±β≤π. (2.12)

The simplest way to solve (2.11) is by imposing

cosα− cosβ=0=⇒α=±β,
which makes

sinα+n1 sinβ= sinα±n1 sinα=0=⇒n1 =∓1

necessary. In fact, these are all possible solutions. Because if cosα− cosβ 
= 0, we
have

L = 2 sinα+n1 sinβ
cosα− cosβ

with L>0. However, with the parameters confined by the conditions in (2.12) one
can show that the right-hand side is always negative. As a consequence, we have
shown that all the solutions to (2.11) that satisfy conditions (2.12) are given by

M(0)
F ={U ∈MF/ n1 =±1; α∈[0, π/2]; β=−n1α}. (2.13)

In terms of the parameterization given in (1.5), the unitary matrices contained
in M(0)

F are given by

U ∈M(0)
F ⇒U = eiα[cos(α)I− in1 sin(α)σ1]; α∈[0, π/2]; n1 ∈{−1,1}. (2.14)

Using the expression above for the matrices contained in M(0)
F and the definition

(2.6), we find

DU =
(

0 ieiα(2 cos(α)+ L sin(α))
0 −ieiα(2 cos(α)+ L sin(α))

)
∀ U ∈M(0)

F . (2.15)

As can be seen from this expression above, when U ∈ M(0)
F the matrix DU has

indeed zero determinant. In Figure 2 it is shown the space M(0)
F in the αβ-plane.

2.2. THE SECOND QUESTION: dim(ker(�U )) FOR �U ∈M(0)
F

Taking into account Equation (2.5) and the meaning of the constants a and b, see
Equation (2.3), the second question will be answered by studying the explicit solu-
tions to (2.5) when DU is given by expression (2.15), i.e., U ∈M(0)

F . We will answer
this second question in two lemmas with their corresponding demonstrations.

LEMMA 1. Any selfadjoint extension �U ∈M(0)
F admits a constant zero mode.
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Figure 2. Representation of M(0)
F (red lines) over the αβ-plane (color figure online).

Proof. To proof the lemma, we only need to demonstrate that the column vector

v(0)c =
(

a
0

)
, a 
=0, (2.16)

belongs to ker(DU ) for any U ∈ M(0)
F (notice that according to (2.3) when b = 0

and a 
=0 the expression gives rise to the constant function over the interval [0, L]).
For any U ∈M(0)

F the associated matrix DU is given by (2.15). Since the first col-
umn in (2.15) is identically zero by direct trivial calculation

DU ·v(0)c =
(

0
0

)
∀ U ∈M(0)

F . (2.17)

Therefore, v(0)c is a solution to the linear system (2.5). Hence, taking (2.3) into
account for any �U ∈M(0)

F there exists a constant zero mode.

This lemma ensures that any selfadjoint extension �U ∈M(0)
F has at least a con-

stant zero mode, i.e.,

∀ �U ∈M(0)
F , dim(ker(�U ))=dim(ker(DU ))≥1. (2.18)

Since any �U ∈M(0)
F has a constant zero mode the only possibility to be explored

now is the possibility of having selfadjoint extensions �U ∈M(0)
F that also admit a

linear zero mode. The condition for a selfadjoint extension �U ∈M(0)
F to admit a

linear zero mode is given by

dim(ker(�U ))=dim(ker(DU ))=2. (2.19)
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Since DU is a 2×2 complex matrix

dim(ker(DU ))=2 ⇐⇒ DU =0. (2.20)

This condition ensures the existence of a linear zero mode for any selfadjoint
extension �U ∈M(0)

F by the following argumentation:

i. For any �U ∈ M(0)
F there is a constant zero mode ⇒ v

(0)
c given by (2.16)

belongs to ker(DU ) for any �U ∈M(0)
F .

ii. �U ∈M(0)
F will admit a linear zero mode if and only if the matrix DU is such

that there exists in addition to v
(0)
c a solution to the linear system (2.5) with

b 
=0 [see Equation (2.3)].
iii. Hence �U ∈M(0)

F will admit a linear zero mode if and only if

dim(ker(DU ))=2 ⇐⇒ DU =0, (2.21)

because any solution to (2.5) with b 
=0 will be linearly independent of the vec-
tor v(0)c ∈ker(DU ) ∀ �U ∈M(0)

F .

LEMMA 2. There are no selfadjoint extensions �U ∈M(0)
F that admit a linear zero

mode.

Proof. Given any �U ∈ M(0)
F the necessary and sufficient condition to admit a

linear zero mode is (2.20). Since for �U ∈M(0)
F the associated DU matrix is given

by (2.15) the condition DU =0 is given by the equation

2 cos(α)+ L sin(α)=0 ⇒ tan(α)=−2/L . (2.22)

Because L is the length of the interval −2/L ≤0. Therefore, there is no α∈[0, π/2]
satisfying (2.22).3 Hence, no �U ∈M(0)

F can satisfy the condition DU = 0, i.e., no
�U ∈M(0)

F admits a linear zero mode.

To conclude this section, we compile all the results in the following theorem.

THEOREM 1. The space M(0)
F ⊂MF of non-negative selfadjoint extensions of the

Laplace operator � over [0, L] that admit zero modes is given by

M(0)
F ={U ∈MF/ n1 =±1; α∈[0, π/2]; β=−n1α}. (2.23)

In addition, dim(ker(�U )) = 1 for any selfadjoint extension �U ∈ M(0)
F and the

unique zero mode is the constant function over the interval [0, L].

3 Since �U ∈M(0)
F the angle α is restricted to lie in the interval [0, π/2].
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2.3. A REMARK ABOUT THE VON NEUMANN–KREIN EXTENSION

To complete the study of the zero modes, we will determine the minimal non-
negative selfadjoint extension: the so-called Von Neumann–Krein extension. To
introduce the general definition of the Von Neumann–Krein extension, we need a
quick overview of some general results (see Refs. [21–23]). Let T1 and T2 be two
non-negative selfadjoint operators with dense domains in a Hilbert space H. We
say that

T1 ≤ T2 (2.24)

if and only if

i D(T 1/2
2 )⊆D(T 1/2

1 ),

ii 〈T 1/2
1 ψ |T 1/2

1 ψ〉L2 ≤〈T 1/2
2 ψ |T 1/2

2 ψ〉L2 for all ψ ∈D(T 1/2
2 ).

Let now T be a non-negative symmetric operator over a Hilbert space H. Then,
there exist two unique non-negative selfadjoint extensions Tmin and Tmax such that
Tmin ≤ Tmax and every non-negative selfadjoint extension S of T satisfies

Tmin ≤ S ≤ Tmax. (2.25)

The minimal non-negative selfadjoint extension Tmin is the so-called Von Neumann–
Krein (VNK) extension. From now on, we will denote the Von Neumann–Krein
extension with the sub-index VNK.

Following subsection 11.1 in Ref. [23], the VNK extension of the operator T =
−� over the finite interval [0, L] is characterized as the unique selfadjoint exten-
sion with a maximal number of zero modes. From Equation (2.5), the maximum
number of zero modes for the Laplace operator over the finite line is two: a con-
stant zero mode and a linear zero mode. Therefore, the condition that characterizes
uniquely the VNK extension is

DU =0⇒UVNK =
(

1 i
1 L − i

)
·
(

1 −i
1 L + i

)−1

, (2.26)

UVNK = 1
L +2i

(
L 2i
2i L

)
. (2.27)

It is straightforward to check that UVNK is a unitary matrix and therefore defines a
selfadjoint extension of the Laplacian over the finite line. To demonstrate whether
or not the VNK extension belongs to MF , we must compute the parameters
{αVNK, βVNK,nVNK} that characterize the VNK extension in the parameterization
given by (1.5). Since (2.27) is a symmetric matrix and both diagonal elements are
equal we must require n2 = n3 = 0. Therefore, we can assume without loss of gen-
erality that nVNK = (1,0,0). Knowing that

U|n1=1 = eiα
(

cos(β) i sin(β)
sin(β)i cos(β)

)
(2.28)
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and comparing with (2.27), we obtain the following two equations:

eiα cos(β)= L

L +2i
, (2.29)

eiα sin(β)= 2
L +2i

. (2.30)

Dividing Equation (2.30) by Equation (2.29), it follows that tan(βVNK) = 2/L.
Since the principal value of arctan(x) is in the interval [−π/2, π/2], we conclude
that βV N K =arctan(2/L). In addition, it is easy to see that sin(βVNK)=2/

√
L2 +4

and cos(βVNK) = L/
√

L2 +4. To determine αVNK, we sum (2.29) +i (2.30) to
obtain the equation ei(αVNK+βVNK) = 1 ⇒ αVNK = −βVNK = −arctan(2/L). Hence,
the VNK extension is characterized by:

nVNK = (1,0,0), αVNK(L)=−βVNK(L), (2.31)

βVNK(L)=arctan(2/L). (2.32)

Taking into account that arctan(2/L) is a non-negative and monotonically decreas-
ing function in the interval L ∈ [0,∞) that goes from the value π/2 for L → 0 to
the value 0 when L →∞ we conclude that βVNK ∈ [0, π/2] and αVNK ∈ [−π/2,0]
for any L ∈ (0,∞). Therefore, UVNK /∈MF for any value of L. Nevertheless, since
the VNK extension is non-negative, we will be able to compute the heat kernel
coefficients and the derivative at zero of the spectral zeta function with the meth-
ods we develop in the following sections.

3. The Heat Kernel Expansion of �U ∈MF

Using standard methods described for example in Ref. [10], we will next compute
all the coefficients of the asymptotic expansion of the heat kernel corresponding
to any selfadjoint extension �U ∈ MF . Before going over the explicit calculation
let us introduce the general results contained in [10] that will be necessary in our
calculation.

Let Ô be an elliptic non-negative selfadjoint second-order differential operator
(in one dimension) over a Hilbert space H. Let fÔ(z) be a holomorphic function
over the complex plane such that for k ∈R

lim
k→0

fÔ(k) 
=0, ∞, (3.1)

and such that the non-zero part of the spectrum of Ô is given by4

σ̃ (Ô)= Z( fÔ), (3.2)

4 We will denote by σ(Ô) the spectrum of the operator Ô and σ̃ (Ô) the non-zero part of
σ(Ô). Given a function f (z) over the complex plane, we will denote by Z( f ) the set of its zeroes
over the complex plane.
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where the multiplicities of eigenvalues are reflected in the order of the zeroes.
When fÔ satisfies the conditions stated above, the spectral zeta function of the
operator Ô can be written as:

ζÔ(s)=
sin(πs)

π

∫ ∞

0
dk · k−2s∂k log( fÔ(ik)). (3.3)

This approach has been used for many examples; see, e.g., [10,24]. The integral in
(3.3) in the current context will be convergent in the region 1/2<�s < 1. How-
ever, expression (3.3) admits an analytical continuation to the whole complex plane
with, in general, poles at

s = 1
2

−n; n =0,1,2,3, . . . (3.4)

The heat kernel coefficients can be computed in terms of the residues at the poles
and the values at non-positive integers of ζÔ(s) [25]:

a1/2−z(Ô)=�(z)Res(ζÔ, s = z), (3.5)

a1/2+q(Ô)= (−1)q
ζÔ(−q)

�(q +1)
+ δq,0 NZ (Ô). (3.6)

In Equation (3.6), NZ (Ô) denotes the number of zero modes of the operator Ô.
Hence, according to formulas (3.5) and (3.6), to know all the heat kernel coef-

ficients we only need to know the residues at the poles and the values at the non-
positive integers of the spectral zeta function ζÔ(s). To use formula (3.3), we will
need to use the secular equation given in formula (1.7). Note, however, that k
needs to be replaced by ik when used in (3.3).

Directly from formula (1.7), it is easy to see that

lim
k→0

hU (k)=0. (3.7)

Therefore, using formula (3.3) to compute the residues and the values at the non-
positive integers of ζU (s) for any �U ∈MF is not possible using the function (1.7)
because it does not satisfy the condition (3.1). Hence, we need to extract from (1.7)
the suitable function by studying the behavior of hU (z) as z →0.

3.1. BEHAVIOR OF hU (z) AS z →0

If we perform power series expansion in k around k = 0 of the secular equation
given by (1.7) up to first order in k we obtain

hU (k)=2ikeiα(L(cos(α)− cos(β))−2(n1 sin(β)+ sin(α)))+ O(k2). (3.8)

Taking into account Equation (2.10) for any �U ∈ MF , we can write the power
series expansion above as

hU (k)= ik det(DU )+ O(k2). (3.9)
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Hence for any �U ∈ MF − M(0)
F the function that satisfies the required condi-

tions to be used in the representation of the spectral zeta function given by Equa-
tion (3.3) is

�U ∈MF −M(0)
F ⇒ fU (k)= hU (k)

2ikeiα
. (3.10)

When the selfadjoint extension has a constant zero mode (�U ∈ M(0)
F ), the first

order in k of the power expansion (3.9) is zero. Therefore, we must expand hU up
to order 3 (notice from Equation (1.7) the function hU is odd in k) to study the
behavior at the origin:

det(DU )=0⇒hU (k)= k3L

3
(L(2 sin(α)−n1 sin(β))

+3(cos(α)+ cos(β)))+ O(k5). (3.11)

Hence, to obtain the function that satisfies the conditions under which (3.3) is
valid, we must divide by an extra k2 when �U ∈M(0)

F :

�U ∈M(0)
F ⇒ f (0)U (k)= hU (k)

2ik3eiα
. (3.12)

3.2. HEAT KERNEL COEFFICIENTS FOR �U ∈MF −M(0)
F

For this case, when cos(α)+cos(β) 
=0, the appropriate function is given by Equa-
tion (3.10). Using (1.7), we can rewrite (3.10) for k = i x as

fU (i x)= xex L cos(α)+ cos(β)
2

[
1+ 2

x

sin(α)
cos(α)+ cos(β)

+ 1
x2

cos(β)− cos(α)
cos(α)+ cos(β)

−e−2x L

(
1+ x−2(cos(β)− cos(α))

cos(α)+ cos(β)
− 2x−1 sin(α)

cos(α)+ cos(β)

)

+ x−1e−x L 4n1 sin(β)
cos(α)+ cos(β)

]
. (3.13)

For positive L, the second and third lines in Equation (3.13) represent exponen-
tially damped terms as x →∞. These terms do not contribute to the poles and to
the values of ζ�U (s) at non-positive integers. Therefore, we can neglect them in the
following formulas and just denote them as e.s.t. Hence log( fU (i x)) will be given
by

log( fU (i x))= log
(

cos(α)+ cos(β)
2

)
+ log(x)+ x L + log(1+ τU (x)), (3.14)

where τU (x) is given by

τU (x)= 2
x

sin(α)
cos(α)+ cos(β)

+ 1
x2

cos(β)− cos(α)
cos(α)+ cos(β)

+ e.s.t. (3.15)
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Now, if we take into account the series expansion

log(1+ τ)=
∞∑

n=1

(−1)n+1 τ
n

n
, (3.16)

we can write

log(1+ τU (x))=
∞∑

n=1

(−1)n+1

n

(
2
x

sin(α)
cos(α)+ cos(β)

+ 1
x2

cos(β)− cos(α)
cos(α)+ cos(β)

)n

+ e.s.t.

(3.17)

Using Newton’s binomial formula, we can write

τU (x)
n/n =

n∑
j=0

�(n)2n− j sinn− j (α)

�( j +1)�(n − j +1)
(cos(β)− cos(α)) j

(cos(α)+ cos(β))n
x−(n+ j). (3.18)

After reordering the double summation, we obtain

log(1+ τU (x))=
∞∑

m=1

bm x−m, (3.19)

bm ≡
[m/2]∑
j=0

(−1)m− j+1 2m−2 j�(m − j) sinm−2 j (α)

�( j +1)�(m −2 j +1)
(cos(β)− cos(α)) j

(cos(α)+ cos(β))m− j
, (3.20)

where m = 1,2,3, . . .. Hence, finally we obtain the following asymptotic series for
∂x log( fU (i x)),

∂x log( fU (i x))= L + x−1 −
∞∑

m=1

mbm x−m−1 + e.s.t. (3.21)

Taking into account the integral representation (3.3), we can write for any selfad-
joint extension �U ∈MF −M(0)

F ,

ζ�U (s)=
sin(πs)

π

∫ 1

0
dk · k−2s∂k log( fU (ik))+ sin(πs)

π

∫ ∞

1
dk · k−2s∂k log( fU (ik)).

(3.22)

With this splitting all the information about the poles and the values of ζ�U (s) at
the non-positive integers is contained in the integration from 1 to ∞. Therefore,
to perform the analytic continuation of ζ�U (s) to the complex plane, we have to
perform the analytic continuation of

sin(πs)

π

∫ ∞

1
dk · k−2s∂k log( fU (ik)) (3.23)
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to the complex plane. To do so, we must remember the following identities:
∫ ∞

1
dz · z−2s = 1/2

s −1/2
, (3.24)

∫ ∞

1
dz · z−2s−1 = 1/2

s
, (3.25)

∫ ∞

1
dz · z−2s−m−1 = 1/2

s +m/2
. (3.26)

Hence, the relevant information about the analytic continuation of (3.23) is con-
tained in

sin(πs)

π

∫ ∞

1
dk · k−2s∂k log( fU (ik))

= sin(πs)

π

(
L/2

s −1/2
+ 1/2

s
−

N−1∑
m=1

bm
m/2

s +m/2
+ A(s)

)
, (3.27)

where N ∈N and A(s) in the bracket of the right-hand side represents a meromor-
phic function of s analytic for �s>−N/2. The integer N can be chosen as large
as we wish and details of the function A(s) are irrelevant for our purposes in this
section. Using this analytic continuation, the poles of ζ�U (s) can be easily com-
puted:

res
(
ζ�U (s), s =1/2

)= res (L sin(πs)/(2π(s −1/2), s =1/2)

⇒ res
(
ζ�U (s), s =1/2

)= L

2π
, (3.28)

res
(
ζ�U (s), s =− (2n +1)

2

)
= res

(
− (2n +1)b2n+1 sin(πs)

2π(s + (2n +1)/2)
, s =− (2n +1)

2

)

⇒ res
(
ζ�U (s), s =− (2n +1)

2

)
= (−1)nb2n+1

(2n +1)
2π

, n =0,1,2,3 . . . (3.29)

Furthermore, it gives the values of ζ�U (s) at the non-positive integers:

ζ�U (0)=
1
2

lim
s→0

sin(πs)

πs
=1/2, (3.30)

ζ�U (−n)=−nb2n lim
s→−n

sin(πs)

π(s +n)
= (−1)n+1nb2n, n =1,2,3, . . . (3.31)

Given Equations (3.28)–(3.31), for any �U ∈ MF − M(0)
F such that cos(α) +

cos(β) 
= 0 it is easy to compute the heat kernel coefficients using the general for-
mulas (3.5) and (3.6). Namely, we find

a0 = L

2
√
π
, an+1 =−4nn!b2n+1

(2n)!√π , n =0,1,2,3, . . . (3.32)

a1/2 =1/2, an+1/2 =− b2n

(n −1)! , n =1,2,3, . . . (3.33)
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3.2.1. The case of �U ∈MF −M(0)
F with cos(α)+ cos(β)=0

For this case, the appropriate function reads

f (B)U (i x)= ex L
[

sin(α)+ 1
2x
(cos(β)− cos(α))+ e−x L2n1 sin(β)

+ e−2x L
(

sin(α)− 1
2x
(cos(β)− cos(α))

)]
. (3.34)

Following the same procedure as in the general case we expand, for α 
=π ,

log( f (B)U (i x))= log (sin(α))+ x L +
∞∑

m=1

cm x−m + e.s.t., (3.35)

cm =−cotgm(α)

m
. (3.36)

Again, the analytical continuation of

sin(πs)

π

∫ ∞

1
dk · k−2s∂k log( fU (ik)) (3.37)

provides the residues at the half integers and the values at the non-positive integers
of ζ (B)�U

(s),

res
(
ζ
(B)
�U
(s), s =1/2

)
= L

2π
, (3.38)

res
(
ζ
(B)
�U
(s), s =− (2n +1)

2

)
= (−1)nc2n+1

(2n +1)
2π

, n =0,1,2,3, . . . , (3.39)

ζ
(B)
�U
(0)=0, (3.40)

ζ
(B)
�U
(−n)= (−1)n+1nc2n, n =1,2,3, . . . (3.41)

Once we use formulas (3.5) and (3.6), we obtain the corresponding heat kernel
coefficients,

a(B)0 = L

2
√
π
, a(B)n+1 =−4nn!c2n+1

(2n)!√π , n =0,1,2,3, . . . , (3.42)

a(B)1/2 =0, a(B)n+1/2 =− c2n

(n −1)! , n =1,2,3, . . . (3.43)

Finally, the case α=π , β=0, has to be treated separately and

∂x (ln f (B)U (i x))|α=π = L − 1
x

+ e.s.t.

From here,

res
(
ζ
(B)
�U
(s)

∣∣∣
α=π , s = 1

2

)
= L

2π
, ζ

(B)
�U
(0)

∣∣∣
α=π =−1

2
,
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and

a(B)0

∣∣∣
α=π = L

2
√
π
, a(B)1/2

∣∣∣
α=π =−1

2
, (3.44)

with all other residues and relevant values respectively heat kernel coefficients
equal to zero.

3.3. HEAT KERNEL COEFFICIENTS FOR �U ∈M(0)
F

Taking into account (2.23), we can write (3.12) as

f (0)U (i x)= ex L

x
cos(α)

[
1+ tan(α)

x
−2

e−x L tan(α)
x

− e−2x L
(

1− tan(α)
x

)]
. (3.45)

Therefore,

log( f (0)U (i x))= log(cos(α))+ x L − log(x)+
∞∑

n=1

(−1)n+1 tann(α)

n
x−n + e.s.t. (3.46)

⇒∂x log( f (0)U (i x))= L − 1
x

+
∞∑

n=1

(−1)n tann(α)x−n−1 + e.s.t. (3.47)

Hence, the analytical continuation gives as before the required residues and values
of ζ (0)�U

(s),

res(ζ (0)�U
(s); s =1/2)= L/2π, (3.48)

res
(
ζ
(0)
�U
(s); s =−2n +1

2

)
= (−1)n

2π
tan2n+1(α), n =0,1,2,3, . . . , (3.49)

ζ
(0)
�U
(0)=−1/2, (3.50)

ζ
(0)
�U
(−n)= 1

2
(−1)n tan2n(α), n =1,2,3, . . . (3.51)

To obtain the heat kernel coefficients, we must take into account that there is one
zero mode in all cases as demonstrated previously. Therefore, we must add 1 to
a1/2:

a(0)0 = L

2
√
π
, a(0)1/2 = 1

2
, (3.52)

a(0)n+1 =−4nn! tan2n+1(α)

(2n +1)!√π , n =0,1,2,3, . . . , (3.53)

a(0)n+1/2 = 1
2

tan2n(α)

n! , n =1,2,3, . . . (3.54)

The heat kernel coefficients obtained above for �U ∈M(0)
F become singular for α=

π/2. In this case, instead

∂x log( f (0)U (i x))|α=π/2 = L − 2
x

+ e.s.t., (3.55)
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and therefore the spectral zeta function ζ
(0)
�U
(s)|α=π/2 will only have a residue at

s =1/2 and non-zero value at s =0,

res(ζ (0)�U
(s)|α=π/2; s =1/2)= L/2π, (3.56)

ζ
(0)
�U
(0)|α=π/2 =−1. (3.57)

Hence, the only non-vanishing heat kernel coefficients are given by

a(0)0 |α=π/2 = L

2
√
π
. (3.58)

The Von Neumann–Krein extension The corresponding results for the VNK exten-
sion follow from

fVNK(k)= hVNK(k)

2ik5eiαVNK
= sin(βVNK)

k4
(kL sin(kL)+2 cos(kL)−2). (3.59)

Note, we divided by k5 instead of the k3 as in Equation (3.12), this being necessary
because the VNK extension has two zero modes. The large k expansion relevant
for the heat kernel coefficients reads

fVNK(ik)= 2
(
1− kL

2

)
k4

√
L2 +4

ekL(1+ e.s.t.), (3.60)

and the coefficients follow along the lines explained to be

a(VNK)
0 = L

2
√
π
, a(VNK)

n+1 = n!(4/L)2n+1

(2n +1)!2√
π
, n =0,1,2,3, . . . , (3.61)

a(VNK)
1/2 = 1

2
, a(VNK)

n+1/2 = 1
2
(2/L)2n

n! , n =1,2,3, . . . (3.62)

Let us stress, that to obtain a(VNK)
1/2 we have added +2 to ζ (0)VNK(0), as is requested

by having two zero modes.

3.4. HEAT KERNEL COEFFICIENTS FOR COMMON BOUNDARY CONDITIONS.

As a check of our calculations, let us compare the results found for the heat kernel
coefficients with the known ones for the most common boundary conditions.

• Periodic boundary conditions. The periodic boundary conditions are usually writ-
ten as5

ψ(0)=ψ(L); ψ ′(0)=ψ ′(L). (3.63)

5 When it is required that the solutions of the Laplace equation are smooth functions the peri-
odic boundary conditions are given by the condition ψ(0)=ψ(L). However square integrable solu-
tions of the Laplace equation are not necessarily smooth. Therefore the condition ψ(0)=ψ(L) does
not necessarily give rise to periodic boundary conditions. As an example it is worth to mention
the case of Dirac delta potentials (see references [26–28] for recent developments in the interpreta-
tion of Dirac delta potentials as boundary conditions and infinitely thin kinks) where the condi-
tion ψ(0)=ψ(L) is satisfied but obviously the system does not satisfy periodic boundary conditions.
Therefore in order to distinguish periodic boundary conditions from other types of point interactions
it is necessary to include the second condition over the derivatives: ψ ′(0)=ψ ′(L).
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Equivalently, we can write the following two independent equations for periodic
boundary conditions

ψ(0)+ iψ ′(0)=ψ(L)+ iψ ′(L),
ψ(L)− iψ ′(L)=ψ(0)− iψ ′(0).

Hence, following the notation of Equation (1.3) we can write the periodic
boundary conditions in the form of (1.4) as

ϕ−(ψ)=σ1 ·ϕ+(ψ), (3.64)

being σ1 the corresponding Pauli matrix. Therefore, the unitary matrix that
characterizes periodic boundary conditions is given by Up = σ1 ∈ M(0)

F ⇒ α =
π/2, β=±π/2, n1 =∓1. The heat kernel coefficients are given by (3.58).

• Dirichlet boundary condition. The usual form of the Dirichlet boundary condi-
tion for any manifold M with boundary ∂M is

ψ |∂M =0. (3.65)

As can be seen, the normal derivatives ∂nψ |∂M do not enter in the boundary
condition. Form Equation (1.1), the general boundary condition for those uni-
tary operators U ∈M such that 1 /∈σ(U ) can be written as

ψ |∂M = i
I+U

I−U
· ∂nψ |∂M . (3.66)

From this last expression, it is immediate to notice that the Dirichlet boundary
condition is obtained when U =−I. Therefore the Dirichlet boundary condition
is given by UD = −I ∈ MF − M(0)

F ⇒ α= π, β = 0. The heat kernel coefficients
are given by (3.44).

• Neumann boundary condition. The usual form of the Neumann boundary condi-
tion for any manifold M with boundary ∂M is

∂nψ |∂M =0, (3.67)

where ∂n denotes the normal derivative to ∂M . As can be seen, the boundary
value ψ |∂M does not enter in the boundary condition. Form Equation (1.1), the
general boundary condition for those unitary operators U ∈ M such that −1 /∈
σ(U ) can be written as

∂nψ |∂M =−i
I−U

I+U
· ψ |∂M . (3.68)

From this last expression, it is immediate to notice that the Neumann boundary
condition is obtained when U = I. Therefore the Neumann boundary condition
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is given by UN = I∈M(0)
F ⇒ α=β= 0. It is of note that in this case sin(α)= 0.

Therefore, from (3.52)–(3.54),

a(N )0 =− L

2
√
π
, a(N )1/2 =1/2, (3.69)

a(N )n+1/2 =0, a(N )n =0, n =1,2,3, . . . (3.70)

• Robin boundary conditions. The common expression for the family of Robin
boundary conditions is given by (see for example reference [29])

ψ |∂M − g ∂nψ |∂M =0, g ∈ (−∞,∞). (3.71)

For the case in which the boundary manifold ∂M has several disjoint compo-
nents ∂M =∪i�i the family of Robin boundary conditions can be written as

ψ |�i
− gi ∂nψ |�i

=0, gi ∈ (−∞,∞). (3.72)

The extreme values gi = 0,∞ correspond to Dirichlet and Neumann boundary
conditions respectively in the ith component of ∂M . Note that, in the most gen-
eral case the set of constants gi do not have to be the same for all the disjoint
components �i of ∂M . For M = [0, L], the boundary is formed by two points
and therefore it has two disjoint components. The most simple choice of Robin
boundary conditions in this case is

−ψ ′(0)= tan
(α

2

)
ψ(0), ψ ′(L)= tan

(α
2

)
ψ(L), α∈[0, π ]. (3.73)

In a more compact notation, we can write

tan
(α

2

)
ψ

∣∣∣
∂M

− ∂nψ |∂M =0, α∈[0, π ]. (3.74)

Taking into account Equation (3.68) and comparing it with expression (3.74),
the unitary operator UR for Robin boundary conditions satisfies the equation

tan
(α

2

)
I=−i

I−UR

I+UR
. (3.75)

Therefore, the unitary operator that characterizes the family of Robin bound-
ary conditions given by (3.73) is given by UR = eiα

I as was firstly pointed out
in references [30,31]. Note that UR(α= 0)= I = UN and UR(α= π)= −I = UD .
In the parameterization (1.5), Robin boundary conditions correspond to β = 0.
For α ∈ (0, π) UR(α)∈MF −M(0)

F with cos(α)+ cos(β) 
= 0. Therefore, the heat
kernel coefficients for Robin boundary conditions are determined by Equations
(3.32) and (3.33). From Equation (3.20), it is easy to obtain the coefficients bm

for the Robin boundary conditions:

b(R)m = tanm
(α

2

) [m/2]∑
j=0

(−1)m− j+1 2m−2 j�(m − j)

�( j +1)�(m −2 j +1)
, m =1,2,3, . . . (3.76)
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Using Equations (3.32) and (3.33), it is immediate to compute the heat kernel
coefficients for Robin boundary conditions to any desired order using any sym-
bolic calculation software. As an example, we show the first ten heat kernel coef-
ficients:

a(R)0 = L/2
√
π, a(R)1/2 =1/2, (3.77)

a(R)1 =−2 tan
(
α
2

)
√
π

, a(R)2 =−4 tan3
(
α
2

)
3
√
π

, (3.78)

a(R)3 =−8 tan5
(
α
2

)
15

√
π

, a(R)4 =−16 tan7
(
α
2

)
105

√
π

, (3.79)

a(R)3/2 = tan2
(α

2

)
, a(R)5/2 = 1

2
tan4

(α
2

)
, (3.80)

a(R)7/2 = 1
6

tan6
(α

2

)
, a(R)9/2 = 1

24
tan8

(α
2

)
. (3.81)

These results coincide with the results obtained by Dowker in Ref. [32] (equations
(10) and (14) with h1 =h2 = tan(α/2)). More recently Fulling has studied the heat
kernel coefficients for Robin boundary conditions in the Ref. [33].

4. The Functional Determinant of �U : Derivative at s =0 of the Spectral
Zeta Function

In this section, we compute the derivative of the zeta function at s = 0 for each
of the different cases considered in Sections 3.2 and 3.3. As is well known, this
derivative is a natural constituent when defining functional determinants of ellip-
tic operators [12]. As usual, we subtract and add back a suitable number of the
asymptotic k →∞ terms of ∂k log fÔ(ik) in (3.3). In the current context, we have
to subtract terms up to the order 1/k to make the integral well defined at k =∞
once s = 0 is set. As a technical tool, at the start of this analysis it is convenient
to consider a massive scalar field of mass m, where m will be sent to zero at a
suitable point of the computation. In this way, we can avoid splitting the integral
representing the zeta function into two pieces and the computation becomes a lit-
tle easier. The procedure is valid as in the limit m → 0 the zeta function for the
case with vanishing mass is recovered. A presentation of (3.22) valid about s =0 is
then given by

ζ�U (s)=
sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log
[

2 fU (ik)

kekL(cosα+ cosβ)

]

+ sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log
[

kekL cosα+ cosβ
2

]
.

The integral in the first line by construction is analytic about s = 0 and its deriv-
ative at s = 0 is trivially computed. The needed integrals in the second line are
known [34],
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∞∫
m

dk(k2 −m2)−s =
m1−2s�(1− s)�

(
s − 1

2

)
2
√
π

,

∞∫
m

dk(k2 −m2)−s 1
k

= m−2sπ

2 sinπs
,

and

ζ ′
�U
(0)=− log

∣∣∣∣ 2 fU (im)

memL(cosα+ cosβ)

∣∣∣∣− Lm − log m

is found. As m →0 we use

lim
m→0

fU (im)= L(cosα− cosβ)−2(sinα+n1 sinβ)

to obtain

ζ ′
�U
(0)=− log

∣∣∣∣2L(cosα− cosβ)−4(sinα+n1 sinβ)
cosα+ cosβ

∣∣∣∣ . (4.1)

The case treated in Section 3.2.1, for α 
=π , follows along the same lines from

ζ
(B)
�U
(s)= sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log

[
f (B)U (ik)

ekL sinα

]

+ sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log[ekL sinα].

In the limit as m →0 we obtain

ζ
(B)
�U

′
(0)=− log

∣∣∣∣ L(cosα− cosβ)−2(sinα+n1 sinβ)
sinα

∣∣∣∣ .
For α=π , β=0, instead we start with

ζ
(B)
�U
(s)|α=π = sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log
[

fU (ik)|α=π k

ekL

]

+ sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log
[

ekL

k

]

to find

ζ
(B)
�U

′
(0)|α=π =− log(2L). (4.2)

We are left to treat the cases with a zero mode dealt with in Section 3.3. Therefore,
for α 
=π/2, the starting point is
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ζ
(0)
�U
(s)= sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log

[
f (0)U (ik) k

ekL cosα

]

+ sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log
[

ekL cosα
k

]

leading to

ζ
(0)
�U

′
(0)=− log

∣∣∣∣ L(2 cosα+ L sinα)
cosα

∣∣∣∣ .
For α=π/2 instead

ζ
(0)
�U
(s)|α=π/2 = sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log

[
f (0)U (ik)|α=π/2k2

ekL

]

+ sinπs

π

∞∫
m

dk(k2 −m2)−s∂k log
[

ekL

k2

]
,

leading to

ζ
(0)
�U

′
(0)=−2 log L . (4.3)

The expression obtained for ζ (0)�U

′
(0) does not allow one to compute the deriv-

ative of the spectral zeta function at s = 0 for the VNK extension by just replac-
ing {α,β} �→{αVNK, βVNK} as it does produce an undefined answer. The reason is
that there are two zero modes and the formulas have to be adapted; see Equa-
tions (3.59) and (3.60). From the large k expansion (3.60) and from fVNK(im)�
−L4/(6

√
L2 +4)+ O(m) the computation explained above leads to the following

expression for ζ (0)V N K

′
(0):

ζ
(0)
VNK

′
(0)=− log

∣∣∣∣∣
fV N K (im)|m→0

−L/
√

L2 +4

∣∣∣∣∣=− log

(
L3

6

)
. (4.4)

These results can be confronted with the easily computed answers for periodic,
Dirichlet and Neumann boundary conditions.

For Dirichlet boundary conditions, the spectrum is λn = (πn/L)2, n ∈ N, with
associated zeta function ζDir(s)= (π/L)−2sζR(2s). This gives ζ ′

Dir(0)=− log(2L) in
agreement with (4.2).

For Neumann boundary conditions, the spectrum is as above but with zero
included. For the determinant, the answers therefore again reads ζ ′

Neu(0) =
− log(2L), which agrees with (4.3), once α=β=0 has been put.

Finally, for periodic boundary conditions the spectrum is λn = (2πn/L)2, n ∈
Z, with associated zeta function (zero mode excluded) ζper(s)=2(2π/L)−2sζR(2s).
This shows ζ ′

per(0)=−2 log L, again in agreement with (4.3).
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As a specific new result, Robin boundary conditions as described above follow
from (4.1) as

ζ ′
�UR

(0)=− log
(

2 tan
(α

2

)(
L tan

(α
2

)
+2

))
.

5. Conclusions

In this article, we have analyzed the spectral zeta function resulting from the
Laplacian on the interval [0, L] for the case when strongly consistent selfadjoint
extensions and the Von Neumann–Krein extension are applied. Contour integral
representations for the zeta functions are obtained for this class of selfadjoint
extensions. These are used to compute leading heat kernel coefficients and the
functional determinant in this context. Our results agree with known results for
standard boundary conditions like Dirichlet, Neumann and periodic. The gener-
alization of these results to a scalar quantum field theory in D +1 spacetime con-
fined between two D −1 dimensional plane parallel plates is straightforward for the
heat kernel coefficients due to the factorization properties of the heat kernel in the
same way as it is done in Ref. [1].

The current article represents the start of further investigations into the details
of heat kernel coefficients. Heat kernel coefficients are usually represented in terms
of geometric invariants with universal multipliers depending on the boundary con-
dition. The question arises how the multipliers depend on the chosen selfadjoint
extension. To get some non-trivial boundary geometry involved a similar compu-
tation should be done for balls along the lines of [35–37], where choosing general
selfadjoint extensions will lead to different combinations of Bessel functions. Fur-
thermore, following [38], surfaces of revolution are possible candidates to analyze
how different selfadjoint extensions impact spectral functions.

Finally, the presented analysis could also be done for selfadjoint extensions that
allow for finitely many negative eigenvalues by using a variation of the current pro-
cedure [39]. (Note, that the results presented in this article actually remain valid
beyond strongly consistent selfadjoint extensions as long as the eigenvalues are
positive!) We believe that this kind of selfadjoint extensions could provide a nat-
ural mechanism for inflation in cosmological models with compact extra dimen-
sions with boundary (Kaluza–Klein cosmology or RS-type scenarios), where the
dark energy is interpreted as the quantum vacuum of a fundamental scalar. In
this scenario, the inflationary phase is produced by the existence of negative energy
modes the existence of which is strongly dependent on the size of the compact
extra dimension with boundary.
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Appendix A: Some Remarks on the AIM Formalism

For completeness, we would like to introduce some basic notions about the AIM
formalism. For simplicity, we will restrict ourselves to the case of the selfadjoint
extensions of the Laplace operator over the interval [0, L]. The AIM formalism
establishes a one-to-one correspondence between the abstract set M(L) of selfad-
joint extensions of the Laplace operator over the finite line6 [0, L] and the unitary
group U (2)

sL :U (2)−→M(L).

The isomorphism is unique for each value of L>0. The physical realization of an
abstract selfadjoint extension in M(L) is a boundary condition that determines the
dynamics of the free particle on the interval [0, L] together with the equation of
motion given by the Laplace operator. Therefore, an abstract selfadjoint extension
acquires a physical meaning as a unitary operator s−1

L (�U ) defining a boundary
condition. Hence from a physical point of view what is physically meaningful is
not the abstract set M(L) but its inverse image through sL , i.e., s−1

L (M(L))�U (2).
With this image in mind, and knowing that the length L of the interval plays a
crucial role in physical problems such as the Casimir effect (see for example [1]),
one must assume that the basic object is the group U (2). In this picture, the space
MF (L) is defined as

MF (L)≡{U ∈U (2) | qL ′(U )∈MN N (L
′) ∀ L ′>0}, (A.1)

where MN N (L)⊂ M(L) is the subset of non-negative selfadjoint extensions for
a given length of the interval L. In this sense, the set MF as a set of bound-
ary conditions is independent of the length of the interval, and it is stable under
s−1

L for any L > 0. Keeping boundary conditions defined by U (2) matrices as the
basic objects, statements concerning all values of L or particular values of L made
throughout this paper can be reformulated in terms of the isomorphisms sL . In
particular, concerning the VNK extension, one should say that “s−1

L (�VNK) /∈MF

for any L>0”.
A more geometric picture can be obtained by constructing a bundle structure

over the set of selfadjoint extensions of the Laplace operator over the finite inter-
val. The base space is given by the positive real numbers R

+, the total space will
be given by E ={M(L)}L∈R+ ,

π : E −→R
+,

6 In this appendix, we will make a small change of notation in that we specify the L depen-
dence of the space of selfadjoint extensions of the Laplace operator over the finite interval [0, L]. Of
course for a pair of lengths L1, L2> 0, M(L1)�M(L2)≡M but it is important for the moment
to keep this dependence in mind.
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and the fiber is given by F =π−1(L)=M(L)�U (2). In this picture, the abstract
selfadjoint extensions M are nothing but sections of the fiber bundle just intro-
duced. Obviously, this bundle has a natural structure of principal bundle with
structural group U (2) acting on E naturally through the group isomorphisms sL .
The VNK section would be the only section wVNK :R+ −→ E that for every value
of L ∈R

+ gives rise to a selfadjoint extension with two zero modes, and the space
MF should be defined as those constant sections (the sections such that w(L)=
(L ,U ) with U ∈U (2) independent of L) whose image is in {MN N (L)}L∈R+ .
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