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Characterizing quantum systems through ex-
perimental data is critical to applications as
diverse as metrology and quantum computing.
Analyzing this experimental data in a robust
and reproducible manner is made challenging,
however, by the lack of readily-available soft-
ware for performing principled statistical anal-
ysis. We improve the robustness and repro-
ducibility of characterization by introducing an
open-source library, QInfer, to address this
need. Our library makes it easy to analyze
data from tomography, randomized benchmark-
ing, and Hamiltonian learning experiments ei-
ther in post-processing, or online as data is ac-
quired. QInfer also provides functionality for
predicting the performance of proposed experi-
mental protocols from simulated runs. By deliv-
ering easy-to-use characterization tools based on
principled statistical analysis, QInfer helps ad-
dress many outstanding challenges facing quan-
tum technology.
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1 Introduction

Statistical modeling and parameter estimation play a
critical role in many quantum applications. In quan-
tum information in particular, the pursuit of large-
scale quantum information processing devices has mo-
tivated a range of different characterization protocols,
and in turn, new statistical models. For example, quan-
tum state and process tomography are widely used
to characterize quantum systems, and are in essence

1

ar
X

iv
:1

61
0.

00
33

6v
2 

 [
qu

an
t-

ph
] 

 1
3 

A
pr

 2
01

7

http://quantum-journal.org/?s=QInfer: Statistical inference software for quantum applications
http://orcid.org/0000-0001-6233-3132
http://orcid.org/0000-0003-2736-9943
http://orcid.org/0000-0003-3452-0082
http://orcid.org/0000-0001-8003-0039
mailto:cgranade@cgranade.com
www.cgranade.com
https://dx.doi.org/10.5281/zenodo.157007


matrix-valued parameter estimation problems [1, 2].
Similarly, randomized benchmarking is now a main-
stay in assessing quantum devices, motivating the use
of rigorous statistical analysis [3] and algorithms [4].
Quantum metrology, meanwhile, is intimately con-
cerned with what parameters can be extracted from
measurements of a physical system, immediately ne-
cessitating a statistical view [5, 6].

The prevalence of statistical modeling in quantum
applications should not be surprising: quantum me-
chanics is an inherently statistical theory, thus infer-
ence is an integral part of both experimental and theo-
retical practice. In the former, experimentalists need to
model their systems and infer the value of parameters
for the purpose of improving control as well as validat-
ing performance. In the latter, numerical experiments
utilizing simulated data are now commonplace in the-
oretical studies, such that the same inference problems
are encountered usually as a necessary step to answer
questions about optimal data processing protocols or
experiment design. In both cases, we lack tools to
rapidly prototype and access inference strategies; QIn-
fer addresses this need by providing a modular inter-
face to a Monte Carlo algorithm for performing statis-
tical inference.

Critically, in doing so, QInfer also supports and en-
ables open and reproducible research practices. Par-
allel to the challenges faced in many other disciplines
[7], physics research cannot long survive its own cur-
rent practices. Open access, open source, and open
data provide an indispensable means for research to be
reproducible, ensuring that research work is useful to
the communities invested in that research [8]. In the
particular context of quantum information research,
open methods are especially critical given the impact
of statistical errors that can undermine the claims of
published research [9, 10]. Ensuring the reproducibil-
ity of research is critical for evaluating the extent to
which statistical and methodological errors undermine
the credibility of published research [11].

QInfer also constitutes an important step towards a
more general framework for quantum verification and
validation (QCVV). As quantum information proces-
sor prototypes become more complex, the challenge
of ensuring that noise processes affecting these de-
vices conform to some agreed-upon standard becomes
more difficult. This challenge can be managed, at least
in principle, by developing confidence in the truth of
certain simplifying assumptions and approximations.
The value of randomized benchmarking, for example,
depends strongly upon the extent to which noise is
approximately Pauli [12]. QInfer provides a valuable
framework for the design of automated and efficient
noise assessment methods that will enable the compar-

ison of actual device performance to the specifications
demanded by theory.

To the end of enabling reproducible and accessible
research, and hence providing a reliable process for in-
terpreting advances in quantum information process-
ing, we base QInfer using openly-available tools such
as the Python programming language, the IPython in-
terpreter, and Jupyter [13, 14]. Jupyter in particular
has already proven to be an invaluable tool for repro-
ducible research, in that it provides a powerful frame-
work for describing and explaining research software
[15]. We provide our library under an open-source li-
cense along with examples [16] of how to use QInfer to
support reproducible research practices. In this way,
our library builds on and supports recent efforts to de-
velop reproducible methods for physics research [17].

QInfer is a mature open-source software library writ-
ten in the Python programming language which has
now been extensively tested in a wide range of infer-
ential problems by various research groups. Recogniz-
ing its maturity through its continuing development,
we now formally release version 1.0. This maturity has
given its developers the opportunity to step back and
focus on the accessibility of QInfer such that other re-
searchers can benefit from its utility. This short paper
is the culmination of that effort. A full Users’ Guide is
available in the ancillary files.

We proceed as following. In Section 2, we give a
brief introduction to Bayesian inference and particle fil-
tering, the numerical algorithm we use to implement
Bayesian updates. In Section 3, we describe applica-
tions of QInfer to common tasks in quantum informa-
tion processing. Next, we describe in Section 4 addi-
tional features of QInfer before concluding in Section 5.

2 Inference and Particle Filtering

QInfer is primarily intended to serve as a toolset for
implementing Bayesian approaches to statistical infer-
ence. In this section, we provide a brief review of the
Bayesian formalism for statistical inference. This sec-
tion is not intended to be comprehensive; our aim is
rather to establish the language needed to describe the
QInfer codebase.

In the Bayesian paradigm, statistical inference is the
process of evaluating data obtained by sampling an
unknown member of a family of related probability
distributions, then using these samples to assign a rel-
ative plausibility to each distribution. Colloquially, we
think of this family of distributions as a model param-
eterized by a vector x of model parameters. We then
express the probability that a dataset D was obtained
from the model parameters x as Pr(D|x) and read it as
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“the probability of D given that the model specified by
x is the correct model.” The function Pr(·|x) is called
the likelihood function, and computing it is equivalent
to simulating an experiment1. For example, the Born
rule is a likelihood function, in that it maps a known or
hypothetical quantum density matrix x ≡ ρ to a distri-
bution over measurement outcomes of a measurement
D ∈ {E,✶− E} via

Pr(D = E|x) = Tr(Eρ). (1)

The problem of estimating model parameters is as
follows. Suppose an agent is provided with a dataset
D and is tasked with judging the probability that the
model specified by a given vector x is in fact the correct
one. According to Bayes’ rule,

Pr(x|D) =
Pr(D|x)Pr(x)

Pr(D)
, (2)

where Pr(x) is a probability distribution called the
prior distribution and Pr(x|D) is called the posterior
distribution. If the agent is provided with a prior
distribution, then they can estimate parameters using
Bayes’ rule. Note that Pr(D) can be computed through
marginalization, which is to say that the value can in
principle be calculated via the equation

Pr(D) =

∫

x

Pr(D|x)Pr(x)dx. (3)

For the inference algorithm used by QInfer, Pr(D) is
an easily computed normalization constant and there
is no need to compute a possibly complicated integral.

Importantly, we will demand that the agent’s data
processing approach works in an iterative manner.
Consider the example in which the data D is in fact
a set D = {d1, . . . , dN } of individual observations. In
most if not all classical applications, each individual
datum is distributed independently of the rest of the
data set, conditioned on the true state. Formally, we
write that for all j and k such that j 6= k, dj ⊥ dk | x.
This may not hold in quantum models where measure-
ment back-action can alter the state. In such cases, we
can simply redefine what the parameters x label, such
that this independence property can be taken as a con-
vention, instead of as an assumption. Then, we have
that

Pr(x|d1, . . . , dN ) =
Pr(dN |x)Pr(x|d1, . . . , dN−1)

Pr(dN )
.

(4)

1Here, we use the word “simulation” in the sense of what Van
den Nest [18] terms “strong simulation,” as opposed to drawing
data consistent with a given model (“weak simulation”).

In other words, the agent can process the data sequen-
tially where the prior for each successive datum is the
posterior from the last.

This Bayes update can be solved analytically in some
important special cases, such as frequency estimation
[19, 20], but is more generally intractable. Thus, to de-
velop a robust and generically useful framework for
parameter estimation, the agent relies on numerical al-
gorithms. In particular, QInfer is largely concerned
with the particle filtering algorithm [21], also known
as the sequential Monte Carlo (SMC) algorithm. In
the context of quantum information, SMC was first
proposed for learning from continuous measurement
records [22], and has since been used to learn from
state tomography [23], Hamiltonian learning [24], and
randomized benchmarking [4], as well as other appli-
cations.

The aim of particle filtering is to replace a continuous
probability distribution Pr(x) with a discrete approxi-
mation

∑

k

wkδ(x − xk), (5)

where w = (wk) is a vector of probabilities. The entry
wk is called the weight of the particle, labeled k, and xk

is the location of particle k.
Of course, the particle filter

∑

k wkδ(x − xk) does
not directly approximate Pr(x) as a distribution; the
particle filter, if considered as a distribution, is sup-
ported only a discrete set of points. Instead, the par-
ticle filter is used to approximate expectation values: if
f is a function whose domain is the set of model vec-
tors x, we want the particle filter to satisfy

∫

f(x)Pr(x)dx ≈
∑

k

wkf(xk). (6)

The posterior distribution can also be approximated
using a particle filter. In fact, a posterior particle filter
can be computed directly from a particle filter for the
prior distribution as follows. Let {(wk, xk)} be the set
of weights and locations for a particle filter for some
prior distribution Pr(x). We then compute a particle
filter {(w′

k, x′

k)} for the posterior distribution by set-
ting x′

k = xk and

w′

k =
wk Pr(D|xk)

∑

j wj Pr(D|xj)
, (7)

where D is the data set used in the Bayesian update. In
practice, updating the weights in this fashion causes
the particle filter to become unstable as data is col-
lected; by default, QInfer will periodically apply the
Liu–West algorithm to restore stability [25]. See Ap-
pendix B for details.
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At any point during the processing of data, the ex-
pectation of any function with respect to the posterior
is approximated as

E[f(x)|D] ≈
∑

k

wk(D)f(xk). (8)

In particular, the expected error in x is given by
the posterior covariance, Cov(x|D) := E[xxT|D] −
E[x|D]ET[x|D]. This can be used, for instance, to
adaptively choose experiments which minimize the
posterior variance [24]. This approach has been used
to exponentially improve the number of samples re-
quired in frequency estimation problems [19, 20], and
in phase estimation [26, 27]. Alternatively, other cost
functions can be considered, such as the information
gain [23, 28]. QInfer allows for quickly computing ei-
ther the expected posterior variance or the informa-
tion gain for proposed experiments, making it straight-
forward to develop adaptive experiment design proto-
cols.

The functionality exposed by QInfer follows a sim-
ple object model, in which the experiment is described
in terms of a model, and background information is de-
scribed in terms of a prior distribution. Each of these
classes is abstract, meaning that they define what be-
havior a QInfer user must specify in order to fully
specify an inference procedure. For convenience, QIn-
fer provides several pre-defined implementations of
each, as we will see in the following examples. Con-
crete implementations of a model and a prior distribu-
tion are then used with SMC to update the prior based
on data. In summary, the iterative approach described
above is formalized in terms of the following Python
object model:

class qinfer.Distribution:

abstract sample(n): Returns n samples from
the represented distribution.

class qinfer.Model:

abstract likelihood(d, x, e): Returns an evalu-
ation of the likelihood function Pr(d|x; e) for
a single datum d, a vector of model parame-
ters x and an experiment e.

abstract are models valid(x): Evaluates
whether x is a valid assignment of model
parameters.

class qinfer.SMCUpdater:

update(d, e): Computes the Bayes update (7) for
a single datum (that is, D = {d}).

est mean(): Returns the current estimate x̂ =
E[x].

A complete description of the QInfer object model
can be found in the Users’ Guide. Notably
qinfer .SMCUpdater relies only on the behavior specified
by each of the abstract classes in this object model.
Thus, it is straightforward for the user to specify
their own prior and likelihood function by either im-
plementing these classes (as in the example of Ap-
pendix A), or by using one of the many concrete im-
plementations provided with QInfer.

The concrete implementations provided with QIn-
fer are useful in a range of common applications, as de-
scribed in the next Section. We will demonstrate how
these classes are used in practice with examples drawn
from quantum information applications. We will also
consider the qinfer .Heuristic class, which is useful in con-
texts such as online adaptive experiments and simu-
lated experiments.

3 Applications in Quantum Information

In this Section, we describe various possible applica-
tions of QInfer to existing experimental protocols. In
doing so, we highlight both functionality built-in to
QInfer and how this functionality can be readily ex-
tended with custom models and distributions. We be-
gin with the problems of phase and frequency learning,
then describe the use of QInfer for state and process to-
mography, and conclude with applications to random-
ized benchmarking.

3.1 Phase and Frequency Learning

One of the primary applications for particle filtering is
for learning the Hamiltonian H under which a quan-
tum system evolves [24]. For instance, consider the
single-qubit Hamiltonian H = ωσz/2 for an unknown
parameter ω. An experiment on this qubit may then
consist of preparing a state |+〉 = (|0〉 + |1〉)/

√
2,

evolving for a time t and then measuring in the σx ba-
sis. This model commonly arises from Ramsey inter-
ferometry, and gives a likelihood function

Pr(0|ω; t) =
∣

∣ 〈+| e−iωtσz/2 |+〉
∣

∣

2

= cos2(ωt/2).
(9)

Note that this is also the same model for Rabi inter-
ferometry as well, with the interpretation of H as drive
term rather than the internal Hamiltonian for a system.
Similarly, this model forms the basis of Bayesian and
maximum likelihood approaches to phase estimation.

In any case, QInfer implements (9) as the
SimplePrecessionModel class, making it easy to quickly
perform Bayesian inference for Ramsey or Rabi esti-
mation problems. We demonstrate this in Listing 1,
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Figure 1: Frequency estimate obtained using Listing 1 as a function of the number of experiments performed.

using ExpSparseHeuristic to select the kth measurement time tk = (9/8)k, as suggested by analytic arguments
[19].

Listing 1: Frequency estimation example using SimplePrecessionModel.

>>> from q i n f e r import *
>>> model = SimplePrecessionModel ( )
>>> p r i o r = UniformDistr ibut ion ( [ 0 , 1 ] )
>>> n p a r t i c l e s = 2000

5 >>> n experiments = 100
>>> updater = SMCUpdater ( model , n p a r t i c l e s , p r i o r )
>>> h e u r i s t i c = ExpSparseHeurist ic ( updater )
>>> true params = p r i o r . sample ( )
>>> for idx experiment in range ( n experiments ) :

10 . . . experiment = h e u r i s t i c ( )
. . . datum = model . s imulate experiment ( true params , experiment )
. . . updater . update ( datum , experiment )
>>> print ( updater . est mean ( ) )

More complicated models for learning Hamiltonians
with particle filtering have also been considered [29–
32]; these can be readily implemented in QInfer as cus-
tom models by deriving from the Model class, as de-
scribed in Appendix A.

3.2 State and Process Tomography

Though originally conceived of as a algebraic inverse
problem, quantum tomography is also a problem of
parameter estimation. Many have also considered the
problem in a Bayesian framework [33, 34] and the se-
quential Monte Carlo algorithm has been used in both
theoretical and experimental studies [23, 28, 35–37].

To define the model, we start with a basis for trace-

less Hermitian operators {Bj}d2
−1

j=1 . In the case of a
qubit, this could be the basis of Pauli matrices, for ex-

ample. Then, any state ρ can be written

ρ =
✶

d
+

d2
−1

∑

j=1

θjBj , (10)

for some vector of parameters θ. These parameters
must be constrained such that ρ ≥ 0.

In the simplest case, we can consider two-outcome
measurements represented by the pair {E,✶− E}. The
Born rule defines the likelihood function

Pr(E|ρ) = Tr(ρE). (11)

For multiple measurements, we simply iterate. For
many trials of the same measurement, we can use a
derived model as discussed below.

QInfer’s TomographyModel abstracts many of the im-
plementation details of this problem, exposing tomo-
graphic models and estimates in terms of QuTiP’s Qobj
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Figure 2: Posterior over rebit states after 100 random Pauli measurements, each repeated five times, as implemented by Listing 2.

class [38]. This allows for readily integrating QIn-
fer functionality with that of QuTiP, such as fidelity
metrics, diamond norm calculation, and other such
manipulations.

Tomography support in QInfer requires one of the

bases mentioned above in order to parameterize the
state. Many common choices of basis are included as
TomographyBasis objects, such as the Pauli or Gell-Mann
bases. Many of the most commonly used priors are al-
ready implemented as a QInfer Distribution.

Listing 2: Rebit state tomography example using TomographyModel.

>>> from q i n f e r import *
>>> from q i n f e r . tomography import *
>>> b a s i s = p a u l i b a s i s ( 1 ) # Single−qubit Paul i b a s i s .
>>> model = TomographyModel ( b a s i s )

5 >>> p r i o r = G i n i b r e R e d i t D i s t r i b u t i o n ( b a s i s )
>>> updater = SMCUpdater ( model , 8000 , p r i o r )
>>> h e u r i s t i c = RandomPauliHeuristic ( updater )
>>> t r u e s t a t e = p r i o r . sample ( )
>>>

10 >>> for idx experiment in range ( 5 0 0 ) :
>>> experiment = h e u r i s t i c ( )
>>> datum = model . s imulate experiment ( t r u e s t a t e , experiment )
>>> updater . update ( datum , experiment )

For simulations, common randomized measure-
ment choices are already implemented. For exam-
ple, RandomPauliHeuristic chooses random Pauli mea-
surements for qubit tomography.

In Listing 2, we demonstrate QInfer’s tomography
support for a rebit. By analogy to the Bloch sphere, a
rebit may be represented by a point in the unit disk,
making rebit tomography useful for plotting exam-
ples. More generally, with different choices of basis,
QInfer can be used for qubits or higher-dimensional
states. For example, recent work has demonstrated the
use of QInfer for tomography procedures on seven-
dimensional states [39]. Critically, QInfer provides a
region estimate for this example, describing a region that
has a 95% probability of containing the true state. We

will explore region estimation further in Section 4.1.

Finally, we note that process tomography is a spe-
cial case of state tomography [36], such that the same
functionality described above can also be used to ana-
lyze process tomography experiments. In particular,
the qinfer .ProcessTomographyHeuristic class represents the
experiment design constraints imposed by process to-
mography, while BCSZChoiDistribution uses the distribu-
tion over completely positive trace-preserving maps
proposed by Bruzda et al. [40] to represent a prior dis-
tribution over the Choi states of random channels.
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3.3 Randomized Benchmarking

In recent years, randomized benchmarking (RB) has
reached a critical role in evaluating candidate quantum
information processing systems. By using random se-
quences of gates drawn from the Clifford group, RB
provides a likelihood function that depends on the fi-
delity with which each Clifford group element is im-
plemented, allowing for estimates of that fidelity to be
drawn from experimental data [4].

In particular, suppose that each gate is implemented
with fidelity F , and consider a fixed initial state and
measurement. Then, the survival probability over se-
quences of length m is given by [41]

Pr(survival|p, A, B; m) = Apm + B, (12)

where p := (dF − 1)/(d − 1), d is the dimension of the
system under consideration, and where A and B de-
scribe the state preparation and measurement (SPAM)
errors. Learning the model x = (p, A, B) thus provides

an estimate of the fidelity of interest F .

The likelihood function for randomized benchmark-
ing is extremely simple, and requires only scalar
arithmetic to compute, making it especially useful
for avoiding the computational overhead typically re-
quired to characterize large quantum systems with
classical resources. Multiple generalizations of RB
have been recently developed which extend these ben-
efits to estimating crosstalk [42], coherence [43], and to
estimating fidelities of non-Clifford gates [44, 45]. RB
has also been extended to provide tomographic infor-
mation as well [46]. The estimates provided by ran-
domized benchmarking have also been applied to de-
sign improved control sequences [47, 48].

QInfer supports RB experiments through the
qinfer .RandomizedBenchmarkingModel class. For common
priors, QInfer also provides a simplified interface,
qinfer .simple est rb, that reports the mean and covariance
over an RB model given experimental data. We pro-
vide an example in Listing 3.

Listing 3: Randomized benchmarking example using simple est rb .

>>> from q i n f e r import *
>>> import numpy as np
>>> p , A, B = 0 . 9 5 , 0 . 5 , 0 . 5
>>> ms = np . l i n s p a c e ( 1 , 800 , 2 0 1 ) . astype ( i n t )

5 >>> s i g n a l = A * p * * ms + B
>>> n shots = 25
>>> counts = np . random . binomial ( p=s ignal , n=n shots )
>>> data = np . column stack ( [ counts , ms , n shots * np . o n e s l i k e ( counts ) ] )
>>> mean , cov = s i m p l e e s t r b ( data , n p a r t i c l e s =12000 , p min = 0 . 8 )

10 >>> print ( mean , np . s q r t ( np . diag ( cov ) ) )

4 Additional Functionality

Having introduced common applications for QInfer, in
this Section we describe additional functionality which
can be used with each of these applications, or with
custom models.

4.1 Region Estimation and Error Bars

As an alternative to specifying the entire posterior dis-
tribution approximated by qinfer .SMCUpdater, we pro-
vide methods for reporting credible regions over the
posterior, based on covariance ellipsoids, convex hulls,
and minimum volume enclosing ellipsoids [35]. These
region estimators provide a rigorous way of summa-
rizing one’s uncertainty following an experiment (col-
loquially referred to as “error bars”), and owing to the
Bayesian approach, do so in a manner consistent with
experimental experience.

Posterior credible regions can be found by using
the SMCUdater.est credible region method. This method
returns a set of particles such that the sum of their
weights corresponding weights is at least a specified

ratio of the total weight. For example, a 95% credible
regions is represented as a collection of particles whose
weight sums to at least 0.95.

This does not necessarily admit a very compact de-
scription since many of the particles would be interior
to the regions. In such cases, it is useful to find region
estimators containing all of the particles describing a
credible region. The SMCUpdater.region est hull method
does this by finding a convex hull of the credible parti-
cles. Such a hull is depicted in Figure 2.

The convex hull of an otherwise random set of points
is also not necessarily easy to describe or intuit. In such
cases, SMCUdpater.region est ellipsoid finds the minimum-
volume enclosing ellipse (MVEE) of the convex hull
region estimator. As the name suggests, this is the
smallest ellipsoid containing the credible particles. It
is strictly larger than the hull and thus maintains cred-
ibility. Ellipsoids are specified by their center and
covariance matrix. Visualizing the covariance ma-
trix can also usually provide important diagnostic in-
formation, as in Figure 3. In that example, we can
quickly see that the p and A parameters estimated
from a randomized benchmarking experiment are anti-

7
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Figure 3: (Left) Posterior over the randomized benchmarking decay rate parameter p after measuring 25 sequences at each of
201 sequence lengths, as described in Listing 3. (Right) The posterior covariance matrix over all three randomized benchmarking
parameters x = (p, A, B), represented as a Hinton diagram. White squares indicate positive elements, while black squares indicate
negative elements, and the relative sizes indicate magnitude of each element.

correlated, such that we can explain more preparation
and measurement errors by assuming better gates and
vice versa.

4.2 Derived Models

QInfer allows for the notion of a model chain, where the
likelihood of a given model in the chain is a function of
the likelihoods of models below it, and possibly new
model or experiment parameters. This abstraction is
useful for a couple of reasons. It encourages more ro-
bust programs, since models in the chain will often be
debugged independently. It also often makes writing
new models easier since part of the chain may be in-
cluded by default in the QInfer library, or may overlap
with other similar models the user is implementing. Fi-
nally, in quantum systems, it is common to have a like-
lihood function which is most naturally expressed as
a hierarchical probability distribution, with base mod-
els describing quantum physics, and overlying models
describing measurement processes.

Model chains are typically implemented through the

use of the abstract class DerivedModel. Since this class
itself inherits from the Model class, subclass instances
must provide standard model properties and meth-
ods such as likelihood, n outcomes, and modelparam names.
Additionally, DerivedModel accepts an argument model,
referring to the underlying model directly below it in
the model chain. Class properties exist for referenc-
ing models at arbitrary depths in the chain, all the way
down to the base model.

As an example, consider a base model which is the
precession model discussed in Section 3.1. This is a
two-outcome model whose outcomes correspond to
measuring the state |+〉 or the orthogonal state |−〉,
which can be viewed as flipping a biased coin. Per-
haps an actual experiment of this system consists of
flipping the coin N times with identical settings, where
the individual results are not recorded, only the total
number n+ of |+〉 results. In this case, we can con-
catenate this base model with the built-in DerivedModel

called BinomialModel. This model adds an additional ex-
periment parameter n meas specifying how many times
the underlying model’s coin is flipped in a single ex-
periment.

Listing 4: Frequency estimation with the derived BinomialModel and a linear time-sampling heuristic.

>>> from q i n f e r import *
>>> import numpy as np
>>> model = BinomialModel ( SimplePrecessionModel ( ) )
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Figure 4: Frequency estimate after 25 measurements at each of 20 linearly-spaced times, using qinfer .BinomialModel as in Listing 4.

>>> n meas = 25
5 >>> p r i o r = UniformDistr ibut ion ( [ 0 , 1 ] )
>>> updater = SMCUpdater ( model , 2000 , p r i o r )
>>> true params = p r i o r . sample ( )
>>> for t in np . l i n s p a c e ( 0 . 1 , 2 0 , 2 0 ) :
. . . experiment = np . array ( [ ( t , n meas ) ] , dtype=model . expparams dtype )

10 . . . datum = model . s imulate experiment ( true params , experiment )
. . . updater . update ( datum , experiment )
>>> print ( updater . est mean ( ) )

Note that parallelization, discussed in Section 4.5,
is implemented as a DerivedModel whose likelihood
batches the underlying model’s likelihood function
across processors.

4.3 Time-Dependent Models

So far, we have only considered time-independent (pa-
rameter estimation) models, but particle filtering is
useful more generally for estimating time-dependent
(state-space) models. Following the work of Isard
and Blake [49], when performing a Bayes update, we
may also incorporate state-space dynamics by adding
a time-step update. For example, to follow a Wiener
process, we move each particle xi(tk) at time tk to its
new position

xi(tk+1) = xt(tk) + (tk+1 − tk)η, (13)

with η ∼ N(0, Σ) for a covariance matrix Σ.
Importantly, we need not assume that time-

dependence in x follows specifically a Wiener process.

For instance, one may consider timestep increments
describing stochastic evolution of a system undergo-
ing weak measurement [22], such as an atomic en-
semble undergoing probing by an optical interferom-
eter [50]. In each case, QInfer uses the timestep incre-
ment implemented by the Model.update timestep method,
which specifies the time step that SMCUpdater should
perform after each datum. This design allows for the
specification of more complicated time step updates
than the representative example of (13). For instance,
the qinfer .RandomWalkModel class adds diffusive steps
to existing models and can be used to quickly learn
time-dependent properties, such as shown in Listing 5.
Moreover, QInfer provides the DiffusiveTomographyModel

for including time-dependence in tomography by
truncating time step updates to lie within the space of
valid states [36]. A video example of time-dependent
tomography can be found on YouTube [51].

In this way, by following the Isard and Blake [49] al-
gorithm, we obtain a very general solution for time-
dependence. Importantly, other approaches exist that
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Figure 5: Time-dependent frequency estimation, using qinfer .RandomWalkModel as in Listing 5.

may be better suited for individual problems, includ-
ing modifying resampling procedures to incorporate

additional noise [52, 53], or adding hyperparameters
to describe deterministic time-dependence [36].

Listing 5: Frequency estimation with a time-dependent model.

>>> from q i n f e r import *
>>> import numpy as np
>>> p r i o r = UniformDistr ibut ion ( [ 0 , 1 ] )
>>> true params = np . array ( [ [ 0 . 5 ] ] )

5 >>> n p a r t i c l e s = 2000
>>> model = RandomWalkModel (
. . . BinomialModel ( SimplePrecessionModel ( ) ) , NormalDistr ibution ( 0 , 0 . 0 1 * * 2 ) )
>>> updater = SMCUpdater ( model , n p a r t i c l e s , p r i o r )
>>> t = np . pi / 2

10 >>> n meas = 40
>>> expparams = np . array ( [ ( t , n meas ) ] , dtype=model . expparams dtype )
>>> for idx in range ( 1 0 0 0 ) :
. . . datum = model . s imulate experiment ( true params , expparams )
. . . true params = np . c l i p ( model . update t imestep ( true params , expparams ) [ : , : , 0 ] , 0 , 1 )

15 . . . updater . update ( datum , expparams )

4.4 Performance and Robustness Testing

One important application of QInfer is predicting how
well a particular parameter estimation experiment will
work in practice. This can be formalized by consider-
ing the risk R(x) := ED[(x̂(D) − x)T(x̂(D) − x)] in-
curred by the estimate x̂(D) as a function of some true
model x. The risk can be estimated by drawing many
different data sets D, computing the estimates for each,
and reporting the average error. Similarly, one can es-
timate the Bayes risk r(π) := Ex∼π [R(x)] by drawing
a new “true” model x from a prior π along with each
data set.

In both cases, QInfer automates the process of per-
forming many independent estimation trials through
the perf test multiple function. This function will run
an updater loop for a given model, prior, and exper-
iment design heuristic, returning the errors incurred
after each measurement in each trial. Taking an expec-
tation value with numpy.mean returns the risk or Bayes
risk, depending if the true model keyword argument is
set.

For example, Listing 6 finds the Bayes risk for a fre-
quency estimation experiment (Section 3.1) as a func-
tion of the number of measurements performed.

Performance evaluation can also easily be paral-
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Figure 6: Bayes risk of a frequency estimation model with exponentially sparse sampling as a function of the number of experiments
performed, and as calculated by Listing 6.

lelized over trials, as discussed in Section 4.5, allow-
ing for efficient use of computational resources. This
is especially important when comparing performance
for a range of different parameters. For instance,
one might want to consider how the risk and Bayes

risk of an estimation procedure scale with errors in a
faulty simulator; QInfer supports this usecase with the
qinfer .PoisonedModel derived model, which adds errors
to an underlying “valid” model. In this way, QInfer en-
ables quickly reasoning about how much approxima-
tion error can be tolerated by an estimation procedure.

Listing 6: Bayes risk of frequency estimation as a function of the number of measurements, calculated using perf test multiple .

>>> performance = p e r f t e s t m u l t i p l e (
. . . # Use 100 t r i a l s to es t imate e x p e c t a t i o n over data .
. . . 100 ,
. . . # Use a simple precess ion model both to generate ,

5 . . . # data , and to perform est imat ion .
. . . SimplePrecessionModel ( ) ,
. . . # Use 2 ,000 p a r t i c l e s and a uniform p r i o r .
. . . 2000 , UniformDistr ibut ion ( [ 0 , 1 ] ) ,
. . . # Take 50 measurements with tk = abk .

10 . . . 50 , ExpSparseHeurist ic
. . . )
>>> # The returned performance data has an index f o r the t r i a l , and an index f o r the measurement number .
>>> print ( performance . shape )
( 1 0 0 , 50)

15 >>> # Ca l c u l a t e the Bayes r i s k by taking a mean over the t r i a l index .
>>> r i s k = np . mean( performance [ ’ l o s s ’ ] , a x i s =0)

4.5 Parallelization

At each step of the SMC algorithm, the likelihood
Pr(dn|x) of an experimental datum dn is computed for
every particle xk in the distribution. Typically, the to-
tal running time of the algorithm is overwhelmingly
spent calculating these likelihoods. However, individ-
ual likelihood computations are independent of each

other and therefore may be performed in parallel. On
a single computational node with multiple cores, lim-
ited parallelization is performed automatically by rely-
ing on NumPy’s vectorization primitives [54].

More generally, however, if the running time of
Pr(dn|x) is largely independent of x, we may divide
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Figure 7: Parallelization of the likelihood function being tested on a single computer with 12 physical Intel Xeon cores. 5000
particles are shared over a varying number of ipyparallel engines. The linear unit slope indicates that overhead is negligible in
this example. This holds until the number of physical cores is reached, past which hyper-threading continues to give diminishing
returns. The single-engine running time was about 37 seconds, including ten different experiment values, and 5 possible outcomes.

our particles into L disjoint groups,

{x
(1)
1 , ..., x

(1)
k1

} ⊔ · · · ⊔ {x
(L)
1 , ..., x

(L)
kL

}, (14)

and send each group along with dn to a separate pro-
cessor to be computed in parallel.

In QInfer, this is handled by the derived model (Sec-

tion 4.2) qinfer .DirectViewParallelizedModel which uses the
Python library ipyparallel [55]. This library supports
everything from simple parallelization over the cores
of a single processor, to make-shift clusters set up over
SSH, to professional clusters using standard job sched-
ulers. Passing the model of interest as well as an
ipyparallel .DirectView of the processing engines is all that
is necessary to parallelize a model.

Listing 7: Example of parallelizing likelihood calls with DirectViewParallelizedModel .

>>> from q i n f e r import *
>>> from i p y p a r a l l e l import C l i e n t
>>> rc = C l i e n t ( p r o f i l e =” my cores ” )
>>> model = DirectViewParal le l izedModel ( SimplePrecessionModel ( ) , r c [ : ] )

In Figure 7, a roughly 12× speed-up is demonstrated
by parallelizing a model over the 12 cores of a sin-
gle computer. This model was contrived to demon-
strate the parallelization potential of a generic Hamil-
tonian learning problem which uses dense operators
and states. A single likelihood call generates a random
16 × 16 anti-hermitian matrix (representing the gener-
ator of a four qubit system), exponentiates it, and re-
turns overlap with the |0000〉 state. Implementation
details can be found in the QInfer examples repository
[16], or in the ancillary files.

So far, we have discussed parallelization from the
perspective of traditional processors (CPUs), which

typically have a small number of processing cores on
each chip. By contrast, moderately-priced desktop
graphical processing units (GPUs) will often contain
thousands of cores, while GPU hosts tailored for sci-
entific use can have tens of thousands. This massive
parallelization makes GPUs attractive for particle fil-
tering [56]. Using libraries such as PyOpenCL and Py-
CUDA [57] or Numba [58], custom models can be writ-
ten which take advantage of GPUs within QInfer [52].
For example, qinfer .AcceleratedPrecessionModel offloads its
computation of cos2 to GPUs using PyOpenCL.
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4.6 Other Features

In addition to the functionality described above, QIn-
fer has a wide range of other features that we describe
more briefly here. A complete description can be found
in the provided Users’ Guide (see ancillary files or
docs.qinfer.org).

Plotting and Visualization QInfer provides plot-
ting and visualization support based on matplotlib [59]
and mpltools [60]. In particular, qinfer .SMCUpdater pro-
vides methods for plotting posterior distributions and
covariance matrices. These methods make it straight-
forward to visually diagnose the operation of and re-
sults obtained from particle filtering.

Similarly, the qinfer . tomography module provides sev-
eral functions for producing plots of states and distri-
butions over rebits (qubits restricted to real numbers).
Rebit visualization is in particular useful for demon-
strating the conceptual operation of particle filter–
based tomography in a clear and attractive manner.

Fisher Information Calculation In evaluating es-
timation protocols, it is important to establish a base-
line of how accurately one can estimate a model even
in principle. Similarly, such a baseline can be used to
compare between protocols by informing as to how
much information can be extracted from a proposed
experiment. The Cramér–Rao bound and its Bayesian
analog, the van Trees inequality (a.k.a. the Bayesian
Cramér–Rao bound), formalize this notion in terms of
the Fisher information matrix [61, 62]. For any model
which specifies its derivative in terms of a score, QIn-
fer will calculate each of these bounds, providing use-
ful information about proposed experimental and es-
timation protocols. The qinfer .ScoreMixin class builds on
this by calculating the score of an arbitrary model us-
ing numerical differentiation.

Model Selection and Averaging Statistical infer-
ence does not require asserting a priori the correctness
of a particular model (that is, likelihood function), but
allows a model to be taken as a hypothesis and com-
pared to other models. This is made formal by model
selection. From a Bayesian perspective, the ratio of
the posterior normalizations for two different models
gives a natural and principled model selection crite-
rion, known as the Bayes factor [63]. The Bayes fac-
tor provides a model selection rule that is significantly
more robust to outlying data than conventional hy-
pothesis testing approaches [64]. For example, in quan-
tum applications, the Bayes factor is particularly use-
ful in tomography, and can be used to decide the rank
or dimension of a state [35]. QInfer implements this

criterion as the SMCUpdater.normalization record property,
allowing for model selection and averaging to be per-
formed in a straightforward manner.

Approximate Maximum-Likelihood Estimation
As opposed to the Bayesian approach, one may
also consider maximum likelihood estimation (MLE),
in which a model is estimated as x̂MLE :=
arg max

x
Pr(D|x). MLE can be approximated as the

mean of an artificially tight posterior distribution ob-
tained by performing Bayesian inference with a likeli-
hood function Pr′(D|x) related to the true likelihood
by

Pr′(D|x) = (Pr(D|x))γ (15)

for a quality parameter γ > 1 [65]. Similarly, taking
γ < 1 with appropriate resampling parameters allows
the user to anneal updates [66], avoiding the dangers
posed by strongly multimodal likelihood functions. In
this way, taking γ < 1 is roughly analogous to the use
of “reset rule” techniques employed in other filtering
algorithms [53]. In QInfer, both cases are implemented
by the class qinfer .MLEModel, which decorates another
model in the manner of Section 4.2.

Likelihood-Free Estimation For some models, ex-
plicitly calculating the likelihood function Pr(D|x) is
intractable, but good approaches may exist for draw-
ing new data sets consistent with a hypothesis. This is
the case, for instance, if a quantum simulator is used in
place of a classical algorithm, as recently proposed for
learning in large quantum systems [29]. In the absence
of an explicit likelihood function, Bayesian inference
must be implemented in a likelihood-free manner, us-
ing hypothetical data sets consistent to form a approx-
imate likelihood instead [67]. This introduces an esti-
mation error which can be modeled in QInfer by using
the qinfer .PoisonedModel class discussed in Section 4.4.

Simplified Estimation For the frequency estima-
tion and randomized benchmarking examples de-
scribed in Section 3, QInfer provides functions to
perform estimation using a “standard” updater loop,
making it easy to load data from NumPy-, MATLAB-
or CSV-formatted files.

Jupyter Integration Several QInfer classes, in-
cluding qinfer .Model and qinfer .SMCUpdater, integrate
with Jupyter Notebook to provide additional in-
formation formatted using HTML. Moreover, the
qinfer .IPythonProgressBar class provides a progress bar as
a Jupyter Notebook widget with a QuTiP-compatible
interface, making it easy to report on performance test-
ing progress.
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MATLAB/Julia Interoperability Finally, QIn-
fer functionality is also compatible with MATLAB
2016a and later, and with Julia (using the PyCall. jl pack-
age [68]), enabling integration both with legacy code
and with new developments in scientific computing.

5 Conclusions

In this work, we have presented QInfer, our open-
source library for statistical inference in quantum in-
formation processing. QInfer is useful for a range of
different applications, and can be readily used for cus-
tom problems due to its modular and extensible de-
sign, addressing a pressing need in both quantum in-
formation theory and in experimental practice. Impor-
tantly, our library is also accessible, in part due to the
extensive documentation that we provide (see ancil-
lary files or docs.qinfer.org). In this way, QInfer sup-
ports the goal of reproducible research by providing
open-source tools for data analysis in a clear and un-
derstandable manner.
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A Custom Model Example

In Listing 8, below, we provide an example of a custom subclass of qinfer .FiniteOutcomeModel that implements the
likelihood function

Pr(0|ω1, ω2; t1, t2) = cos2(ω1t1/2) cos2(ω2t2/2) (16)

for model parameters x = (ω1, ω2) and experiment parameters e = (t1, t2). A more efficient implementation of
this model using NumPy vectorization is presented in more detail in the Users’ Guide.

Listing 8: Example of a custom FiniteOutcomeModel subclass implementing the multi-cos likelihood (16).

from q i n f e r import FiniteOutcomeModel
import numpy as np

c l a s s MultiCosModel ( FiniteOutcomeModel ) :
5

@property
def n modelparams ( s e l f ) :

return 2

10 @property
def i s n outcomes cons tant ( s e l f ) :

return True

def n outcomes ( s e l f , expparams ) :
15 return 2

def are models va l id ( s e l f , modelparams ) :
return np . a l l ( np . l o g i c a l a n d ( modelparams > 0 , modelparams <= 1 ) , a x i s =1)

20 @property
def expparams dtype ( s e l f ) :

return [ ( ’ t s ’ , ’ f l o a t ’ , 2 ) ]

def l i k e l i h o o d ( s e l f , outcomes , modelparams , expparams ) :
25 super ( MultiCosModel , s e l f ) . l i k e l i h o o d ( outcomes , modelparams , expparams )

pr0 = np . empty ( ( modelparams . shape [ 0 ] , expparams . shape [ 0 ] ) )

w1, w2 = modelparams . T
t1 , t 2 = expparams [ ’ t s ’ ] . T

30

for idx model in range ( modelparams . shape [ 0 ] ) :
for idx experiment in range ( expparams . shape [ 0 ] ) :

pr0 [ idx model , idx experiment ] = (
np . cos (w1[ idx model ] * t1 [ idx experiment ] / 2) *

35 np . cos (w2[ idx model ] * t2 [ idx experiment ] / 2)
) * * 2

return FiniteOutcomeModel . p r 0 t o l i k e l i h o o d a r r a y ( outcomes , pr0 )

B Resampling

The purpose of this appendix is to offer a brief discussion of resampling for particle filters. In QInfer, the standard
resampler is the one proposed by Liu and West [25]. We begin by motivating the development of resamplers
by explaining the problem of impoverishment in a particle filter. We then describe resamplers by explaining
that their effect is to produce a particle filter that approximates a smoothed version of the underlying probability
distribution. Finally, we explain the Liu–West resampling algorithm.

Particle filters are intended to allow for the approximation of the expectation values of functions, but admit an
ambiguity between using the locations and the weights to do so. Assuming that the particle locations are primarily
responsible for representing the particle filtering approximation, and assuming that we want to approximate the
expectation value of a function that is not pathological in some way, the number of particles then serves as a rea-
sonable proxy for the quality of the particle filter. This follows from exactly the same argument as for Monte Carlo
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integration, as in this case, the particle locations can be seen to directly correspond to samples of an integrand. On
the other hand, if either of these assumptions are violated, one cannot trust the numerical answers obtained using
the particle filter method without an additional argument. Since the weights will in general become less even as
Bayesian inference proceeds, we will rely on resampling to provide us with precisely such an argument.

More precisely, the purpose of resampling is to mitigate against the loss in numerical stability caused by having
a large number of low-weight particles. If a particle has a small weight, we could neglect it from the computation
of an expectation value without introducing a large difference in the result, such that it no longer contributes to
the approximation quality of (5). That is, the particle’s effectiveness at contributing to the stability of the algorithm
decreases as its weight decreases. This observation then motivates using the effective sample size

ness :=
1

∑

k w2
k

(17)

as a criterion to ensure the numerical stability of particle filtering [69].
In the case of roughly equal weights, the effective sample size ness is roughly equal to the actual number of

particles n. If the weights are distributed rather unevenly, however, ness ≪ n. In the latter case, we say that the
particle filter is impoverished. Notably, if a particle filter becomes extremely impoverished, it may not be feasible to
effectively recover numerical stability, such that the minimum observed value of ness serves as a diagnostic criteria
for when the numerical approximations used by particle filtering have failed [39]. For this reason, QInfer will by
default call the resampler when ness falls below half of its initial value, and will warn if ness ≤ 10 is ever observed.

Impoverishment is the result of choosing particle locations according to prior information alone; with near
certainty, the posterior distribution will be tightly centered away from all initial particle locations such that some
re-discretization will be needed to represent the final posterior. The goal of resampling is therefore to modify the
choice of particle locations not based on the interpretation of new data, but rather to ensure that the particles are
concentrated so as to accurately represent the probability distribution of interest. A resampling algorithm is then
any algorithm designed to replace an input particle filter that may be impoverished with a new particle filter that is
not impoverished but approximates the same probability distribution. Since such a procedure cannot exist in full
generality, each resampling procedure works by enforcing that a particular set of invariants remains true before
and after the resampling step.

Returning to the particular case of the Liu–West resampler [25] employed by default in QInfer, we note that the
Liu–West algorithm is particularly simple to understand from the perspective of kernel density estimation [70]. We
will not provide a complete algorithm here; such explicit algorithms can be found many places in the literature,
including Algorithm 2 of Granade [52] and Algorithm 2.5 of Sanders [71]. Rather, we explain that the Liu–West
algorithm acts by preserving the first two moments (the expectation and the variance) of its input distribution.

The Liu–West algorithm starts by using that, as in the celebrated method of kernel density estimation, each
sample from a continuous distribution can be used to infer properties about the neighborhood around that sample,
given moderate assumptions on the smoothness of a distribution. Thus, the particle filter might be used to define
a direct approximation to the true probability distribution by first defining some function K, called a kernel, such
that the estimated distribution

∑

k

wkK (x − xk) (18)

is a good approximation of the true probability distribution. This then leaves open the question of what kernel
function K should be chosen. Owing to its generality, choosing K to be a normal distribution works well under
only mild assumptions, leaving us to choose the variance of the kernel. Specializing to the single-parameter case
for simplicity of notation, we denote Gaussian kernels as K(x; σ2), where σ2 is the variance to be chosen. The
multi-parameter case follows by replacing this variance by a covariance matrix.

The key insight at the core of the Liu–West algorithm is the observation that the posterior distribution will
narrow over time, so that we can choose the variance of the kernel to narrow over time in proportion to the
variance of the distribution being approximated. In particular, let a ∈ [0, 1] be a parameter and let h such that
a2 + h2 = 1. Then choose the kernel to be K(x; h2

V[x]). Since this alone would increase the variance of the
distribution under approximation to 1 + h2, the Liu–West resampler instead draws new particle locations x′ from
the distribution

x′ ∼
∑

k

wkK(x − (axk + (1 − a)E[x]; h2
V[x]). (19)
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This distribution contracts each original particle towards the mean by 1 − a, such that the mean and variance of
the post-resampling distribution are identical to the distribution being approximated.

Importantly, the Liu–West generalizes existing resampling algorithms, such that the bootstrap [21] and assumed
density filtering resamplers [53, 72] are given by a = 1 and a = 0, respectively. We also note that violating the
invariant that V[x] is preserved can allow for some robustness to multimodal distributions and time-dependence
[52]. Finally, a video of the Liu–West resampler applied to Bayesian inference on the model of Listing 8 is available
online [73].
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