
Salable Computing: Pratie and ExperieneVolume 10, Number 3, pp. 253�264. http://www.spe.org ISSN 1895-1767© 2009 SCPEQINNA: A COMPONENT-BASED FRAMEWORK FOR RUNTIME SAFE RESOURCEADAPTATION OF EMBEDDED SYSTEMSLAURE GONNORD∗AND JEAN-PHILIPPE BABAU†Abstrat. Even if hardware improvements have inreased the performane of embedded systems in the last years, resoureproblems are still aute. The persisting problem is the onstantly growing omplexity of systems, whih inrease the need forreusable developement framework and piees of ode. In the ase of PDAs and smartphones, in addition to lassial needs (safety,seurity), developers must deal with quality of servie (QoS) onstraints, suh as resoure management.Qinna was designed to fae with these problems. In this paper, we propose a omplete framework to express ressoure onstraintsduring the developpement proess. We propose a omponent-based arhiteture, whih generi omponents and algorithms, and adeveloppement methodology, to manage QoS issues while developing an embedded software. The obtained software is then able toautomatially adapt its behaviour to the physial resoures, thanks to �degraded modes�. We illustrate the methodology and theuse of Qinna within a ase study.Key words: omponent, software arhiteture, resoure dynami management, ase study.1. Introdution. When faed to the problem of designing handled embedded systems, the developer mustbe aware of the management of limited physial resoures (CPU, Memory).In order to develop multimedia software on suh systems where the quality of the resoure (network, battery)an vary during use, the developer needs tools to:
• easily add/remove funtionality (servies) during ompilation or at runtime;
• adapt omponent funtionality to resoures, namely propose �degraded� modes where resoures are low;
• evaluate the software's performanes: quality of provided servies, onsumption rate for some senarios.In this ontext, omponent-based software engineering appears as a promising solution for the developmentof suh kinds of systems. Indeed it o�ers an easier way to build omplex systems from base omponents ([9℄),and the management of physial resoure an be done by embedding the system alls in high level omponents.The main advantages thus appear to be the re-usability of ode and also the �exibility of suh systems.The Qinna framework ([11, 12, 3℄) was designed to handle the spei�ation and management of resoureonstraints problems during the omponent-based system development. Variability is enoded into disreteimplementation levels and links between them. Quantity of resoure onstraints an also be enoded. Qinnaprovides algorithms to ensure resoure onstraints and dynamially adapt the implementation levels aordingto resoure availability at runtime. The main advantage of the method is then the reusability of the resoureomponents and the generi adaptation algorithms.In this journal paper, we propose a omplete formalization of Qinna framework (algorithms and ompo-nents), and as proof of onept, a ase study onsisting of the development of a remote viewer appliation withthe help of Qinna's implementation in C++. In Setion 2 we reall Qinna's main onepts, as introdued in [11℄and formalized later in [3℄. In Setion 3, we give an overview of Qinna's C++ implementation, and then providethe general implementation steps to develop a resoure-aware appliation with Qinna in Setion 4. Finally weillustrate the whole framework on the viewer ase study (Setion 5).2. Desription of the Qinna framework.2.1. Qinna's main onepts. The framework designed in [11℄ and [12℄, and further formalized in [3℄ hasthe following harateristis:
• Both the appliation piees of ode and the resoure are omponents. The resoure servies are enlosedin omponents like Memory, CPU, Thread.
• The variation of quality of the provided servies are enoded by the notion of implementation level.The ode used to provide the servie is thus di�erent aording to the urrent implementation level.
• The link between the implementation levels is made through an expliit relation between the imple-mentation level of the provided servie and the implementation levels of the servies it requires. Forinstane, the developer an express that a video omponent provides an image with highest qualitywhen it has enough memory and su�ient bandwidth.

∗Université of Lille, LIFL Laure.Gonnord�lifl.fr
†UBO, LISyC, Université Européenne de Bretagne Jean.Philippe.Babau�univ-brest.fr This work has been partially supportedby the REVE projet of the Frenh National Ageny for Researh (ANR)253

254 Laure Gonnord and Jean-Philippe Babau
• All the alls to a �variable funtion� are made through an existing ontrat that is negotiated. Thisnegotiation is made automatially through the Qinna omponents. A ontrat for a servie at someobjetive implementation level is made only if all its requirements an be reserved at the orrespondingimplementation levels and also satisfy some onstraints alled Quality of resoure onstraints (QoR). Ifit not the ase, the negotiation fails.

QoSComponentBroker1

...

QoSDomain

QoSComponentManager1

Manager2

Manager3

Broker2

Broker3ontrat maintenane
funtional partadmission, reservation
QoSComponent C1

gestion part
C3

C2

Fig. 2.1. Arhiteture exampleThese harateristis are implemented through new omponents whih are illustrated in Figure 2.1: toeah appliation omponent (or group of omponents) whih provide one or more variable servie Qinna asso-iates a QoSComponent Ci. The variability of a variable servie is made through the use of a orrespondingimplementation level variable. Then, two new omponents are introdued by Qinna to manage the resoureissues of the instanes of this QoSComponent :
• a QoSComponentBroker whih goal is to realize the admission of a omponent. The Broker deideswhether or not a new instane an be reated, and if a servie all an be performed w.r.t. the quantityof resoure onstraints (QoR).
• a QoSComponentManager whih manages the adaptation for the servies provided by the omponent.It ontains a mapping table whih enode the relationship between the implementation levels of eahof these servies and their requirements.At last, Qinna provides a single omponent named QoSDomain for the whole arhiteture. It manages all theservie requests inside and outside the appliation. The lient of a servie asks the Domain for reservation ofsome implementation level and is eventually returned a ontrat if all onstraints are satis�ed. Then, after eahservie request, the Domain makes an aknowledgment only of the orresponding ontrat is still valid.2.2. Quantity of Resoure onstraints in Qinna. A Quantity of resoure onstraint (QRC) is aquantitative onstraint on a omponent C and the servie (si) it proposes. QRCs are for instane formula onthe total instane of a given omponent type, of the total amount of resoure (memory, CPU) alloated to agiven omponent. They are two types of onstraints, depending on their purpose:
• Component type onstraints (CTC) express properties of omponents of the same type and their pro-vided servies.
• Component instane onstraints (CIC) express properties of a partiular instane of a omponent.The management of these onstraints is automatially done at runtime, if the developer implements themin the following way:
• In the QoSComponent, for eah servie, implement the two funtions: testCIC and updateCIC. Theformer deides whether or not the all to the servie an be performed, and the later updates variablesafter the funtion all. In addition, there must be an initialization of the CICs formulas at the reationof eah instane.
• Similarly, in the QoSComponentBroker, for eah provided servie, implement the two funtions testCTCand updateCTC.Then, Qinna maintains resoure onstraints at runtime through the following proedure:
• When the Broker for C is reated, the parameters used in testCTC are set.
• The reation of an instane of C is made by the Broker i� CTCcompo(C) is true. During the reation,the CIC parameters are set.

Qinna: a omponent-based framework for runtime safe resoure adaptation of embedded systems 255
• The CIC(si) and CTC(si) deision proedures are invoked at eah funtion all. A negative answer toone of these deision proedures will ause the failure of the urrent ontrat. We will detail the notionof ontrat in Setion 2.4.Example The Memory omponent provides only one servie mallo, whih has only one parameter, thenumber of bloks to alloate. It has an integer attribute, memory, whih denotes the global memory size andis set at the reation of eah instane. We also suppose that we have no garbage olletor, so the bloks arealloated only one. Figure 2.2 illustrates the di�erene between type and instane onstraints.

CTC : memory ≤ 1024

CIC : memory ≤ 24CIC : memory ≤ 1000

∑
p
(arg(occp(malloc) ≤ 1000

C
1

C
2

C =Global MemoryFig. 2.2. Type vs Instane onstraints
• CTC for C = Memory: the formula CTCcompo(C) ≡

∑
j memory(Cj) ≤ 1024 expresses that the globalmemory quantity for the whole appliation is 1024 kilobytes. A new instane will not be reated if itsmemory onstant is set to a too big number. Then CTCserv(malloc) ≡

∑
k arg(occk(malloc)) ≤ 1024fores the alls to mallo stop when all the 1024 kilobytes have been alloated.

• CIC for Memory: if we want to alloate some Memory for a partiular (group of) omponent(s), wean express similar properties in one partiular instane (see C1 on the Figure).Expression of resoure onstraints and ode generationQinna also provides a way to desribe the resoure onstraints into a higher-lever language alled qMEDL, avariant of MEDL event logi desribed in [6℄, and whose preise syntax and semantis is desribed in [3℄. Roughlyspeaking, the logi an express boolean formulae on ourenes of events. Atoms are of the form Q ⊲⊳ K, with
K onstant and ⊲⊳∈ {6, =, <, . . .}, and Q is a quantity. The quantity are obtained by the use of auxiliaryvariables and alls to value and time speial funtions: to eah event e (or newC), time(e) and valuek(e) giverespetively the date of the last ourrene of the event and the kth argument of the funtion all when it ours.The Memory onstraint for the whole appliation then an be enoded by N ≤ 1024 where N ounts thetotal amount of mallo's arguments: mallo -> N:=N+value_1(mallo). The translation is then made by theqMEDL2 to C++ translator, and gives the following proedures (the identi�ers have been hanged for lisibility,usedmem is a loal variable to ount the global amount of memory used yet):bool testCIC_mallo(int nbbloks){return (usedmem + nbbloks <= 1024)}bool updateCIC_mallo(int nbbloks){usedmem = usedmem + nbbloks; }2.3. QoS Linking onstraints. Unlike quality of resoure onstraints, linking onstraints express therelationship between omponents, in terms of quality of servie. For instane, the following property is a linkingonstraint: � to provide the getImages at a �good� level of quality, the ImageBuffer omponent requires a�big� amount of memory and a �fast� network�. This relationship between the di�erent QoS of lient and serverservies are alled QoS Linking Servie Constraints (QLSC).Implementation Level To all provided servies that an vary aording to the desired QoS we assoiatean implementation level. This implementation level (IL) enodes whih part of implementation to hoosewhen supplying the servie. These implementation levels are totally ordered for a given servie. As theseimplementation levels are �nitely many, we an restrit ourselves to the ase of positive integers and supposethat implementation level 0 is the �best� level, 1 gives a lesser quality of servie, and so on.We assume that required servies for a given servie doesn't hange aording to the implementation level,that is, the all graph of a given servie is always the same. However, the arguments of the required serviesalls may hange.

256 Laure Gonnord and Jean-Philippe BabauLinking onstraints expression Let us onsider a omponent C whih provides a servie s that requires
r1 and r2 servies. Qinna permits to link the di�erent implementation levels between allers and allees. Therelationship between the di�erent implementation levels an be viewed as a funtion whih assoiates to eahimplementation level of s an implementation level for r1 and for r2:

QLSCs : N −→ N
2

IL 7−→ (IL1, IL2)This funtion is statially enoded by the developer within the appliation. For instane, it an easily beimplemented in the QoSManager through a �mapping� table whose lines enode the tuples of linked implemen-tation levels: (ILs1
, ILr1

, ILr2
). The natural order of the lines of the table is used to determine whih tuple toonsider if the urrent negotiation fails.

linking constraint

r2

r1

s1

ILr1

ILr2

ILs1Fig. 2.3. Implementation levels and linking onstraintsThus, as soon as an implementation level is set for the s1 servie, the implementation levels of all requiredservies (and all the implementation levels in the all tree) are set (Figure 2.3). This has a onsequene notonly on the exeuted ode of all the involved servies (and also internal funtions) but also on the argumentsof the servie alls.Therefore, if a user asks for the servie s1 at some implementation level, the demand may fail due to someresoure onstraint. That's why every demand for a servie must be negotiated and the notion of ontrat willbe aurate to implement a set of a satisfatory implementation levels for (a set of) future alls.Implementation of linking onstraints in Qinna The links between the provided QoS and the QoS ofthe required servies are made through a table whose lines enode the tuples of linked implementation levels:
(ILs, ILr1

, ILr2
). This �mapping� table is enoded in the QoSManager. The natural order of the lines of thetable is used to determine whih tuple to onsider if the urrent negotiation fails.Now we have all the elements to de�ne the notion of ontrat.2.4. Qinna's ontrats. Qinna provides the notion of ontrat to ensure both behavioral onstraints(Type Constraints and Intane Constraints of servies, as desribed in Setion 2.2) and linking onstraints.When a servie all is made at some implementation level, all the subservies implementation level are �xedimpliitly through the linking onstraints. As all the implementation levels for a same servie are ordered, theobjetive is to �nd the best implementation level that is feasible (w.r.t. the behavioral onstraints of all theomponents and servie involved in the all tree).Contrat Negotiation All servie alls in Qinna are made after negotiation. The user (at toplevel) ofthe servie asks for the servie at some interval of �satisfatory� implementation levels. Qinna then is ableto �nd the best implementation level in this interval that respets all the behavioral onstraints (CICs andCTCs of all the servies involved in the all tree). If there is no intersetion between feasible and satisfatoryimplementation levels, no ontrat is built. In the other ase, a ontrat is made for the spei� servie. Aontrat is thus a tuple (id, si, IL, [ILmin, ILmax], imp) denoting respetively its identi�ant number, the referredservie, the urrent implementation level, the interval of satisfatory implementation levels, and the importaneof the ontrat. This last variable is used to sort the list of all urrent ontrats and is used for degradation (seenext paragraph). The importane value is statially set by the developer eah time he asks for a new ontrat.After ontrat initialization, all the servie alls must respet the terms of the ontrat. In the other ase,there will be some renegotiation.Contrat Maintenane and Degradation After eah servie all the deision proedure for behavioralonstraints are updated. After that, a ontrat may not be valid anymore. As all servie alls are madethrough the Brokers by the Domain, the Domain is automatially noti�ed of a ontrat failure. In this ase, the

Qinna: a omponent-based framework for runtime safe resoure adaptation of embedded systems 257Domain tries to degrade the ontrat of least importane (whih may be not the same as the urrent one). Thisdegradation has onsequenes on the resoure and thus an permit other servie alls inside the �rst ontrat.Basially, degrading a ontrat onsists in setting a lesser implementation level among the satisfatory ones,but whih is still feasible. If it is not possible, the ontrat is stopped.It is important to notie that ontrat degradation is e�etive only at toplevel, and thus is performed bythe Domain. It means that there is no degradation of implementation level outside toplevel. That is why weonly speak of ontrat for servie at toplevel.Use of servies Eah all to a servie at toplevel as onsequenes on the ontrat whih has been negoiatedfor him. We suppose that a ontrat is made before the �rst invoation of the desired servie. The veri�ationould automatially be done with Qinna, but is not not yet implemented. All the noti�ations of failures arelogged for the developer.3. Qinna's omponents implementation in C++. We implemented in C++ the Qinna omponentsand algorithms. These omponents are provided through lasses whih we detail in this setion.3.1. Qinna's omponents for the management of servies. QoSComponent The QoSComponentlass provides generi onstrutors and destrutors, and ontains a private struture to save the urrent imple-mentation levels of the omponent provided servie. All QoS omponents will inherit from this lass.QoSBroker The QoSBroker lass ontains a private struture to save the referenes to all the orrespondingomponents it is responsible for. It provides the two funtions Free(QoSComponent* refQ) and Reserve(...).As testCIC and updateCIC funtions signature depends of eah omponent/servie, these funtions will beprovided in eah instane of QoSBroker.QoSManager The QoSManager lass ontains all information for the servie provided by its assoiatedomponent. It provide the following publi funtions:
• bool SetServieInfos(int idserv, QoSComponent *ompo, int nbreq, int nbmap) initializesthe manager for the idserv servie, provided by *ompo, with nbreq required servies and nbmap di�erentimplementation levels. Return true if suessful, false otherwise.
• bool AddLevQoSReq(int idserv, int lv, int irq, int lrq) adds the tuple (lv, irq, lrq) (the lvimplementation level for idserv is linked to the lrq implementation level for irq servie) in the mappingtable for idserv.
• int Reserve(int idserv, int lv) is used for the reservation of the idserv servie at level il. Itreturns the loal number of (sub) ontrat of the Manager or 0 if the reservation has failed (due toresoure onstraints).QoSDomain The QoSDomain lass provides funtions for managing ontrats at toplevel:
• bool AddServie(int servie, int nbRq, int nbMp, QoSManager *qm) adds the servie servicewith nbRq required servies and nbMp implementation levels, with assoiated manager ∗qm.
• int Reserve(QoSComponent *ompo,int ns , int lv, int imp) is used for reservation of the ser-vie ns provided by the omponent ∗compo at level lv and importane imp. it returns the number ofontrat (in domain) if suessful, 0 otherwise.
• bool Free(int id) frees the ontrat number id (of domain).ManagerContrat This lass provides a generi struture for a subontrat whih enodes a tuple of theform < id, lv, ∗rq, v > where id is the ontrat number, lv the urrent level, rq is the omponent that providesthe servie and v is a C++-vetor that enode the levels of the required servies. This lass provides aessfuntions to these variables and a funtion to hange the implementation level.DomainContrat This lass provides a struture for ontrats at toplevel. A Domain ontrat is a tupleof the form < di, i, lv, ∗rq > where di is the global identi�er of the ontrat, ∗rq is the manager assoiated tothe omponent that provides the servie, i is the loal number of subontrat for the manager, and lv is theurrent level of the servie.Remark 1 All servies and ontrats have global identi�ers used in toplevel. However, it is important to notiethat servie and (sub) ontrats have loal identi�ers in their respetive managers.

258 Laure Gonnord and Jean-Philippe Babau3.2. Basi resoure omponents. In the all graph of one servie, leaves are physial resoures (Memory,CPU, Network). As all resoures must be enapsulated inside omponents, we need to enapsulate the basefuntions into QoSComponents. For instane, the Memory omponent must be enoded as a wrapper around themallo funtion, and the assoiated broker basially implements the CIC funtions whih deide if the globalamount of alloated memory is reahed or not.Sometimes, the basi funtions are enapsulated in higher level omponents. For instane, a high levellibrary might provide a DisplayImage funtion whih makes an expliit all to mallo, but this all is hiddenby the use of the library. In this partiular ase, the management of basi resoure funtions an be done intwo di�erent but equivalent ways:
• the reation of a �phantom� Memory omponent whih provides the two servies amallo (for abstratmallo) and afree. Eah time the developer makes a all to an �impliit� resoure funtion (i. e.when the alled funtion needs a signi�ant amount of memory, like DisplayImage), he has to allMemory.amalllo. The Qinna's C++ implementation provides some basi omponents like Memory,Network and CPU and their assoiated brokers.
• the reation of QoSComponent around the library funtion DisplayImagewhih is responsible (throughits broker) for the global amount of �quantity of resoure� used for the DisplayImage funtion.Both solutions need a preise knowledge of the libraries funtions w.r.t the resoure onsumption. Weassume that the developer has this knowledge sine he designs a resoure-aware appliation. In our ase studywe used the �rst solution.4. Methodology to use Qinna. We suppose that in the appliation all resoures, inluding hardwareresoures (Memory, CPU) or software ones (viewer, bu�er), are enoded by omponents. Here are the mainsteps for integrating Qinna into an existing appliation designed in C++:1. Identify the variable servies whih are funtions whose all may fail due to some resoure reasons.They are of two types:

• simple funtions like Memory.mallo whose ode does not vary. They have a unique implementa-tion level.
• �adaptive� funtions whose ode an vary aording to implementation levels.The �rst step is thus to identify the servies whose quality vary and assoiate to eah of this servies aunique key, and if the ode vary, learly identify the variant ode through a ode of the form:swith(implLevel){ase 0 :...}where implLevel is the assoiated (variable) attribute of the host omponent for this servie. We mustidentify whih variable servies are required for eah provided servie, and the relationship between thedi�erent implementation levels.2. Create Qinna omponents. First, ut the soure ode into QoSComponents that an provide oneor more QoSservies. As the QoS negotiation will only be made between QoSComponents of di�erenttypes, this split will have many onsequenes on the QoS management. For eah QoSComponentC(whih inherits from the QoSComponent lass), the designer must enode two lasses: QoSBrokerC andQoSManagerC whih respetively inherit from the QoSBroker and QoSManager generi lasses. For thewhole appliation, the designer will diretly use the QoSDomain generi lass.3. Implement Quality of Resoure onstraints. These onstraints are set in two di�erent ways:
• The type onstraints (CTC) for omponent C implementation is omposed of additional funtionsin QoSBrokerC : initCTC whih is exeuted at the reation of the Broker, and whih sets thedeision proedures parameters ; a testCTC funtion to determine whether a new instane an bereated or not ; an updateCTC to save modi�ations of the resoures after the reation. For eahprovided QoS servie si, we add to new funtions: testCTC(idsi) whih is exeuted before theall of a servie and tells if the servie an be done, and updateCTC(idsi) to be exeuted afterthe all.
• The instane onstraints (CIC) for C are also omposed of three funtions to enode in the

QoSComponentC: setCIC to set the resoures onstants, testCTC(idsi) whih is used to de-

Qinna: a omponent-based framework for runtime safe resoure adaptation of embedded systems 259ide if a servie of identi�ant ids an be alled, and updateCTC(idsi) to update the resoureonstraints after a all to the si funtion.4. Implement the linking onstraints. The links between required servies and provided servie viaimplementation levels are set by the invoation of the SetServie and AddLevQoSReq funtions of themanagers. These funtions will be invoked at toplevel.5. Modify the main �le to initialize Qinna omponents at toplevel. Here are the main steps:
• For eah base resoure (CPU, Memory, . . .)(a) Invoke the onstrutor for the assoiated Broker. The onstrutor's arguments must ontainthe initialization of internal variables for type onstraints (the total amount of memory forexample).(b) Create the assoiated Manager with the Broker as argument.() Register the QoS servies inside the Manager through the use of SetServieInfos funtion.(d) Create QoSComponents instanes via the Broker.reserve(...) funtion. The argumentsan be a ertain amount of resoure used by the omponent.
• For all the other QoSComponents, the required omponents �rst:(a) Create the assoiated Broker and Manager.(b) Set the servies information.() If a servie requires another servie of another omponent, use the funtion Manager.AddReqto link the required manager. Then use Manager.AddLevQoSReq to set the linking onstraints.(d) Create QoSComponent instanes by invoking the orresponding reservation funtion(Broker.Reserve).
• Create the QoSDomain and add the servies that are used at toplevel (Domain.AddServie)
• Reserve servies via the QoSDomain and save the ontrats' numbers.5. Viewer Implementation using Qinna.5.1. Spei�ation. Our ase study is a remote viewer appliation whose high level spei�ation follows:

• The system is omposed of a mobile phone and a remote server. The appliation allows the downloadingand the visualization of remote images via a wireless link.
• The remote diretory is reahed via a ftp onnetion. After onnetion, two buttons �Next� and �Pre-vious� are used to display images one by one. Loally, some images are stored in a bu�er. To providea better quality of servie, some images are downloaded in advane, while the oldest ones are removedfrom the photo memory.
• The appliation must manage di�erent qualities of servies for the resoures: shortage of bandwidthand memory, or disonnetions of the ftp server. When needed it an download images in lower quality(in size or image ompression rate).
• Di�erent storage poliies are possible, and there are many parameters whih an be modi�ed; like thesize of the bu�er, or the number of images that are downloaded eah time. We want to evaluate whihpoliy is the best aording to a given senario.We want to use Qinna for two objetives:
• the maintenane of the appliation with respet to the di�erent qualities of servie,
• the evaluation of the in�uene of the parameters, on the non-funtional behavior (timing performaneand resoure usage).5.2. The funtional part. The funtional part of the viewer is developed with Qt1 (a C++ library whihprovides graphial omponents and implementations of the ftp protool). Figure 5.2 desribes the main partsof the standalone appliation. We hose to make the downloading part via the ftp protool. The wireless partis not enoded.
• The FtpClient lass makes a onnetion to an existing ftp server and has a list of all distant images.It provides a getSome funtion to enable the downloading of many �les at one.
• The ImageBuffer lass is responsible for the management of downloaded �les in a loal diretory. Asthe spei�ation says, this bu�er has a limited size and di�erent poliy for downloading images. Thelass provides the two funtions donext and doprevious whih are asynhronous funtions. A signal

1http://trollteh.om/produts/qt/

260 Laure Gonnord and Jean-Philippe Babau

Fig. 5.1. Sreenshot of the viewer appliation
ImageViewer ImageBuffer

FtpClient

init() next/previous

donext/doprevious

connect
provided required

downloadList

getSomeconnect

Main ImageScreen
displayImage

get

setPixmap

initBuffer

Fig. 5.2. Funtional view of the appliationis thrown if/when the desired image is ready to be displayed. It eventually downloads future images inurrent diretory.
• The ImageViewer lass is a high level omponent to make the interfae between the ftp and bu�erlasses to the graphis omponents.
• The ImageSreen lass is responsible for the display of the image in a graphi omponent namedQPixmap.
• The main lass provides all the graphis omponents for the Graphial User Interfae.5.3. Integration of Qinna. Now that we have the funtional part of the appliation, we add the followingresoure omponents: Memory, and Network whih are QoSComponents that provide variable servies. We onlyfous on these two basi resoures. The Network omponent is only linked to the FtpClient, whereas Memorywill be shared between all omponents. For Memory, the only variable servie is amallo whih an fail if theglobal amount of dediated memory is reahed ; this funtion has only one implementation level. For Network,the provided funtion get an fail if there is too muh ativity on network (notion of bandwidth).Then we follow the above methodology in the partiular ase of our remote viewer.

Qinna: a omponent-based framework for runtime safe resoure adaptation of embedded systems 261
downloadList

setPixmap

Network

ImageScreen

ImageBuffer

FtpClient

initBuffer

connect

connect

ImageGUI

QoSComponent

QoSComponent instance

service with variable quality

provided

required

start

ScreenMemory

BufferMemory

Memory

Thread

thread

get
donext

displayImage

getSomedopreviousget
previousnext. . . amallo amallo

Fig. 5.3. Arhiteture exampleIdenti�ation of the variable servies (step 1)Now as the variable servies for low level omponents have been identi�ed, we list the following adaptiveservies for the funtional part:
• ImageSreen.displayImagevaries among memory, it has three implementation levels whih orrespondto the quality of the displayed image. We add alls to Memory.amallo funtion to simulate the use ofMemory.
• Ftplient.getsome's implementation varies among available memory and the urrent bandwidth ofnetwork. If there is not enough memory or network, it adapts the poliy of the downloads. It has threeimplementation levels. We add alls to Network.bandwidth to simulate the network resoures that areneeded to download �les.
• ImageBuffer.donext/previous varies among available memory: if there is not enough memory theimage is saved with high ompression.Creation of the QoSComponents (step 2)The resoure omponents are QoSComponents. Then, the three omponents ImageSreen, FtpClientand ImageBuffer are QoSComponents whih provide eah one variable servie. Imageviewer and Main areQoSComponents as well. Figure 5.3 represents now the struture of the appliation at this step.For the sake of simpliity, we only share Memory into two parts, a part for ImageBuffer and the other partfor imageBuffer. That means that eah of these omponents have their own amount of memory.Resoure onstraints (steps 3 and 4)The quantity of resoure onstraints we have �xed are lassial ones (bounds for the memory instanes,unique instantiation for the imageSreen omponent, no more than 80 perent of bandwidth for the ftpClient,et). The QLSC are very similar to those desribed in [11℄ for a videogame appliation. Here we show how wehave implemented some of these onstraints in our appliation.
• Quantity of resoure onstraints The imageSreen omponent is responsible for the unique serviedisplay_image (display the image on the graphi video widget). Here are some behavioral onstraintswe implemented for this omponent:� There is only one instane of the omponent one.� The display funtion an only display images with size lesser or equal to 1200 ∗ 800.� There is only one all to the display funtion one.These type onstraints are easily implemented in the assoiated Broker (imageSreenBroker) in thefollowing way: the onstraint �maximum of instane� requires two private attributes nbinstane andnbinstanemax whih are delared and initialized at the reation of the Broker with values 0 and 1.Then the reservation of a new imageSreen by the Broker is done after heking whether or not

nbinstance + 1 ≤ nbinstancemax. If all heks are true, it reserves the instane and inrementsnbinstane.

262 Laure Gonnord and Jean-Philippe BabauThe heking of memory is done by setting the global amount of memory for ImageBuffer andimageBuffer in loal variables whih are set to 0 at the beginning of eah ontrat, and updatedeah time the funtion amallo is alled.These onstraints are rather simple but we an imagine more omplex ones, provided they an beheked with bounded omplexity (this is a onstraint oming from the fat the Qinna omponents willalso be embedded).
• QoS Linking onstraintsTo illustrate the di�erene between quality of resoure onstraints and linking onstraints, we showhere the onstraints for the FtpClient.getSome:� The implementation level 0 orresponds to 3 suessive downloads with the Network.get funtion.The funtion has a unique implementation level but eah all to it is made with 60 as argument,to model the fat it requires 60% of the total bandwidth. These three alls are made through theuse of the Thread.thread with implementation level 0 (quik thread, no ative wait).� The implementation level 1 orresponds to 2 alls to the get funtion with 40% of bandwidth eahtime. These two alls are made through the use of the Thread.thread with implementation level

1 (middle thread, few ative wait).� The implementation level 2 orresponds to 1 all to the get funtion with 20% bandwidth. Thisall is made through the use of the Thread.threadwith implementation level 2 (more ative wait).Thus if the available bandwidth is too low, a negotiation or an existing ontrat will fail beause of theresoure onstraints. The reation of the ontrat may fail beause a thread annot be provided at the desiredimplementation level.Modi�ation of toplevel (step 5) This part is straightforward. The only hoies we have to make arethe relative amount of resoure (Memory, Network) whih are alloated to eah QoSComponents. The testsenario is detailed in setion 5.5.5.4. Some statistis. The viewer is written in 4350 lines of ode, the funtional part taking roughly 1800lines. The other lines are Qinna's generi omponents (1650 lo.), 600 lines of ode for the new omponents(imagesreenBroker, imageSreenManager et.) and 300 lines of ode for the test senarios. The binary is alsomuh bigger 4.7Mbytes versus 2Mbytes without Qinna.Thus Qinna is ostly, but all the supplementary lines of ode do not need to be rewritten, beause:
• Generi Qinna omponents, algorithms, and the basi resoure omponents are provided with Qinna.
• The deision funtions for Quality of servie onstraints ould be automatially generated or be providedas a �library of ommon onstraints�.
• The initialization at toplevel ould be omputed-aided through user-friendly tables.We think that the ost of Qinna in terms of binary ode an be strongly redued by avoiding the existingredundany in our urrent implementation.Moreover, Qinna's implementation an be viewed as a prototype to evaluate the resoure use and the qualityof servie management. After a preliminary phase with the whole implementation used to �nd the best linkingonstraints, we an imagine an optimized ompilation through glue ode whih neither inludes brokers normanagers.5.5. Results. We realized a senario with a new omponent whose only objetive is to use the basi re-soures Memory and Network. This TestC omponent provides only the foobar funtion at toplevel. This fun-tion has two implementation levels, and requires two funtions: SreenMemory.amallo and Network.get. Thewhole appliation provides four funtions at toplevel: TestC.foobar, ImageViewer.donext (and doprevious)and ImageSreen.displayimage. Three ontrats are negotiated, in the following importane order: foobar�rst, then donext and doprevious, then displayimage. We made the three ontrats and download and visual-ize images at the highest qualities, but at some point the foobar funtion auses the degradation of the ontratfor displayimage, and the images are then shown in a degraded version, like the Ei�el tower on Figure 5.1.The gap between the harateristis of the ontrat and the e�etive resoure usage an be make throughthe use of log funtions provided by the Qinna implementation. Figure 5.4 shows for instane the memory usagefor another played senario.

Qinna: a omponent-based framework for runtime safe resoure adaptation of embedded systems 263

Fig. 5.4. Memory use6. Related works. Other works also propose to use a development framework to handle resoure vari-ability. In [10℄ and [6℄, the author propose a model-based framework for developping self-adaptative programs.This approah uses high-level spei�ations based on temporal logi formula to generate program monitors. Atruntime, these monitors ath the system events and ativates the reon�guration. This approah is similar tous exept that it mainly deals with hybrid automata and there is no notion of ontrat degradation nor generialgorithm for negoiation.The expression and maintenane of resoure onstraints is also onsidered as a fundamental issue, so muhwork deals with this subjet. In [5℄, the author use a probabilisti approah to evaluate the resoure onsumedby the program paths. Some other works in the domain of veri�ation try to prove onformane of one programto some spei�ation: in [7℄, for instane, the authors use synhronous observers to enode and verify logialtime ontrats. At last, the QML language ([2℄, [1℄) is now well used to express QoS properties. This lastapproah is omplementary to our one sine it provides a language whih ould be ompiled into soure odefor QoSComponents or Brokers.7. Conlusion and future work. In this paper, we have presented a ase study using the softwarearhiteture Qinna whih was designed to handle resoure onstraints during the development and the exeutionof embedded programs. We foused mainly on the development part, by giving a general development sheme touse Qinna, and illustrating it on a ase study. The resulting appliation is a resoure-aware appliation, whoseresoures onstraints are guaranteed at runtime, and whose adaptation to variability of servie is automatiallydone by the Qinna omponents, through the notion of ontrats. At last, we are able to evaluate at runtimethe threshold between ontratualised resoure and the real amount of resoure e�etively used.This work has shown the e�etivity of Qinna with respet to the programming e�ort, and the performaneof the modi�ed appliation.Future work inlude some improvements of Qinna's C++ omponents, mainly on data strutures, in orderto derease the global ost of Qinna in terms of binary size, and more spei� and detailed resoure omponents,in order to better �t to the platform spei�ations. Integrating Qinna into a model driven development tools,suh as Gaspard ([8℄), an be a way to improve this e�ieny.From the theoretial point of view, there is also a need for a way to manage the linking onstraints. Thedeveloper has still to link the implementation levels of required and provided servies, and the order between allimplementations levels is �xed by him as well. The tuning of all these links an only be done though simulationyet. We think that some methods like ontroller synthesis ([4℄) ould be used to disover the/a optimal orderand linking relations w.r.t. some onstraints suh as �minimal variability�, �best reativity� et..Finally, some theoretial work would be neessary in order to use Qinna as a predition tool, and providean e�ient ompilation into �glue ode�. REFERENCES[1℄ S. Frølund and J. Koistinen, Qml : A language for quality of servie spei�ation, teh. rep., HPL-98-10, 1998.[2℄ , Quality of servies spei�ation in distributed objet systems design, in Proeedings of the 4th onferene on USENIXConferene on Objet-Oriented Tehnologies and Systems (COOTS), Berkeley, CA, USA, 1998, USENIX Assoiation.

264 Laure Gonnord and Jean-Philippe Babau[3℄ L. Gonnord and J.-P. Babau, Quantity of Resoure Properties Expression and Runtime Assurane for Embedded Systems,in ACS/IEEE International Conferene on Computer Systems and Appliations, AICCSA'09, Rabbat, Moroo, May2009, pp. 428�435.[4℄ F. M. K. Altisen, A. Clodi and E. Rutten, Using ontroller synthesis to build property-enforing layers, in EuropeanSymposium on Programming (ESOP), April 2003.[5℄ H. Koziolek and V. Firus, Parametri Performane Contrats: Non-Markovian Loop Modelling and an ExperimentalEvaluation, in Formal Foundations of Embedded Software and Component-Based Software Arhitetures (FESCA), Ele-tronial Notes in Computer Siene, Vienna, Austria, 2006.[6℄ I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, Runtime assurane based on formal spei�ations,in Proeedings of the International Conferene on Parallel and Distributed Proessing Tehniques and Appliations(IPDPS'99), 1999.[7℄ F. Maraninhi and L. Morel, Logial-time ontrats for reative embedded omponents, in 30th EUROMICRO Confereneon Component-Based Software Engineering Trak, ECBSE'04, Rennes, Frane, Aug. 2004.[8℄ I.-R. Quadri, S. Meftali, and J.-L. Dekeyser, An mde approah for implementing partial dynami reon�guration infpgas, in Proeedings of the 16th International Conferene on IP-Based System-on-hip, Grenoble, Frane, 2007.[9℄ M. Sparling, Lessons learned through six years of omponent-based development, Commun. ACM, 43 (2000).[10℄ L. Tan, Model-based self-monitoring embedded systems with temporal logi spei�ations, in Proeedings of the 20thIEEE/ACM International Conferene on Automated Software Engineering (ASE'05), 2005.[11℄ J.-C. Tournier, Qinna: une arhiteture à base de omposants pour la gestion de la qualité de servie dans les systèmesembarqués mobiles, PhD thesis, INSA-Lyon, 2005.[12℄ J.-C. Tournier, V. Olive, and J.-P. Babau, Towards a dynami management of QoS onstraints in embedded systems,in Workshop QoSCBSE, in onjuntion with ADA'03, Toulouse, Frane, June 2003.Edited by: Janusz ZalewskiReeived: September 30, 2009Aepted: Otober 19, 2009

