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QMC DESIGNS: OPTIMAL ORDER QUASI MONTE CARLO

INTEGRATION SCHEMES ON THE SPHERE

J. S. BRAUCHART, E. B. SAFF, I. H. SLOAN, AND R. S. WOMERSLEY

Abstract. We study equal weight numerical integration, or Quasi Monte
Carlo (QMC) rules, for functions in a Sobolev space Hs(Sd) with smooth-
ness parameter s > d/2 defined over the unit sphere Sd in Rd+1. Focusing on
N-point configurations that achieve optimal order QMC error bounds (as is
the case for efficient spherical designs), we are led to introduce the concept of
QMC designs: these are sequences of N-point configurations XN on Sd such
that the worst-case error satisfies

sup
f∈H

s(Sd),
‖f‖Hs≤1

∣∣∣∣∣
1

N

∑
x∈XN

f(x)−
∫
Sd

f(x) dσd(x)

∣∣∣∣∣ = O
(
N−s/d

)
, N → ∞,

with an implied constant that depends on the Hs(Sd)-norm, but is independent
of N . Here σd is the normalized surface measure on Sd.

We provide methods for generation and numerical testing of QMC designs.
An essential tool is an expression for the worst-case error in terms of a repro-

ducing kernel for the space Hs(Sd) with s > d/2. As a consequence of this
and a recent result of Bondarenko et al. on the existence of spherical designs
with appropriate number of points, we show that minimizers of the N-point
energy for this kernel form a sequence of QMC designs for Hs(Sd). Further-
more, without appealing to the Bondarenko et al. result, we prove that point
sets that maximize the sum of suitable powers of the Euclidean distance be-
tween pairs of points form a sequence of QMC designs for Hs(Sd) with s in
the interval (d/2, d/2 + 1). For such spaces there exist reproducing kernels
with simple closed forms that are useful for numerical testing of optimal order
Quasi Monte Carlo integration.

Numerical experiments suggest that many familiar sequences of point sets
on the sphere (equal area points, spiral points, minimal [Coulomb or loga-
rithmic] energy points, and Fekete points) are QMC designs for appropriate
values of s. For comparison purposes we show that configurations of random
points that are independently and uniformly distributed on the sphere do not
constitute QMC designs for any s > d/2.

If (XN ) is a sequence of QMC designs for Hs(Sd), we prove that it is also

a sequence of QMC designs for Hs′ (Sd) for all s′ ∈ (d/2, s). This leads to the
question of determining the supremum of such s (here called the QMC strength
of the sequence), for which we provide estimates based on computations for
the aforementioned sequences.
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1. Introduction

In this paper we introduce a new notion for sequences of finite point sets on
the unit sphere S

d in the Euclidean space R
d+1, d ≥ 2, namely that of sequences

of QMC designs. These are sequences that emulate spherical designs in that they
provide optimal order equal weight numerical integration (or Quasi Monte Carlo)
rules for certain Sobolev spaces of functions over the unit sphere S

d.
A spherical t-design, a concept introduced in the groundbreaking paper [20] by

Delsarte, Goethals and Seidel, is a finite subset XN ⊂ S
d with the characterizing

property that an equal weight integration rule with node set XN integrates exactly
all polynomials P with degree ≤ t; that is,

(1)
1

N

∑
x∈XN

P (x) =

∫
Sd

P (x) dσd(x), degP ≤ t.

Here N = |XN | is the cardinality of XN , or the number of points of the spherical
design, while the integral is with respect to the normalized surface measure σd on
S
d, and the polynomials of degree ≤ t are the restrictions to S

d of the polynomials
of degree ≤ t on R

d+1.
Sequences of spherical designs have a known fast-convergence property in Sobolev

spaces. (See Section 2.3 below for the definition of the Sobolev space H
s(Sd).) This

property, stated in the following theorem, was first proved for the particular case
s = 3/2 and d = 2 in [25], then extended to all s > 1 for d = 2 in [26], and finally
extended to all s > d/2 and all d ≥ 2 in [16]. For the extension to Besov spaces,
see [23]. (The results in those papers were proved for all positive-weight integration
rules with an appropriate degree of polynomial accuracy in relation to the number
of points, but here we restrict our attention to equal weight rules.)

Theorem 1. Given s > d/2, there exists C(s, d) > 0 depending on the H
s(Sd)-

norm such that for every N-point spherical t-design XN on S
d it holds that

(2) sup
f∈H

s(Sd),
‖f‖Hs≤1

∣∣∣∣∣ 1

N

∑
x∈XN

f(x) −
∫
Sd

f(x) dσd(x)

∣∣∣∣∣ ≤ C(s, d)

ts
.

Note that the constant C(s, d) in this theorem does not depend on t or on N ,
or on the particular spherical design XN . Note too that the condition s > d/2 is a
natural one, since by the Sobolev embedding theorem this is the condition needed
for Hs(Sd) to be continuously embedded in the space of continuous functions C(Sd).

The relation between N and t in a spherical design is not fixed, but there are
known lower bounds on N (see (7) below) that tell us that N is at least of order
td, and a recent result [11] of Bondarenko et al. (see Theorem 8 below) asserts that
given t there always exists a spherical design with N � td. Here we write an � bn
to mean that there exist positive constants c1 and c2 independent of n such that
c1an ≤ bn ≤ c2an for all n.

Motivated by these facts and the belief that the only interesting sequences of
spherical designs are those with N � td, we now define the notion of a sequence of
QMC designs.

Definition 2. Given s > d/2, a sequence (XN ) of N -point configurations on S
d

with N → ∞ is said to be a sequence of QMC designs for H
s(Sd) if there exists

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QMC DESIGNS: OPTIMAL ORDER QUASI MONTE CARLO INTEGRATION 2823

c(s, d) > 0, independent of N , such that

(3) sup
f∈H

s(Sd),
‖f‖Hs≤1

∣∣∣∣∣ 1

N

∑
x∈XN

f(x) −
∫
Sd

f(x) dσd(x)

∣∣∣∣∣ ≤ c(s, d)

Ns/d
.

In this definition XN need not be defined for all natural numbers N : it is suf-
ficient that XN exists for an infinite subset of the natural numbers. By a special
case of theorems in [24] and [22], the exponent of N in (3) cannot be larger than
s/d:

Theorem 3. Given s > d/2, there exists c′(s, d) > 0 depending on the Hs(Sd)-norm
such that for any N-point configuration on S

d, we have

(4)
c′(s, d)

Ns/d
≤ sup

f∈H
s(Sd),

‖f‖Hs≤1

∣∣∣∣∣ 1

N

∑
x∈XN

f(x) −
∫
Sd

f(x) dσd(x)

∣∣∣∣∣.
The following theorem, established in Section 9 by appealing to results of Bran-

dolini et al. [13], asserts that if (XN ) is a sequence of QMC designs for H
s(Sd),

then it is also true for all coarser Sobolev spaces H
s′(Sd) with d/2 < s′ < s.

Theorem 4. Given s > d/2, let (XN ) be a sequence of QMC designs for H
s(Sd).

Then (XN ) is a sequence of QMC designs for H
s′(Sd), for all s′ with d/2 < s′ ≤ s.

It follows from this theorem that for every sequence of QMC designs (XN ) there
is some number s∗ such that (XN ) is a sequence of QMC designs for all s satisfying
d/2 < s < s∗, and is not a QMC design for s > s∗; that is,

(5) s∗:=s∗[(XN )]:= sup
{
s : (XN ) is a sequence of QMC designs for H

s(Sd)
}
.

We call s∗ the QMC strength of (XN ). If s∗ = +∞, we say the sequence of QMC
designs is “generic”.

Definition 5. A sequence of N -point configurations (XN ) on S
d is said to be a

sequence of generic QMC designs if (3) holds for all s > d/2.

As in Definition 2, XN need not be defined for all natural numbers N . Obviously,
every sequence of spherical t-designs with N � td as t → ∞ is a sequence of generic
QMC designs for H

s(Sd), for all s > d/2. We noted already the existence of a
sequence of spherical t-designs with N � td. A simple application of that result
yields the following.

Theorem 6. For N = 1, 2, 3, . . . there exist N-point spherical t-designs YN on S
d

with t � N1/d. These form a sequence of generic QMC designs.

For fixed s > d/2, there exist many sequences of QMC designs for H
s(Sd) that

are not composed of spherical designs. Indeed, if K is a reproducing kernel for the
Sobolev space H

s(Sd), s > d/2, we prove in Section 3 (by appealing to Theorem 6)
that N -point configurations (N ≥ 2) minimizing the K-energy functional

N∑
j=1

N∑
i=1

K(xj ,xi)

form a sequence of QMC designs for this H
s(Sd); cf. Theorem 12. For s in the

interval (d/2, d/2 + 1) we show in Section 5 that, for C a suitably large constant,
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C − |x − y|2s−d is a reproducing kernel for H
s(Sd), and therefore the maximizers

of the generalized sum of distances

(6)

N∑
j=1

N∑
i=1

|xj − xi|2s−d
,

N = 2, 3, 4, . . . , form a sequence of QMC designs for this H
s(Sd).

Numerical evidence presented later in this paper suggests that many familiar se-
quences of point sets on S

2 (such as minimal [Coulomb or logarithmic] energy points,
generalized spiral points, equal area points, and Fekete points) form sequences of
QMC designs for H

s(S2) for a range of values s that depends on the particular
sequence. Some estimates of the QMC design strength s∗ of these sequences are
given in Section 8.

The fact that the QMC design property (3) is not satisfied by all sequences of
point sets follows from a probabilistic argument.

Theorem 7. Given s > d/2, the expected value of the squared worst-case error
satisfies √√√√√√E

[
sup

f∈H
s(Sd),

‖f‖Hs≤1

∣∣∣∣∣ 1

N

N∑
j=1

f(xj) −
∫
Sd

f(x) dσd(x)

∣∣∣∣∣
2]

=
b(s, d)

N1/2

for some explicit constant b(s, d) > 0, where the points x1, . . . ,xN are independently
and uniformly distributed on S

d.

Theorem 7 tells us that randomly chosen point sets give a slower rate of con-
vergence than N−s/d for all s > d/2, and hence do not form QMC designs. (See
Section 7 for a more complete discussion.) However, if we compartmentalize the
random point selection process with respect to a partition of the sphere into N
equal area regions with small diameter, then we do get an average worst-case error
rate appropriate to QMC designs for s ∈ (d/2, d/2 + 1); see Theorem 21. On the
other hand, such randomized equal area point configurations will, on average, not
form a sequence of QMC designs for s > d/2 + 1; see Theorem 22.

We shall also discuss “low-discrepancy sequences” on the sphere and estimates
for their worst-case error when used for QMC rules. It turns out that the point sets
of such a sequence almost satisfy the QMC design property for s ∈ (d/2, (d+1)/2),
except for a power of logN .

To summarize, the key features and results in this paper are the following: we
introduce (in Definition 2) the concept of QMC design sequences for H

s(Sd); we
show (in Theorem 4) that the QMC design property automatically holds for all
smaller s′ ∈ (d/2, s) (that is, for coarser Sobolev spaces), leading to the definition
of the QMC strength s∗ of a sequence of point sets (XN ); we characterize (in The-
orem 12) QMC designs as minimizers of a quadratic functional of a reproducing
kernel, which turns into a maximization problem for the sum of all pairwise dis-
tances if the reproducing kernel is the generalized distance kernel (Theorem 14);
observe (in Section 6) that low-discrepancy sequences on the sphere almost (up to a
power of logN) satisfy the QMC design property for s ∈ (d/2, d/2 + 1); and on the
other hand, we show (in Theorem 7) that randomly selected point sets in general do
not yield QMC design sequences for any s > d/2; however, randomized equal-area
points do so on average for s ∈ (d/2, d/2 + 1) (Theorem 21).
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The structure of the paper is as follows: The next section provides background for
spherical designs and for Sobolev spaces H

s(Sd) and their associated reproducing
kernels. Section 3 summarizes the reproducing kernel Hilbert space approach to
worst-case error, and gives the application to QMC design sequences. Examples of
Sobolev spaces and associated kernels are given in Sections 4 and 5, with particular
emphasis on configurations maximizing sums of generalized distances. Section 6
concerns low-discrepancy sequences on the sphere and their quadrature properties.
In Section 7 we analyze the quadrature error for randomly chosen points on the
sphere and, in Section 8, we provide numerical results for worst-case errors and
quadrature errors for certain familiar sequences of configurations. Most of the
formal proofs are given in Section 9.

2. Background

2.1. Spherical designs. In the literature on spherical designs, and again in this
paper, the relation between N and t in (1) plays an important role. It is known
(Seymour and Zaslavsky [35]) that a spherical t-design always exists if N is suffi-
ciently large, but that result says nothing about the size of N . In the important
paper [20], lower bounds of exact order td were established; namely,

(7) N ≥

⎧⎪⎪⎨⎪⎪⎩
(
d + t/2

d

)
+

(
d + t/2 − 1

d

)
for t even,

2

(
d + 	t/2


d

)
for t odd,

but it is known (see Bannai and Damerell [5, 6]) that these lower bounds can be
achieved only for a few small values of t. Korevaar and Meyers [28] conjectured that
there always exist spherical t-designs with N � td points. Bondarenko, Radchenko
and Viazovska [11] have resolved this long-standing open problem, by establishing
the following result.

Theorem 8. For d ≥ 2, there exists a constant cd depending only on d such that
for every N ≥ cd t

d there exists a spherical t-design on S
d with N points.

In fact, a more precise result seems possible, since in [18] interval analysis is used
to establish rigorously the existence of spherical designs on S

2 with N = (t + 1)2

for all values of t ≤ 100.

2.2. Spherical harmonics. Recall that σd denotes the normalized (Hausdorff)
surface measure on the unit sphere S

d in R
d+1. The [non-normalized] surface area

of Sd is denoted by ωd. For future reference, we record the following facts:

(8) γd:=
1

d

ωd−1

ωd
,

ωd−1

ωd
=

Γ((d + 1)/2)√
πΓ(d/2)

∼ d1/2√
2π

as d → ∞.

Here, Γ(z) is the gamma function and f(x) ∼ g(x) as x → c means f(x)/g(x) → 1
as x → c. The asymptotic relation in (8) follows from (see [1, Eq. 5.11.12])

Γ(z + a)

Γ(z + b)
∼ za−b as z → ∞ in the sector | arg z| ≤ π − δ < π.

We make use of the rising factorial, that is, the Pochhammer symbol defined by

(9) (a)0 = 1, (a)n+1 = (a)n(n + a), n = 0, 1, . . . ,

which can be written in terms of the gamma function as (a)n = Γ(n + a)/Γ(a).
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We denote, as usual, by {Y�,k : k = 1, . . . , Z(d, �)} a collection of L2-orthonormal
real spherical harmonics (homogeneous harmonic polynomials in d + 1 variables
restricted to S

d) of exact degree �, where

(10) Z(d, �) = (2� + d− 1)
Γ(� + d− 1)

Γ(d) Γ(� + 1)
∼ 2

Γ(d)
�d−1 as � → ∞.

It is well known that the Y�,k satisfy the following identity known as the addition
theorem:

(11)

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y) = Z(d, �)P
(d)
� (x · y), x,y ∈ S

d,

where P
(d)
� is the normalized Gegenbauer (or Legendre) polynomial, orthogonal on

the interval [−1, 1] with respect to the weight function (1−t2)d/2−1, and normalized

by P
(d)
� (1) = 1. Each spherical harmonic Y�,k of exact degree � is an eigenfunction

of the negative Laplace-Beltrami operator −Δ∗
d for S

d with eigenvalue

(12) λ�:=� (� + d− 1) .

(For further details see, e.g., [31].)
The family {Y�,k : k = 1, . . . , Z(d, �); � = 0, 1, . . . } forms a complete orthonor-

mal (with respect to σd) system for the Hilbert space L2(S
d) of square-integrable

functions on S
d endowed with the usual inner product and induced norm

(f, g)L2(Sd):=

∫
Sd

f(x)g(x) dσd(x), ‖f‖L2(Sd):=
√

(f, f)L2(Sd).

We shall denote by Pt(S
d) the space of all spherical polynomials of degree ≤ t

(i.e., the restriction to S
d of all polynomials in d + 1 real variables of degree ≤ t).

The space Pt(S
d) coincides with the span of all spherical harmonics up to (and

including) degree t, and its dimension is Z(d + 1, t).
We make frequent use of the following simple application of the addition theorem.

Lemma 9. Let d ≥ 2. For all integers � ≥ 0 and all choices of points x1, . . . ,xN ∈
S
d it holds that

Φ�(x1, . . . ,xN ):=
1

N2

N∑
j=1

N∑
i=1

Z(d, �)P
(d)
� (xj · xi) =

Z(d,�)∑
k=1

∣∣∣∣∣∣ 1

N

N∑
j=1

Y�,k(xj)

∣∣∣∣∣∣
2

≥ 0.

2.3. Sobolev spaces. The Sobolev space H
s(Sd) may be defined for s ≥ 0 as the

set of all functions f ∈ L2(S
d) whose Laplace-Fourier coefficients

f̂�,k := (f, Y�,k)L2(Sd) =

∫
Sd

f(x)Y�,k(x) dσd(x)

satisfy

(13)

∞∑
�=0

Z(d,�)∑
k=1

(1 + λ�)
s
∣∣∣f̂�,k∣∣∣2 < ∞,

where the λ�’s are given in (12). On setting s = 0, we recover H
0(Sd) = L2(S

d).
The norm in H

s(Sd) may of course be defined as the square root of the expression
on the left-hand side of the last inequality. In this paper we shall, however, take
advantage of the freedom to define equivalent Sobolev space norms. Let s > d/2
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be fixed and suppose we are given a sequence of positive real numbers (a
(s)
� )�≥0

satisfying

(14) a
(s)
� � (1 + λ�)

−s � (1 + �)
−2s

.

Then we can define a norm in H
s(Sd) by

(15) ‖f‖Hs :=

⎛⎝ ∞∑
�=0

Z(d,�)∑
k=1

1

a
(s)
�

∣∣∣f̂�,k∣∣∣2
⎞⎠1/2

.

The norm therefore depends on the particular choice of the sequence (a
(s)
� )�≥0, but

for notational simplicity we shall generally not show this dependence explicitly.
Clearly, Definitions 2 and 5 are not tied to a particular Sobolev norm ‖ · ‖Hs , since
a change to an equivalent Sobolev norm merely leads to a change of the constant
c(s, d). The corresponding inner product in the Sobolev space is

(16) (f, g)Hs :=

∞∑
�=0

Z(d,�)∑
k=1

1

a
(s)
�

f̂�,k ĝ�,k.

It is well known that H
s(Sd) ⊂ H

s′(Sd) whenever s > s′, and that H
s(Sd) is

continuously embedded in the space of k-times continuously differentiable functions
Ck(Sd) if s > k + d/2 (e.g. [22]).

2.4. Sobolev spaces as reproducing kernel Hilbert spaces. Since the point-
evaluation functional is bounded in H

s(Sd) whenever s > d/2, the Riesz represen-
tation theorem assures the existence of a reproducing kernel K(s)(x,y), which can
be written as

(17) K(s)(x,y) =

∞∑
�=0

a
(s)
� Z(d, �)P

(d)
� (x · y) =

∞∑
�=0

Z(d,�)∑
k=1

a
(s)
� Y�,k(x)Y�,k(y),

where the positive coefficients a
(s)
� satisfy (14). It is easily verified that the above

expression has the reproducing kernel properties:

K(s)(·,x) ∈ H
s(Sd), x ∈ S

d, (f,K(s)(·,x))Hs = f(x), x ∈ S
d, f ∈ H

s(Sd).

The kernel is a zonal function; that is, K(s)(x,y) depends only on the inner product
x · y. We write for simplicity K(s)(x · y):=K(s)(x,y). For the particular choice

a
(s)
� = (1 + λ�)

−s, we use the notation

(18) K(s)
can(x,y):=

∞∑
�=0

(1 + λ�)
−sZ(d, �)P

(d)
� (x · y),

which we call the canonical kernel for H
s(Sd).

Sections 4 and 5 contain explicit examples of Sobolev spaces and associated
kernels.

3. Numerical integration and worst-case error

In this section we first summarize some well-known essential facts pertaining to
the reproducing kernel Hilbert space approach to the worst-case error analysis of
numerical integration by QMC rules on the sphere. Theorems 12 and 13 then give
the consequences for QMC design sequences.
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2828 J. S. BRAUCHART, E. B. SAFF, I. H. SLOAN, AND R. S. WOMERSLEY

3.1. Worst-case error. Our results are based on an explicit expression for the
“worst-case error” that occurs on the left-hand side of (3):

Definition 10. For a Banach space B of continuous functions on S
d with norm

‖ · ‖B, the worst-case error for the integration rule Q[XN ] with node set XN =
{x1, . . . ,xN} approximating the integral I(f), with Q[XN ](f) and I(f) defined by

Q[XN ](f):=
1

N

N∑
j=1

f(xj), I(f):=

∫
Sd

f(x) dσd(x),

is given by

wce(Q[XN ];B):= sup
{∣∣Q[XN ](f) − I(f)

∣∣ : f ∈ B, ‖f‖B ≤ 1
}
.

As a trivial consequence of the definition we have the following error bound for
an arbitrary function f ∈ B:

(19) |Q[XN ](f) − I(f)| ≤ wce(Q[XN ];B) ‖f‖B .

Because of the similarity of (19) to the celebrated Koksma-Hlawka inequality, which
involves the “star-discrepancy” of the node set, the worst-case error is sometimes
referred to as a generalized discrepancy; see for example [19]. In this paper, how-
ever, we shall generally reserve the word “discrepancy” for quantities that have a
geometric interpretation.

3.2. Worst-case error in a reproducing kernel Hilbert space. For most re-
producing kernel Hilbert spaces there is a computable expression for the worst-case
error, as shown by the following standard argument. With K the kernel of a repro-
ducing kernel Hilbert space H with inner product (·, ·)H , the reproducing kernel
property f(x) = (f,K(·,x))H allows us to write

Q[XN ](f) − I(f) = (f,R[XN ])H , f ∈ H,

where R[XN ] ∈ H is the “representer” of the error, given by

R[XN ](x):=
1

N

N∑
j=1

K(x,xj) − IyK(x, ·),

assuming that the integration functional f �→ I(f) is bounded on H. Here IyK
means the integral functional I applied to the second variable in K (and later IxK
will mean the integral functional applied to the first variable).∗

∗The norm ‖R[XN ]‖H is also known as the g-diaphony of XN with g = IyK(x, ·); see [3].
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It follows that

[wce(Q[XN ];H)]
2
:= sup

{∣∣Q[XN ](f) − I(f)
∣∣2 : f ∈ H, ‖f‖H ≤ 1

}
= (R[XN ],R[XN ])H = ‖R[XN ]‖2H

=
1

N2

N∑
j=1

N∑
i=1

K(xj ,xi) −
2

N

N∑
j=1

IyK(xj , ·) + IxIyK(·, ·).

3.3. Worst-case error in H
s(Sd). Now consider the special case of the reproduc-

ing kernel Hilbert space H
s(Sd) with s > d/2, and with reproducing kernel given

by (17). For this case it is easily seen that

IyK
(s)(x, ·) = a

(s)
0 ,

from which it follows that

[
wce(Q[XN ];Hs(Sd))

]2
=

⎡⎣ 1

N2

N∑
j=1

N∑
i=1

K(s)(xj ,xi)

⎤⎦− a
(s)
0

=
1

N2

N∑
j=1

N∑
i=1

K(s)(xj · xi),

where K(s) : [−1, 1] → R is defined by

(20) K(s)(x · y):=

∞∑
�=1

a
(s)
� Z(d, �)P

(d)
� (x · y).

The use of the calligraphic symbol here and for subsequent kernels indicates that
the sum runs from � = 1 rather than � = 0. Note that the kernels depend on s

through the sequence (a
(s)
� )�≥0.

We summarize these observations in the following proposition.

Proposition 11. For s > d/2, let H
s(Sd) be the Hilbert space with norm (15),

where the sequence (a
(s)
� )�≥0 satisfies (14), and let K(s) be given by (20). Then, for

a rule Q[XN ] with node set XN = {x1, . . . ,xN} ⊂ S
d,

wce(Q[XN ];Hs(Sd)) =

⎛⎝ 1

N2

N∑
j=1

N∑
i=1

K(s)(xj · xi)

⎞⎠1/2

=

⎛⎜⎝ ∞∑
�=1

Z(d,�)∑
k=1

a
(s)
�

∣∣∣∣∣∣ 1

N

N∑
j=1

Y�,k(xj)

∣∣∣∣∣∣
2
⎞⎟⎠

1/2

.

(21)

From the first expression in (21), the squared worst-case error for the rule Q[XN ]
is the normalized K(s)-energy functional evaluated at the node set XN . This ex-
pression can be computationally useful when the kernel K(s) is available in closed
form.

By comparison with a sequence satisfying Theorem 6, we deduce that the mini-
mizers of (21) yield a sequence of QMC designs for H

s(Sd).
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Theorem 12. Under the assumptions of Proposition 11, if X∗
N , N = 2, 3, 4, . . . ,

minimizes the energy functional

N∑
j=1

N∑
i=1

K(s)(xj · xi),

then there exists c(s, d) > 0 depending on the H
s(Sd)-norm such that for all N ≥ 2,

wce(Q[X∗
N ];Hs(Sd)) ≤ c(s, d)

Ns/d
.

Consequently, (X∗
N ) is a sequence of QMC designs for H

s(Sd).

The next result says, in essence, that the computed worst-case errors in H
s(Sd)

of a given sequence of QMC designs for H
s′(Sd), where d/2 < s′ ≤ s, will always

show a rate of decay at least O(N−s′/d) and at most O(N−s/d).

Theorem 13. Under the assumptions of Proposition 11 for H
s(Sd) and H

s′(Sd),

if (XN ) is a sequence of QMC designs for H
s′(Sd), then

(22) wce(Q[XN ];Hs(Sd)) ≤ c(s, s′, d)

Ns′/d
, d/2 < s′ < s,

where c(s, s′, d) > 0 depends on the norms for H
s(Sd) and H

s′(Sd), but is indepen-
dent of N .

This result follows from the last expression in (21), since it implies that, with

respect to the canonical kernels (18) for H
s(Sd) and H

s′(Sd), there holds for any
N -point configuration XN ,

(23) wce(Q[XN ];Hs(Sd)) < wce(Q[XN ];Hs′(Sd)), d/2 < s′ < s.

We shall exploit Theorem 13 in Section 8 to determine empirical values of the
supremum s∗ in (5) for a number of putative sequences of QMC designs.

4. Cui and Freeden kernel

For S
2, Cui and Freeden [19] studied the kernel

(24) KCF(x,y):=1+

∞∑
�=1

1

�(� + 1)
P�(x·y) = 2−2 log

(
1+

√
1 − x · y

2

)
, x,y ∈ S

2.

It was observed in [36] that this is a reproducing kernel for H3/2(S2) as can be seen
from the above Laplace-Fourier series expansion in terms of Legendre polynomials;
cf. Section 2. Since the constant term in the series expansion (24) is 1, Proposi-
tion 11 asserts that the corresponding worst-case error for H

3/2(S2) equipped with
this kernel is

wce(Q[XN ];H3/2(S2)) =

⎛⎝1 − 2

N2

N∑
j=1

N∑
i=1

log
(
1 +

√
1 − xj · xi

2

)⎞⎠1/2

.

The right-hand side, up to a constant factor, is known as the Cui and Freeden
(CF) discrepancy of XN . Note that by Theorem 12, sequences of N-point con-
figurations that minimize the CF discrepancy are sequences of QMC designs for
H

3/2(S2). This fact can also be seen without appealing to results for spherical de-
signs by applying the independently derived Theorem 14 in the next section and by
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using the equivalence of norms.† In [19] this discrepancy has been used to test for
uniformity of a sequence of N -point configurations. Furthermore, the CF discrep-
ancy was used in [36] for analyzing quadrature properties of so-called extremal or
Fekete points (these are sets of (t+1)2 points on S

2 that maximize the determinant
of the interpolation matrix for polynomials of degree t). Numerical data in [36]
suggested that for H

3/2(S2), the CF discrepancy for spherical t-designs obtained
using Fekete points as starting points, decays like O(t−3/2); this in turn led to the
discovery of Theorem 1.

5. Generalized distance kernel

In the following we make use of the identity

|x− y|2 = 2 − 2x · y, x,y ∈ S
d.

Reproducing kernels for H
s(Sd) for s > d/2 can be constructed utilizing pow-

ers of distances, provided the power 2s − d is not an even integer. Indeed, it is
known (cf., e.g., [27]) that the signed power of the distance, with sign (−1)L+1 with
L:=L(s):=	s− d/2
, has the following Laplace-Fourier expansion: for x,y ∈ S

d,

(25) (−1)L+1 |x− y|2s−d
= (−1)L+1Vd−2s(S

d) +

∞∑
�=1

α
(s)
� Z(d, �)P

(d)
� (x · y),

where

Vd−2s(S
d):=

∫
Sd

∫
Sd

|x− y|2s−d dσd(x) dσd(y) = 22s−1Γ((d + 1)/2) Γ(s)√
π Γ(d/2 + s)

,

α
(s)
� :=Vd−2s(S

d)
(−1)L+1(d/2 − s)�

(d/2 + s)�
, � ≥ 1.

(26)

From these formulas one can verify that all the coefficients α
(s)
� are positive for

� ≥ L + 1 and alternate in sign for � ≤ L. Furthermore, the α
(s)
� ’s decay with

the rate required for coefficients in the Laplace-Fourier expansion of a reproducing
kernel for H

s(Sd) as can be seen from the asymptotic expansion

α
(s)
� ∼ 22s−1 Γ((d + 1)/2) Γ(s)√

π[(−1)L+1 Γ(d/2 − s)]
�−2s as � → ∞.

Thus, by modifying if necessary some of the early coefficients, one can derive a
reproducing kernel for H

s(Sd) for s > d/2 and 2s − d not an even integer‡ (cf.
Section 2.4).

Case I. For d/2 < s < d/2 + 1 (in which case, L(s) = 0), only the constant term
in (25) is negative and thus by adding any constant larger than Vd−2s(S

d), say
2Vd−2s(S

d), we obtain the following reproducing kernel for H
s(Sd) which we call

the “generalized distance” kernel:

(27) K
(s)
gd (x,y):=2Vd−2s(S

d) − |x− y|2s−d , x,y ∈ S
d.

In particular, for s = (d + 1)/2 we get the “distance kernel” for H
(d+1)/2(Sd):

(28) Kdist(x,y):=K
((d+1)/2)
gd (x,y) = 2V−1(S

d) − |x− y| , x,y ∈ S
d,

†An even more direct proof can be given by applying [32, Theorem 2.2].
‡In the case of 2s − d is an even integer, the expansion (25) terminates after finitely many

terms and so the α
(s)
� ’s do not satisfy the appropriate asymptotic behavior (14) for Hs(Sd).
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which for d = 2 is equivalent to the Cui and Freeden kernel in the sense that there
exist positive constants c and C such that cKdist(x,y) ≤ KCF(x,y) ≤ C Kdist(x,y)
for all x,y ∈ S

2.

With respect to the K
(s)
gd kernel, the worst-case error for d/2 < s < d/2 + 1 is,

from Proposition 11, given by

(29) wce(Q[XN ];Hs(Sd)) =

⎛⎝Vd−2s(S
d) − 1

N2

N∑
j=1

N∑
i=1

|xj − xi|2s−d

⎞⎠1/2

.

According to Theorem 12, for d/2 < s < d/2 + 1, minimizing the right-hand side
above, or equivalently, maximizing the sum of generalized distances, yields QMC
designs for H

s(Sd). This fact can also be established without appealing to any
properties of spherical designs (and hence is independent of Theorem 8). Indeed,
Wagner [40], extending a result of Stolarsky [38], showed that for d/2 < s < d/2+1
there exists a sequence of N -point configurations {x∗

1,N , . . . ,x∗
N,N} and a positive

constant ηs,d such that

(30) Vd−2s(S
d) − 1

N2

N∑
j=1

N∑
i=1

∣∣x∗
j,N − x∗

i,N

∣∣2s−d ≤ ηs,d N
−2s/d, N ≥ 2.

(This fact also follows immediately from Theorem 21 below dealing with randomized
equal area points on S

d.) Consequently, we have provided an independent proof of
the following result.

Theorem 14. Given s ∈ (d/2, d/2 + 1), a sequence of N-point sets X∗
N that max-

imize the generalized sum of Euclidean distances (6) is a sequence of QMC designs
for H

s(Sd).

We remark that for s > d/2 + 1, N -point configurations on S
d with maximum

generalized sum of distances (without further restrictions) will have a limit distri-
bution that is concentrated in two opposite points on S

d (Björck [10, Remark 1
following Theorem 7]) and, clearly, do not lead to QMC designs.

Case II. For s > d/2 + 1 and L as defined as above (so that d/2 + L < s <
d/2 + L + 1), the representation (25) gives rise to a reproducing kernel for H

s(Sd)
of the form

(31) K
(s)
gd (x,y):=

(
1 − (−1)L+1

)
Vd−2s(S

d) + QL(x · y) + (−1)L+1 |x− y|2s−d
,

x,y ∈ S
d, where QL is a polynomial of degree L ≥ 1,

(32) QL(x · y):=

L∑
�=1

(
(−1)L+1−� − 1

)
α
(s)
� Z(d, �)P

(d)
� (x · y), x,y ∈ S

d,

that simply changes the signs of the negative coefficients α
(s)
� , � ≥ 1, in (25). As a

consequence of Theorem 12, we obtain the following.
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Theorem 15. Given s ∈ (d/2 + L, d/2 +L+ 1), where L is a positive integer, the
sequences of N-point sets X∗

N that minimize the worst-case error

(33) wce(Q[XN ];Hs(Sd)) =

(
1

N2

N∑
j=1

N∑
i=1

[
QL(xj · xi) + (−1)L+1 |xj − xi|2s−d

]

− (−1)L+1Vd−2s(S
d)

)1/2

,

form a sequence of QMC designs for H
s(Sd).

For fixed L ≥ 1, one can avoid the introduction of the QL-energy term in
the worst-case error formula above by restricting attention to node sets XN,L =
{x1,L, . . . ,xN,L} that are spherical L-designs; i.e., satisfy

(34)
N∑
j=1

Y�,k(xj,L) = 0, 1 ≤ � ≤ L, 1 ≤ k ≤ Z(d, �).

For such sequences the worst-case error formula reduces to[
wce(Q[XN,L];Hs(Sd))

]2
=

1

N2

N∑
j=1

N∑
i=1

(−1)L+1 |xj,L − xi,L|2s−d − (−1)L+1Vd−2s(S
d).

Thus, spherical L-design configurations that minimize

N∑
j=1

N∑
i=1

(−1)L+1 |xj,L − xi,L|2s−d , N ≥ cd L
d,

yield sequences of QMC designs for Hs(Sd) whenever 2s− d is not an even integer.
Note that for even 2s − d = 2L = 2, 4, . . . , the expansion (25) terminates and

is a polynomial of degree L in x · y. In such a case the radial (signed) generalized
distance (−1)L+1|x−y|2L log |x−y| can be used to define a reproducing kernel for
H

2L(Sd). This approach is explored in [17].

6. Uniform distribution and low-discrepancy sequences on the sphere

Uniform distribution. An infinite sequence (XN ) of N -point configurations on
S
d is asymptotically uniformly distributed on S

d if for every f ∈ C(Sd) it holds that

(35) Q[XN ](f) →
∫
Sd

f(x) dσd(x) as N → ∞.

For a sequence (XN ) of QMC designs for H
s(Sd), s > d/2, it follows from (19)

and (14) that (35) is satisfied for any polynomial on S
d and hence for all f ∈ C(Sd),

since the polynomials are dense in C(Sd).

Proposition 16. Given s > d/2, a sequence of QMC designs for Hs(Sd) is asymp-
totically uniformly distributed on S

d.

Asymptotic uniformity of point set sequences is a relatively weak property: Even
if we restrict our attention to f ∈ H

s(Sd) for all s, f non-constant, it is possible
to construct asymptotically uniformly distributed sequences of node sets so that
the convergence of the quadrature error is as slow as one likes. (Without loss of
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generality, we can restrict attention to smooth functions f whose integral over S
d

is zero. One can then assign too many points to regions where f is positive and
too few where it is negative, correcting the imbalance as N → ∞ as slowly as one
wishes.)

Low-discrepancy sequences. Unlike the situation for the unit cube, on the
sphere S

d there is no single Koksma-Hlawka inequality (cf., e.g., [21]), as evidenced
by the many competing Koksma-Hlawka-like inequalities proposed in the literature
(e.g. [19], [14]). The notion of worst-case error (Definition 10) provides a way
to bound the error of numerical integration for sufficiently smooth functions f ;
see (19).

The Sobolev space H
(d+1)/2(Sd) with (28) as reproducing kernel is special in the

sense that the worst-case error wce(Q[XN ];H(d+1)/2(Sd)) of a QMC rule with node
set XN = {x1, . . . ,xN} has an interpretation as the spherical cap L2-discrepancy
of XN , defined by

(36) DC
L2

(XN ):=

{∫ π

0

∫
Sd

∣∣∣∣ |XN ∩ C(x; θ)|
N

− σd(C(x; θ))

∣∣∣∣2 dσd(x) sin θ d θ

}1/2

,

where C(z; θ):={y ∈ S
d : y · z ≥ cos θ} denotes a spherical cap. Indeed, Stolarsky’s

invariance principle [38] asserts that

(37)

⎛⎝V−1(S
d) − 1

N2

N∑
j=1

N∑
i=1

|xj − xi|

⎞⎠1/2

=
1

√
γd

DC
L2

(XN ),

where V−1(S
d) is given in (26) and γd is given in (8). Recalling equation (29), we

recognize that the left-hand side above is the worst-case error for H(d+1)/2(Sd) with
kernel Kdist(x · y) (cf. (28)).§ As a consequence of (37) and (29) for s = (d+ 1)/2,
we obtain the following corollary to Theorem 14.

Corollary 17. Minimizers of the spherical cap L2-discrepancy form a sequence of
QMC designs for H

(d+1)/2(Sd).

A related concept is that of the spherical cap L∞-discrepancy of an N -point set
XN on S

d, defined by

(38) DC
L∞(XN ):= sup

{∣∣∣∣ |XN ∩ C|
N

− σd(C)

∣∣∣∣ : C spherical cap in S
d

}
.

Note that DC
L2

(XN ) ≤
√

2DC
L∞

(XN ). We shall establish in Section 9 the following.

Proposition 18. Under the assumptions of Proposition 11, given s ≥ (d + 1)/2,
every N-point configuration on S

d satisfies

(39) wce(Q[XN ];Hs(Sd)) ≤ cs,d D
C
L∞(XN ),

where cs,d > 0 depends on the H
s(Sd)-norm, but is independent of N .

Thus, node sets with small spherical cap discrepancy are of some interest with re-
gard to numerical integration. We remark that a sequence (XN ) of N -point config-
urations on S

d is asymptotically uniformly distributed if and only if DC
L∞

(XN ) → 0
as N → ∞ (see, e.g., [21]).

§This connection was proved in [15].
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Beck [8] proved that there is a positive number c1 such that for any N -point set
ZN on S

d there exists a spherical cap CN ⊂ S
d such that

c1
N [(d+1)/2]/d

<

∣∣∣∣ |ZN ∩ CN |
N

− σd(CN )

∣∣∣∣
and, by employing a probabilistic argument, that there exist c2 > 0 and N -point
sets Z∗

N on S
d such that

DC
L∞(Z∗

N ) < c2

√
logN

N [(d+1)/2]/d
.

This motivates the following definition.

Definition 19. A sequence (ZN ) of N -point configurations on S
d is said to be a

low-discrepancy sequence¶ if there exists a positive number βd, independent of N ,
such that for all ZN ,

DC
L∞(ZN ) ≤ βd

√
logN

N [(d+1)/2]/d
.

Let (ZN ) be a low-discrepancy sequence on S
d. Using (39) and Theorem 3, we

see that for each s ≥ (d + 1)/2,

β1(s, d)

Ns/d
≤ wce(Q[ZN ];Hs(Sd)) ≤ cs,d D

C
L∞(ZN ) ≤ β2(s, d)

√
logN

N [(d+1)/2]/d
.

On the other hand, if wce(Q[ZN ];Hs(Sd)) < 1, we have by Lemma 23 of Section 9
(with s replaced by (d + 1)/2 and s′ replaced by s) that, for each s < (d + 1)/2,

(40)
β1(s, d)

Ns/d
≤ wce(Q[ZN ];Hs(Sd)) ≤ β3(s, d)

(logN)s/(d+1)

Ns/d
.

From (40) we see that for every s ∈ (d/2, (d+1)/2), low-discrepancy sequences on S
d

have almost optimal order of the worst-case error for Hs(Sd), except for a power of
logN . This leads to the following natural question: Do low-discrepancy sequences
on S

d form sequences of QMC designs for H
s(Sd) when s ∈ (d/2, (d + 1)/2)?

We remark that, to the authors’ knowledge no explicit constructions of low-
discrepancy configurations on S

d are known, in contrast to the situation for the
unit cube. ‖

7. QMC designs are better than average

As we show in this section, Theorem 7 is a consequence of a more general result
dealing with the average value of the N -point energy defined by a positive definite
kernel on the sphere. Given a sequence (a�)�≥1 with a� ≥ 0 and

∑∞
�=1 a�Z(d, �)

convergent, we set for x,y ∈ S
d

(41) A(x · y):=A(x,y) =
∞∑
�=1

a�

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y) =
∞∑
�=1

a�Z(d, �)P
(d)
� (x · y).

¶This terminology is short for low spherical cap L∞-discrepancy sequence.
‖In [2] it is proved that the spherical cap discrepancy of so-called spherical digital nets and

spherical Fibonacci points is bounded by CN−1/2 (for some explicit C), the same rate as for
random points.
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Then A is a positive definite kernel on S
d in the sense of Schoenberg [34]; indeed,

from the addition theorem, for all N -point configurations XN = {x1, . . . ,xN} ⊂ S
d

and all real numbers α1, . . . , αN ,

N∑
j=1

N∑
i=1

αj A(xj · xi)αi =
∞∑
�=1

a�

Z(d,�)∑
k=1

∣∣∣∣∣∣
N∑
j=1

αjY�,k(xj)

∣∣∣∣∣∣
2

≥ 0.

Consequently, the normalized N -point energy of this kernel, defined by

(42) A[XN ]:=
1

N2

N∑
j=1

N∑
i=1

A(xj · xi), XN = {x1, . . . ,xN} ⊂ S
d,

satisfies A[XN ] ≥ 0.
We are interested in the expected value of the energy (42) for N random points

that are chosen independently and identically distributed with respect to the uni-
form measure on S

d; namely

EA[XN ]:=

∫
Sd

· · ·
∫
Sd

A[XN ] dσd(x1) · · ·dσd(xN ),

which is also known as the spherical average of A[XN ] over all N -point sets XN ⊂S
d.

A straightforward computation yields the following result (see Section 9).

Theorem 20. Given the kernel A as in (41),

(43) EA[XN ] =
A(1)

N
.

Remark. Theorem 20 generalizes the result [37, Theorem 6].

We now apply this result to the positive definite kernel K(s) associated with the
reproducing kernel K(s) as given in (17) for Hs(Sd) with s > d/2. By Proposition 11,
we have

K(s)[XN ] =
1

N2

N∑
j=1

N∑
i=1

K(s)(xj · xi) =
[
wce(Q[XN ];Hs(Sd))

]2
,

and hence by Theorem 20 we obtain that the expected value of the squared worst-
case error is given by K(s)(1)/N , from which Theorem 7 follows. Consequently,
sequences of randomly chosen points on the sphere do not generate QMC designs
for s > d/2.

If, instead of choosing points randomly over the whole sphere, we stratify our
approach by requiring that the N points be randomly chosen from N different equal
area subsets of Sd having small diameter, then on average we will obtain a sequence
of QMC designs for H

s(Sd) whenever s ∈ (d/2, d/2 + 1). In the formal statement
of this result we denote by

diamA:= sup
{
|x− y| : x,y ∈ A

}
the diameter of the set A.

Theorem 21. Let (DN ) be a sequence of partitions of Sd into N equal area sub-
sets Dj,N , j = 1, . . . , N , such that diamDj,N ≤ c/N1/d, where c is a positive
constant independent of j and N . Let XN = {x1,N , . . . ,xN,N}, where xj,N is
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chosen randomly from Dj,N with respect to uniform measure on Dj,N . Then, for
d/2 < s < d/2 + 1,

(44)
β′

Ns/d
≤
√
E
[
{wce(Q[XN ];Hs(Sd))}2

]
≤ β

Ns/d
,

where β′ > 0 and β > 0 depend on the H
s(Sd)-norm, but are independent of N ,

and β > 0 also depends on (DN ).

We remark that such a sequence of partitions always exists; see [9, 12, 30, 32].
However, as the next result shows, the stratification strategy does not lead, on

average, to QMC designs for H
s(Sd) with s > d/2 + 1.

Theorem 22. Let (DN ) and XN be as in Theorem 21. Then for s > d/2+1, with
2s− d not an even integer,∗∗√

E
[
{wce(Q[XN ];Hs(Sd))}2

]
≥ β

N (d/2+1)/d
,

where β > 0 depends on the H
s(Sd)-norm and (DN ), but is independent of N .

Other concepts of randomness can also be considered. Armentano, Beltrán, and
Shub [4] study point configurations on S

2 that are derived from the zeros of random
polynomials. This will be a topic of future research.

8. Numerical experiments

8.1. Point sets. Many different sequences of point sets on the sphere have been
introduced in the literature. We consider the following point sets XN :

• Pseudo-random points, uniformly distributed on the sphere.
• Equal area points based on an algorithm given in [32].
• Fekete points which maximize the determinant for polynomial interpolation

[36].
• Coulomb energy points, which minimize

N∑
j=1

N∑
i=1

1

|xj − xi|
.

• Log energy points, which minimize

N∑
j=1

N∑
i=1

log
1

|xj − xi|
.

• Generalized spiral points (cf. [7, 32]), with spherical coordinates (θj , φj)
given by

zj = 1 − 2j − 1

N
, θj = cos−1(zj), φj = 1.8

√
Nθj mod 2π, j = 1, . . . , N.

• Distance points, which maximize

N∑
j=1

N∑
i=1

|xj − xi| .

• Spherical t-designs with N = �(t + 1)2/2� + 1 points.

∗∗A similar result for 2s − d an even integer can be obtained using an appropriate kernel as
discussed in Section 5.
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All the point sets that are characterized by optimizing a criterion are faced with
the difficulty of many local optima. Thus, for larger values of N , these point sets
have objective values near, but not necessarily equal to, the global optimum.

QMC designs for Hs
(
S
2
)
, for every s > 1 (s not an integer), could be calculated

by optimizing the expression (33) in terms of the generalized distance |xj −xi|2s−2

(including the low order polynomial QL or by imposing the additional constraints
that the point set is an L-design), as discussed in Section 5. We restrict attention
to the point sets listed above, which are available from the website [41]. Here the
criterion (33) is used to generate points only for the case s = 3/2 (maximizing
distance sums). In all cases, except the last, the number of points N was taken to
be a perfect square.

8.2. Worst-case error. The worst-case errors in H
s
(
S
2
)

for s = 3/2 are illus-
trated in Figure 1. For all point sets, the worst-case error with s = 3/2 is calcu-
lated using (29) and the distance kernel. Apart from the random points (which
are not QMC designs, see Theorem 7) all the point sets have a worst-case error for
s = 3/2 that seems to decay like N−3/4, implying that they are all QMC designs
for s = 3/2.

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Number of points N

 

 

Random

1.18 N −0.52

Fekete

0.90 N −0.75

Equal area

0.93 N −0.75

Coulomb energy

0.90 N −0.75

Log energy

0.90 N −0.75

Generalized spiral

0.91 N
 −0.75

Distance

0.90 N −0.75

Spherical design

0.91 N
 −0.75

Figure 1. Worst-case error for H
s(S2) and s = 3/2
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−3
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10
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10
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Number of points N

 

 

Random

10.22 N −0.52

Fekete

0.35 N −0.79

Equal area

4.09 N −0.95

Coulomb energy

0.29 N −1.01

Log energy

1.29 N −1.48

Generalized spiral

4.82 N
 −1.53

Distance

7.00 N −2.00

Spherical design

18.49 N
 −2.31

Figure 2. Worst-case error for H
s(S2) and s = 4.5

Spherical designs with N = O(t2) are QMC designs for H
s
(
S
2
)

and all s > 1.
From Section 5 and Theorem 14, the distance points are provably QMC designs for
s = 1.5. The rate of decay for equal area points fits well with Theorem 21, which
established that randomized equal area points are also QMC designs for 1 < s < 2.
Moreover, from Theorem 22, randomized equal area points cannot do better than
this. Other than the distance points, it has yet to be established rigorously that the
non-random point sets are QMC designs for s = 1.5. It is rather curious that, for
the non-random sequences, the computed worst-case errors in Figure 1 essentially
lie on the same curve.

Figure 2 plots the worst-case errors for s = 4.5 and estimates the rate of decay
by finding a least squares fit of the form αN−β for 10 ≤ N ≤ 104 (except for the
spherical designs which use 10 ≤ N ≤ 5 × 103). For all point sequences the worst-
case error with s = 4.5 is calculated using the generalized distance kernel and (33)
(for which L = 3). As expected from Theorem 7, for random points, the worst-case
error still decays like N−1/2.

All the point sets, except for the spherical designs, exhibit varying rates of decay
slower than O(N−s/2) = O(N−2.25), indicating that their effectiveness for equal
weight numerical integration on H

s(S2) when s ≥ 4.5 is less than optimal; cf.
Theorem 13.
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0.28 N −0.51

Fekete

0.03 N
 −0.90
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0.24 N
 −0.96
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0.04 N −1.17

Log energy

0.47 N −1.68

Generalized spiral

0.68 N −1.71

Distance

3.23 N −2.14

Spherical design

Figure 3. Numerical integration errors for the Franke function

8.3. Integrating a smooth function. One expects from the error bound (19)
that a putative sequence (XN ) of QMC designs for H

s(S2), s > 1, will play out its
full strength when tested with a smooth test function. Some caution is needed in
the choice of this function in order to avoid having an integrand that is accidentally
too easy. Our choice is the Franke function for the sphere [33] defined by

f (x, y, z):=0.75 exp(−(9x− 2)2/4 − (9y − 2)2/4 − (9z − 2)2/4)

+ 0.75 exp(−(9x + 1)2/49 − (9y + 1)/10 − (9z + 1)/10)

+ 0.5 exp(−(9x− 7)2/4 − (9y − 3)2/4 − (9z − 5)2/4)

− 0.2 exp(−(9x− 4)2 − (9y − 7)2 − (9z − 5)2), (x, y, z)T ∈ S
2,

which is in C∞(S2) and for which∫
S2

f(x)dσ2(x) = 0.5328652500843890 . . . .

As f ∈ H
s(S2) for all s > 1, the integration error for a particular sequence (XN ) of

QMC designs with s∗ given by (5), must decay at least as fast as O
(
N−s∗/2+ε

)
for

any ε > 0. In Figure 3, the faster than algebraic decay of the numerical integration
error for spherical designs is apparent.
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Table 1. Estimates of s∗ for d = 2

Point set s∗

Fekete 1.5
Equal area 2
Coulomb energy 2
Log energy 3
Generalized spiral 3
Distance 4
Spherical designs ∞

8.4. Estimating s∗. For a given sequence (XN ), the QMC strength s∗, defined by
(5), is estimated by calculating the worst-case error for H

s
(
S
2
)

for some collection
of test values s > d/2. Any such test value s for which the numerically found
convergence rate is not optimal gives an upper bound on s∗ (cf. Theorems 4 and
13). Similarly, if the error for the Franke function is decaying approximately like
N−s̄/2, then that point set can only be a QMC design for s ≤ s̄.

Some conjectured values of s∗ are given in Table 1, based on the results in
Figure 2, similar experiments with different values of s, and the results in Figure 3.
For example, the equal area points have an estimated rate of decay N−0.95 for the
worst-case error with s = 4.5 in Figure 2, while the error decays like N−0.96 for the
Franke function in Figure 3, leading us to conjecture that s∗ ≈ 2.

Determining the precise value of s∗ is very much an open question.

9. Proofs

Throughout this proof section we use the shortened notation QN for a QMC rule
Q[XN ] defined by a node set XN = {x1, . . . ,xN} ⊂ S

d.

9.1. Proofs of Section 1 results. The proof of Theorem 4 requires the following
lemma.

Lemma 23. Given s > d/2, if wce(QN ;Hs(Sd)) < 1, then

(45) wce(QN ;Hs′(Sd)) < c(d, s, s′)
[
wce(QN ;Hs(Sd))

]s′/s
, d/2 < s′ < s,

where c(d, s, s′) > 0 depends on the norms for H
s(Sd) and H

s′(Sd), but is indepen-
dent of N .

Proof. Relation (45) follows from Theorem 3.1 in Brandolini et al. [13]. For the
sake of completeness we give here a proof of (45) along the lines of the proof
of Theorem 3.1 tailored to our needs and specifically to the case of spheres S

d.

Throughout this proof we use the canonical kernel K
(s)
can.

Writing 1/(1 + λ�)
s′ in terms of a Laplace transform (cf. [1, Eq. 5.9.1]),

1

(1 + λ�)s
′ =

1

Γ(s′)

∫ ∞

0

e−(1+λ�)τ τ s
′−1 d τ,

and applying Proposition 11, we obtain for all d/2 < s′ ≤ s,

(46)
[
wce(QN ;Hs′(Sd))

]2
=

1

Γ(s′)

∫ ∞

0

τ s
′−1e−τg(τ ) d τ.
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Here

g(τ ):=g(τ ;x1, . . . ,xN ):=
∞∑
�=1

e−λ�τ

Z(d,�)∑
k=1

∣∣∣∣∣∣ 1

N

N∑
j=1

Y�,k(xj)

∣∣∣∣∣∣
2

=
1

N2

N∑
j=1

N∑
i=1

H(τ,xj · xi),

where calligraphic H denotes the heat kernel with the constant term removed:

H(τ,x,y):=
∞∑
�=0

e−λ�τ

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y)

=
∞∑
�=0

e−λ�τ Z(d, �)P
(d)
� (x · y),x,y ∈ S

d ,

which is the fundamental solution to the heat equation ∂u/∂τ + Δ∗
d u = 0 on

R+ × S
d. Interchanging integration and summation in (46) is justified, because the

heat kernel is uniformly continuous on [ε,∞) × S
d × S

d for ε > 0.
Let d/2 < s′ < s and set ε:=[wce(QN ;Hs(Sd))]2/s. (Then ε < 1 by assumption.)

We split the right-hand side of (46) into three parts and use the following estimates:
(i) For “large values” of τ ,

1

Γ(s′)

∫ ∞

1

τ s
′−1e−τg(τ ) d τ <

1

Γ(s′)

∫ ∞

1

τ s−1e−τg(τ ) d τ

≤ Γ(s)

Γ(s′)

1

Γ(s)

∫ ∞

0

τ s−1e−τg(τ ) d τ

=
Γ(s)

Γ(s′)
εs <

Γ(s)

Γ(s′)
εs

′
,

where we used (46) with s′ replaced by s.
(ii) For “medium values” of τ ,

1

Γ(s′)

∫ 1

ε/2

τ s
′−1e−τg(τ ) d τ =

1

Γ(s′)

∫ 1

ε/2

τ s−1τ s
′−se−τg(τ ) d τ

≤ (ε/2)s
′−s

Γ(s′)

∫ 1

ε/2

τ s−1e−τg(τ ) d τ

< (ε/2)s
′−s Γ(s)

Γ(s′)

1

Γ(s)

∫ ∞

0

τ s−1e−τg(τ ) d τ

= 2s−s′ Γ(s)

Γ(s′)
εs

′−sεs

= 2s−s′ Γ(s)

Γ(s′)
εs

′
.

(iii) For “small values” of τ , we appeal to the small time Gaussian estimate on
the heat kernel (cf. [39]); that is, if 0 < τ < ε/2, then for some c > 0,

τd/2H(τ,x,y) ≤ c εd/2H(ε,x,y),
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which in turn implies, on the assumption that g(τ ) is uniformly bounded on [0, 1),

τd/2g(τ ) =
1

N2

N∑
j=1

N∑
i=1

τd/2H(τ,xj,xi) − τd/2 ≤ c εd/2 (g(ε) + 1) ≤ c′′′εd/2.

Postponing the proof of the uniform boundedness, it then follows that

1

Γ(s′)

∫ ε/2

0

τ s
′−1e−τg(τ ) d τ =

1

Γ(s′)

∫ ε/2

0

τ s
′−d/2−1e−τ td/2g(τ ) d τ

≤ c′′′

Γ(s′)
εd/2

∫ ε/2

0

τ s
′−d/2−1e−τ d τ

≤ c′′′

Γ(s′)
εd/2

∫ ε/2

0

τ s
′−d/2−1 d τ =

c′′′

Γ(s′)

εs
′

s′ − d/2
.

From (i), (ii) and (iii) we get the required estimate[
wce(QN ;Hs′(Sd))

]2
≤
(

Γ(s)

Γ(s′)
+ 2s−s′ Γ(s)

Γ(s′)
+

c′′′

Γ(s′)

1

s′ − d/2

)
εs

′
.

≤ c′′′′
[
wce(QN ;Hs(Sd))

]2s′/s
.

It remains to prove uniform boundedness of g(τ ) for 0 ≤ τ < 1 (we use (19) and
the fact that

∫
Sd

H(τ,x,xk) dσd(x) = 0):

0 < g(τ ) =
1

N

N∑
j=1

1

N

N∑
i=1

H(τ,xj,xi) ≤ wce(QN ;Hs(Sd))

∥∥∥∥∥∥ 1

N

N∑
j=1

H(τ, ·,xj)

∥∥∥∥∥∥
Hs

= wce(QN ;Hs(Sd))

∥∥∥∥∥∥
∞∑
�=1

Z(d,�)∑
k=1

e−λ� τ

⎛⎝ 1

N

N∑
j=1

Y�,k(xj)

⎞⎠Y�,k(·)

∥∥∥∥∥∥
Hs

= wce(QN ;Hs(Sd))

⎡⎢⎣ ∞∑
�=1

Z(d,�)∑
k=1

(1 + λ�)
s
e−2λ�τ

∣∣∣∣∣∣ 1

N

N∑
j=1

Y�,k(xj)

∣∣∣∣∣∣
2
⎤⎥⎦
1/2

≤ wce(QN ;Hs(Sd)) sup
�≥1

{
(1 + λ�)

s
e−λ�τ

}

×

⎡⎢⎣ ∞∑
�=1

Z(d,�)∑
k=1

(1 + λ�)
−s

∣∣∣∣∣∣ 1

N

N∑
j=1

Y�,k(xj)

∣∣∣∣∣∣
2
⎤⎥⎦
1/2

=
[
wce(QN ;Hs(Sd))

]2
sup
�≥1

{
(1 + λ�)

s
e−λ�τ

}
= τ s sup

�≥1

{
(1 + λ�)

s
e−λ�τ

}
.

The function (1 + λ)
s
e−λτ has a unique maximum at λ = s/τ − 1 with value

ssτ−seτ−s. Hence

0 < g(τ ) ≤ sseτ−s ≤ sse1−s. �

Proof of Theorem 4. If (XN ) is a sequence of N -point QMC designs for Hs(Sd) for
s > d/2, then wce(QN ;Hs(Sd)) → 0 as N → ∞. Thus wce(QN ;Hs(Sd)) < 1 for all
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N > N0 for some N0 > 0. By (45),

wce(QN ;Hs′(Sd)) < c(d, s, s′)
[
wce(QN ;Hs(Sd))

]s′/s
< c(d, s, s′)

[
c(s, d)

Ns/d

]s′/s
=

c′′

Ns′/d

for every N > N0 for each d/2 < s′ < s. The finitely many exceptions with N ≤ N0

satisfy the last inequality with a possibly larger constant c′′, depending only on the
norms of Hs(Sd) and H

s′(Sd). Consequently, (XN ) is a sequence of QMC designs

for H
s′(Sd) for d/2 < s′ < s. �

Proof of Theorem 6. Let d ≥ 2. By Theorem 8 there exists a sequence (YNt
) of

spherical t-designs YNt
with Nt:=md t

d points (t ≥ 1) for some suitably large posi-
tive integer md. Furthermore, the theorem states that there exist spherical t-designs
for every cardinality ≥ md t

d. Thus we can fill the gaps in the sequence (YNt
) by

adding spherical t-designs with N points for Nt < N < Nt+1. If necessary we
choose for N = 2, . . . ,md spherical 1-designs with N points; that is, configurations

with centroid 0. This gives a new sequence (ŶN )N≥2.
By Theorem 1 there exists a constant C(s, d) > 0 such that

(47) sup
f∈H

s(Sd),
‖f‖Hs≤1

∣∣∣∣∣ 1

N

∑
y∈̂YN

f(y) −
∫
Sd

f(y) dσd(y)

∣∣∣∣∣ ≤ C(s, d)

ts
=

C(s, d)

Ns/d

(
N1/d

t

)s

for all N ≥ 1. Since

c
1/d
d =

N
1/d
t

t
≤ N1/d

t
≤

N
1/d
t+1

t
= c

1/d
d

t + 1

t
for all Nt ≤ N ≤ Nt+1,

the right-hand side of (47) satisfies for all N ≥ 1,

C(s, d)

Ns/d

(
N1/d

t

)s

≤ c
s/d
d C(s, d) (1 + 1/t)

s

Ns/d
≤ C ′(s, d)

Ns/d
, C ′(s, d):=2sc

s/d
d C(s, d).

Consequently, (ŶN )N≥2 is a sequence of generic QMC designs. �

9.2. Proofs of Section 3 results.

Proof of Theorem 12. For N ≥ 2, let X∗
N = {x∗

1,N , . . . ,x∗
N,N} be as in Theorem 12

and YN = {y1,N , . . . ,yN,N} be as in Theorem 6. By minimality of the X∗
N ’s, for

every N ≥ 2,

N∑
j=1

N∑
i=1

K(s)(x∗
j,N · x∗

i,N ) ≤
N∑
j=1

N∑
i=1

K(s)(yj,N · yi,N ).

Hence, by Proposition 11,

wce(Q[X∗
N ];Hs(Sd)) ≤ wce(Q[YN ];Hs(Sd)) ≤ c(s, d)

Ns/d
,

where the last inequality follows by Theorem 6. �
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9.3. Proofs of Section 6 results.

Proof of Proposition 18. We recall that two different kernels for the same H
s(Sd)

yield worst-case errors that can differ by at most constant factors, and also that

for the particular case of the canonical kernel K
(s)
can, the worst-case error decreases

monotonically with s for s > d/2; cf. relation (23). Using these facts and (37),
which gives the worst-case error with respect to Kdist, we have for s ≥ (d + 1)/2
the following estimates:

wce(Q[XN ];Hs(Sd)) ≤ β1 wce(Q[XN ];H(d+1)/2(Sd)) ≤ β2D
C
L2

(XN ) ≤ β3D
C
L∞(XN ),

where the positive constants β1, β2 and β3 depend on the chosen norms. �

9.4. Proofs of Section 7 results.

Proof of Theorem 20. Let AL(z) be the truncated series

AL(z):=

L∑
�=1

a� Z(d, �)P
(d)
� (z), z ∈ [−1, 1].

On separating the diagonal and off-diagonal terms of the double sum

AL[XN ]:=
1

N2

N∑
j=1

N∑
i=1

AL(xj · xi), XN = {x1, . . . ,xN} ⊂ S
d,

we obtain

EAL[XN ] =

∫
Sd

· · ·
∫
Sd

[
AL(1)

N
+

1

N2

N∑
j=1

N∑
i=1

j 	=i

AL(xj · xi)

]
dσd(x1) · · ·dσd(xN )

=
AL(1)

N
+

1

N2

N∑
j=1

N∑
i=1

j 	=i

∫
Sd

∫
Sd

AL(xj · xi) dσd(xj) dσd(xi)

=
AL(1)

N
+

N(N − 1)

N2

L∑
�=1

a�

Z(d,�)∑
k=1

(∫
Sd

Y�,k(x) dσd(x)

)2

=
AL(1)

N
.

For constant coefficients a1 = a2 = · · · = aL = 1 this is the result of Theorem 6 in
[37].

Note that AL[XN ] − AL−1[XN ] = aL
∑Z(d,L)

k=1 ( 1
N

∑N
j=1 YL,k(xj))

2 ≥ 0. Hence,

the quantities A1[XN ], A2[XN ], . . . form a pointwise non-decreasing sequence of
non-negative (σd · · ·σd)-measurable functions with limit function A[XN ]. By the
monotone convergence theorem it follows that

EA[XN ] =

∫
Sd

· · ·
∫
Sd

A[XN ] dσd(x1) · · ·dσd(xN )

= lim
L→∞

EAL[XN ] = lim
L→∞

AL(1)

N
=

A(1)

N
.

This completes the proof. �
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Proof of Theorem 21. We follow the proof idea leading to [32, Theorem 2.2]. Let
DN = {Dj,N , . . . , DN,N} be an equal area partition of Sd into subsets with small

diameter; that is:
⋃N

j=1Dj,N = S
d, where σd(Dj,N ∩ Dk,N ) = 0 for all j, k =

1, . . . , N with j �= k and σd(Dj,N ) = 1/N . Furthermore, diamDj,N ≤ c/N1/d for
some c not depending on N . Each Dj,N is equipped with the probability measure

(48) μj,N :=
σd

∣∣
Dj,N

σd(Dj,N )
.

Let d/2 < s < d/2 + 1. Then the expected value of the squared worst-case error

[wce(Q[XN ];Hs(Sd))]2 for the space H
s(Sd) provided with the kernel K

(s)
gd given in

(27) when the j-th node is chosen randomly from Dj,N (with respect to uniform
measure on Dj,N ) is (see (29))

E

[{
wce(Q[XN ];Hs(Sd))

}2]
=

∫
D1,N

· · ·
∫
DN,N

[
wce(Q[XN ];Hs(Sd))

]2
dμ1,N (x1) · · ·dμN,N (xN )

= Vd−2s(S
d) − 1

N2

N∑
j=1

N∑
i=1

j 	=i

∫
Dj,N

∫
Di,N

|xj − xi|2s−d dμj,N (xj) dμi,N (xi)

= Vd−2s(S
d) −

[∫
Sd

∫
Sd

|x− y|2s−d
dσd(x) dσd(y)

− 1

N2

N∑
j=1

∫
Dj,N

∫
Dj,N

|x− y|2s−d dμj,N (x) dμj,N (y)

]
.

Since the first double integral in brackets equals Vd−2s(S
d) (see (26)), we deduce

that

E

[{
wce(Q[XN ];Hs(Sd))

}2]
=

1

N2

N∑
j=1

∫
Dj,N

∫
Dj,N

|x− y|2s−d
dμj,N (x) dμj,N (y)

≤ 1

N2

N∑
j=1

[diamDj,N ]2s−d ≤ 1

N2

N∑
j=1

[
cN−1/d

]2s−d

= c2s−dN−2s/d.

The lower bound in (44) follows from Theorem 3. �

Proof of Theorem 22. Let d/2+L < s < d/2+L+1 for an integer L ≥ 1. Arguing
as in the proof of Theorem 21, but using the kernel in (31), we obtain

E

[{
wce(Q[XN ];Hs(Sd))

}2]
=

1

N2

N∑
j=1

∫
Dj,N

∫
Dj,N

[QL(1) −QL(x · y)] dμj,N (x) dμj,N (y)

− 1

N2

N∑
j=1

∫
Dj,N

∫
Dj,N

(−1)L+1 |x− y|2s−d dμj,N (x) dμj,N (y),
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where we used the fact that the Laplace-Fourier expansion (32) only contains Le-

gendre polynomials P
(d)
� with � ≥ 1 and thus

1

N2

N∑
j=1

N∑
i=1

∫
Dj,N

∫
Di,N

QL(x · y) dμi,N (x) dμk,N (y)

=

∫
Sd

∫
Sd

QL(x · y) dσd(x) dσd(y) = 0.

For L = 1, the definition of QL given in (32) and the fact that P
(d)
1 (x) = x yields

Q1(1) −Q1(x · y) = −α
(s)
1 Z(d, 1) (2 − 2x · y) = −α

(s)
1 (d + 1) |x− y|2 ,

where α
(s)
1 < 0 by (26). More generally, using the following hypergeometric function

relation for the polynomials P
(d)
� (x) (see, e.g, [1, Eq. 18.5.9]),

P
(d)
� (x) = 2F1

(
−�, � + d− 1

d/2 ;
1 − x

2

)
,

we have the following formula for QL(x · y) in terms of even powers of distances:

QL(1) −QL(x · y)

= QL(1) −
L∑

�=1

�∑
p=0

(
(−1)L+1−� − 1

)
α
(s)
� Z(d, �)

(−�)p(� + d− 1)p
(d/2)pp!

(
1 − x · y

2

)p

= −
�∑

p=1

⎧⎨⎩
L∑

�=p

(
(−1)L+1−� − 1

)
α
(s)
� Z(d, �)(−�)p(� + d− 1)p

⎫⎬⎭ (|x− y| /2)
2p

(d/2)pp!
.

For small distances the dominant term above is the square of the distance. Since

(−1)L+1−�α
(s)
� is positive by (26), it follows that the coefficient of (|x− y|/2)2,

β
(s)
1 :=

2

d

L∑
�=1

(
(−1)L+1−� − 1

)
α
(s)
� Z(d, �) [−(−�)1] (� + d− 1)1,

is positive and therefore

QL(1) −QL(x · y) = β
(s)
1

(
|x− y|

2

)2

+ O(|x− y|4) as |x− y| → 0.

Hence,

E

[{
wce(Q[XN ];Hs(Sd))

}2]
≥ β

(s)
1

4

1

N2

N∑
j=1

∫
Dj,N

∫
Dj,N

|x− y|2 dμj,N (x) dμj,N (y) −RN ,
(49)

where (as N → ∞)

RN = O(
1

N2

N∑
j=1

[diamDj,N ]4) + O(
1

N2

N∑
j=1

[diamDj,N ]2s−d)

= O(N−4/d−1) + O(N−2s/d).

(50)
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Next, we observe that for any c′′ > 0 the following inequalities hold:∫
Dj,N

∫
Dj,N

|x− y|2 dμj,N (x) dμj,N (y)

≥
∫
Dj,N

∫
Dj,N

|x−y|>c′′/N1/d

|x− y|2 dμj,N (x) dμj,N (y)

≥ (c′′)
2
N−2/d

∫
Dj,N

∫
Dj,N

|x−y|>c′′/N1/d

dμj,N (x) dμj,N (y)

= (c′′)
2
N−2/d

{
1 −

∫
Dj,N

∫
Dj,N

|x−y|≤c′′/N1/d

dμj,N (x) dμj,N (y)

}
.

(51)

Since μj,N is a probability measure on Dj,N and σd(Dj,N ) = 1/N , we can bound
the above double integral by

∫
Dj,N

∫
Dj,N

|x−y|<c′′/N1/d

dμj,N (x) dμj,N (y) ≤
∫
Dj,N

∫
C(x;θ′)

dμj,N (y) dμj,N (x)

= μj,N (Dj,N )μj,N (C(x; θ′)) =
σd(C(x; θ′))

σd(Dj,N )
,

(52)

where 2 sin(θ′/2) = c′′/N1/d. The Funk-Hecke formula gives (cf., e.g., [29])

σd(C(x; θ′)) =
1

d

ωd−1

ωd
[2 sin(θ′/2)]

d
{
1 + O([2 sin(θ′/2)]

2
)
}

as θ′ → 0.

Hence, for N sufficiently large,

σd(C(x; θ′)

σd(Dj,N )
= N

1

d

ωd−1

ωd

(
c′′/N1/d

)d{
1 + O(

(
c′′/N1/d

)2
)

}
≤ 2

1

d

ωd−1

ωd
(c′′)

d
.

By fixing c′′ (which now depends only on d) to be sufficiently small, we can always
achieve that the double integral on the left-hand side of (52) is bounded from above
by 1/2. Therefore, for sufficiently large N and j = 1, . . . , N , we deduce from (51)
that ∫

Dj,N

∫
Dj,N

|x− y|2 dμj,N (x) dμj,N (y) ≥ (c′′)
2

2
N−2/d.

Combining this estimate with (49) and (50), we obtain for s > d/2 + 1 and 2s− d
a positive integer that is not even,

E

[{
wce(Q[XN ];Hs(Sd))

}2] ≥ β
(s)
1

4

(c′′)
2

2
N−2/d−1 + O(N−4/d−1) + O(N−2s/d)

≥ β N−2/d−1 = β N−2(d/2+1)/d,

where the positive constant β depends on the H
s(Sd)-norm and the partition se-

quence (DN ), but is independent of N . �
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