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Abstract

Motivation: Methods that estimate the quality of a 3D protein structure model in absence of an experimental

reference structure are crucial to determine a model’s utility and potential applications. Single model methods

assess individual models whereas consensus methods require an ensemble of models as input. In this work,

we extend the single model composite score QMEAN that employs statistical potentials of mean force and agree-

ment terms by introducing a consensus-based distance constraint (DisCo) score.

Results: DisCo exploits distance distributions from experimentally determined protein structures that are homolo-

gous to the model being assessed. Feed-forward neural networks are trained to adaptively weigh contributions by

the multi-template DisCo score and classical single model QMEAN parameters. The result is the composite score

QMEANDisCo, which combines the accuracy of consensus methods with the broad applicability of single model

approaches. We also demonstrate that, despite being the de-facto standard for structure prediction benchmarking,

CASP models are not the ideal data source to train predictive methods for model quality estimation. For perform-

ance assessment, QMEANDisCo is continuously benchmarked within the CAMEO project and participated in

CASP13. For both, it ranks among the top performers and excels with low response times.

Availability and implementation: QMEANDisCo is available as web-server at https://swissmodel.expasy.org/qmean.

The source code can be downloaded from https://git.scicore.unibas.ch/schwede/QMEAN.

Contact: torsten.schwede@unibas.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modelling methods, in particular homology/comparative modelling,
have established themselves as a valuable complement to structural
analysis when experimental data are missing (Schmidt et al., 2014).
While such methods have matured into pipelines that can generate
models for almost any protein automatically, the quality of the gen-
erated models can be highly variable and hard to predict in the ab-
sence of experimental observables. This is a major concern as the
range of applications for which the model can be used directly
depends on its quality (Baker and Sali, 2001; Schwede, 2013), hence
the importance of quality estimation methods. Quality estimates can
be global full-model estimates, e.g. to pick the best model in a set of
alternatives, or local per-residue estimates. The latter allows for a
more specific model selection in cases where only one particular part
of the protein is of interest, e.g. a domain containing an active site.
It can also guide the modelling process itself, for instance detecting
regions requiring further refinement or choosing from alternative
local conformations.

Current approaches to the quality estimation problem can be
classified in single model methods, consensus methods and quasi-
single model methods. Most single model methods use knowledge-
based approaches to express the expected similarity to the actual na-
tive structure with a numeric value (Benkert et al., 2011; Olechnovi�c
and Venclovas, 2017; Uziela et al., 2017). Such methods have the
advantage of only requiring a single model as input, but they are
often outperformed by consensus methods that base their prediction
on an ensemble of models (Kryshtafovych et al., 2016, 2018).
Model quality is estimated from the variability of the models in the
ensemble, assuming that correct structural features will tend to be
more conserved (Cao et al., 2014; Ginalski et al., 2003; Skwark and
Elofsson, 2013). Nevertheless, their application is somewhat limited
as a well-defined independent set of models may not always be avail-
able in many applied cases. An alternative is so called quasi-single
model methods (Maghrabi and McGuffin, 2017), which try to com-
bine the convenience of taking a single model as input with the pre-
dictive power of consensus methods by generating ensemble
information themselves. From a user perspective, quasi-single model
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methods can be considered single model methods, as they are inde-
pendent from external ensemble information as input.

One established single model method is QMEAN (Benkert et al.,
2008, 2011). QMEAN is a composite score employing statistical
potentials of mean force (Sippl, 1993) and the consistency of a
model with structural features predicted from sequence. We intro-
duce a new distance constraint (DisCo) score that assesses the agree-
ment of pairwise distances in a model and an ensemble of
constraints derived from experimentally determined protein struc-
tures that are homologous to the model being assessed. DisCo can
considered to be a quasi-single model score as it derives its own en-
semble information with a sequence based homology search as illus-
trated in Figure 1. Using homologous structures directly, allows
keeping the computation time low as no models must be built. This
work combines DisCo with the single model scores from QMEAN.
In case many close homologues exist, DisCo is expected to be very
accurate. However, accuracy declines if few or no close homologues
can be identified. In order to combine the ability of single model
scores to assess individual models with the power of DisCo in cases
of sufficient structural information, we use feed-forward neural net-
works to adaptively weigh the various components. The result is a
composite score for accurate local and global model quality esti-
mates: QMEANDisCo.

A previous version of QMEANDisCo (version 2) is briefly
described in Waterhouse et al. (2018). This manuscript describes
QMEANDisCo in detail, including recent improvements leading to
the current version 3. QMEANDisCo is continuously evaluated in the
CAMEO continuous evaluation platform (Haas et al., 2018), where it
currently ranks best among the registered methods while having the
lowest response time. Furthermore, QMEANDisCo participated in
the 13th round of the CASP experiment (Moult et al., 2018) under
the working title FaeNNz and ranked among the top performers.

2 Materials and methods

2.1 Target value
We use the lDDT score (Mariani et al., 2013) in range [0.0, 1.0] as
target value for local and global quality estimates. lDDT is a super-
position free score and assesses differences in pairwise interatomic
distances between model and reference structure on a full-atomic
basis. Only distances up to 15 Å are considered, reducing the effect
of domain movement events. lDDT very closely agrees with other
‘local scores’, such as CAD (Olechnovi�c et al., 2013) or RPF (Huang
et al., 2012; Olechnovi�c et al., 2019). Prediction performance can
thus expected to be comparable for this full group of scores. We de-
liberately avoid scores based on reduced structural representations
since they do not reflect the wide variety of local interactions in suf-
ficient detail (Haas et al., 2018). These types of scores include Ca
distance based per-residue measures that are obtained after a global
superposition of model and target.

2.2 Evaluation methods
The focus of this work lies on predicting per-residue quality esti-
mates. For evaluation, we rely on receiver operating characteristic
(ROC) analysis, which is common in the field (Haas et al., 2018;
Kryshtafovych et al., 2016, 2018). ROC allows visualizing a predic-
tors’ ability of distinguishing correctly and incorrectly modelled resi-
dues and quantifying the outcome with the area under the curve
(AUC). Single residue data points with lDDT >0.6 are classified as
correctly modelled.

ROC analysis is performed by pooling all per-residue data points
from a full test set to get an overall AUC, which mainly analyses the
ability of assigning absolute quality estimates. Additionally, it is per-
formed on a per-model basis. To quantify the outcome of the latter,
the mean per-model AUC, the expected AUC when looking at one
particular model, is used as performance indicator. Models where
all residues are classified equally (e.g. all classified as ‘incorrect’)
lead to invalid ROC AUC values and are excluded from the mean
calculation.

2.3 Single model scores
The single model scores from the current version of QMEAN (3)
form the basis to obtain per-residue scores in QMEANDisCo. They
are suitable for assessing individual models and are summarized
here with their respective statistical potential of mean force terms
parametrized as further described in the Supplementary Materials:

• All-atom interaction potential: pairwise interactions are assessed

between all chemically distinguishable heavy atoms. A sequence

separation threshold has been introduced to reduce contributions

from residues adjacent in sequence thereby focussing on long-range

interactions and reduce the effect of local secondary structure.
• Cb interaction potential: this term assesses the overall fold by

only considering pairwise interactions between Cb positions of

the 20 default proteinogenic amino acids. In case of glycine, a

representative of Cb is inferred from the N, Ca and C backbone

Fig. 1. Example application of distance constraints on model quality estimation. (A)

Per-residue QMEANDisCo scores are mapped as red-to-green colour gradient on a

model of lbp-8 (lipid binding protein) in Caenorhabditis elegans (UniProtKB:

O02324, PDB: 6C1Z). Distance constraints have been constructed from an ensem-

ble of experimentally determined protein structures that are homologous to lbp-8. A

representative subset of homologues is illustrated in grey. The inset depicts two ex-

ample constraints between residues marked with colour-coded spheres in the model.

(B) The solid black line represents per-residue lDDT scores of the model given the

known target structure. Grey dots represent QMEANDisCo if only single model

scores are employed. Adding distance constraints (solid grey line) helps to identify

deviations in the loop marked with an arrow in A and B. (Color version of this fig-

ure is available at Bioinformatics online.)
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atom positions. The same sequence separation as in the all-atom

interaction potential is applied.
• Packing potential: assesses the number of surrounding atoms

around all chemically distinguishable heavy atoms not belonging

to the assessed residue itself.
• Torsion potential: the central U/W angles of three consecutive

amino acids are assessed based on the identities of the triplet

using a grouping scheme described by Solis and Rackovsky

(2006).
• Solvent accessibility agreement: binary classification whether

solvent accessibility of a residue matches with the prediction

from ACCpro (Cheng et al., 2005).
• Secondary structure agreement: a log-odds score that relates the

probability of observing a DSSP state (Kabsch and Sander, 1983)

in combination with a PSIPRED prediction (Jones, 1999) with

the probability of observing the two events independently of

each other (Soding, 2005): S(d, p, c)¼log[p(d, p, c)/(p(d)p(p, c))]

with d representing a DSSP state in [G, H, I, E, B, T, S, C], p a

PSIPRED state in [H, E, C] and c a PSIPRED confidence value in

[0–9].
• Solvent accessibility: accessibility in Å2 as calculated with DSSP,

scaled to [0, 1].

QMEANDisCo (3) introduces four additional terms. The first
two of them are statistical potentials of mean force that are parame-
trized as described in the Supplementary Materials.

• Cb packing potential: same concept as the packing potential, but

only Cb atoms are considered. Glycine is treated the same way as

in the Cb interaction potential.
• Reduced potential: assesses pairwise interactions between

reduced representations of amino acids. The reduced representa-

tion is composed of the Ca position and a directional component

constructed from backbone N, Ca and C positions with further

details available in the Supplementary Materials. As in the two

other interaction potentials, a sequence separation threshold is

applied.
• Clash score: full-atomic clash score as defined for SCWRL3

(Canutescu et al., 2003).
• N: number of residues within 15 Å by using Ca atoms as refer-

ence positions.

The scores are evaluated on a per-residue basis with full-atomic
scores averaging their per-atom contributions. Before further proc-
essing, all per-residue scores except the number of residues (N)
undergo a spherical smoothing (r ¼ 5 Å) as described for
QMEANBrane (Studer et al., 2014).

2.4 DisCo
DisCo is derived from QMEANDist, a quasi-single model method
that participated in the CASP9 experiment as a global quality pre-
dictor (Biasini, 2013; Kryshtafovych et al., 2011). We revisited the
approach of assessing the agreement of pairwise residue–residue dis-
tances with ensembles of constraints extracted from experimentally
determined protein structures that are homologous to the assessed
model. Instead of generating global quality estimates, DisCo aims to
predict local per-residue quality estimates. After extracting the tar-
get sequence of the model to be assessed, homologues are identified
using HHblits (Remmert et al., 2011, the used command line argu-
ments are available in the Supplementary Materials). For each
homologue k, all Ca positions are mapped onto the target sequence
using the HHblits alignment. Gaussian distance constraints for resi-
due pairs (i, j) are generated for all Ca–Ca distances lijk below 15 Å:

gijk dij
� �

¼ exp �
1

2
ðdij � lijkÞ

2

� �

(1)

The goal is to construct a pairwise scoring function sij(dij), that
assesses the consistency of a particular pairwise Ca–Ca distance dij
in the model with all corresponding constraints gijk(dij). In order to
avoid biases towards overrepresented sequence families among all
found homologues, they are clustered based on their pairwise se-
quence similarity as specified in the Supplementary Materials. Since
the templates often do not cover the entire target sequence, some
Ca–Ca pairs might not be represented in every template and conse-
quently the number of templates nijc containing a Ca–Ca pair varies
within a cluster for different (i, j). Only if a Ca–Ca pair is present in
a cluster c, we construct a cluster scoring function hijc(dij):

hijc dij
� �

¼
1

nijc

X

k2c

gijkðdijÞ (2)

To get the desired pairwise scoring function sij(dij) we combine
hijc(dij) from each cluster c in a weighted manner as exemplified in
Figure 2. Clusters expected to be closely related to the target se-
quence contribute more than others:

sijðdijÞ ¼
X

c

wchijcðdijÞ (3)

with weights wc defined as exp[cSSc] and normalized, so that the
weights of all clusters in which the Ca–Ca pair is present, sum up to
one. SSc is the average normalized sequence similarity towards the
target sequence of cluster c and c is a constant that controls how fast
the influence of a cluster vanishes as a function of SSc. The default
value for c is 70 and the effect of varying c is discussed in
Supplementary Figure S3. The DisCo score of a single residue of the
model at position i then is computed by averaging the outcome of all
n pairwise scoring functions sij(dij) towards other residues j 6¼ i with
their Ca positions within 15 Å:

DisCoi ¼
1

n

X

j

sij dij
� �

: (4)

As the accuracy of DisCo depends on the underlying templates,
features describing its reliability are required to optimally weigh
DisCo with the single model scores in a subsequent machine-
learning step. For each residue i there are:

• Average number of clusters c of each evaluated pairwise function

sij(dij).
• Average sequence similarity SS of each evaluated pairwise func-

tion sij(dij) with SS being defined as the maximum SSc of all

underlying clusters c.

Fig. 2. Example DisCo scoring function. The pairwise scoring function sij(dij) (black)

represents the Ca–Ca distance between residues i and j. It is composed of two

weighted cluster scoring functions wchijc(dij) with weights determined from avg.

cluster sequence similarities (SSc) 0.276 (orange) and 0.273 (blue). (Color version of

this figure is available at Bioinformatics online.)
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• Same as above but for sequence identities.
• Average variance v of each evaluated pairwise function sij(dij)

with v being the variance of all observed distances in any of the

underlying clusters c.
• Number of evaluated pairwise functions sij(dij).
• Total number of pairwise functions for residue i.
• The fraction between the previous two items.

2.5 Score combination
Fully connected feed-forward neural networks are used to learn
complex interdependencies of scores described in the two previous
sections. Furthermore, they adaptively weigh single model scores
that are capable of scoring individual models and DisCo that
depends on dynamically generated constraint data. Neural network
training and validation relied on two datasets:

• CAMEO: all models submitted to the CAMEO QE category dur-

ing 1 year (CAMEO weeks from July 1, 2017 to June 30, 2018)

have been collected. This results in a set of �2.4 million

per-residue data points from 9500 models built for 883 unique

targets. DisCo scores for this set have been estimated from

SWISS-MODEL HHblits template searches performed at the

time of the CAMEO submission and thus do not contain the tar-

get structure.
• CASP12: the CASP12 EMA category (Kryshtafovych et al.,

2018) submitted models for each target in two stages. ‘Stage 1’

was a selection of 20 models and ‘stage 2’ the 150 best models

according to the Davis–EMA consensus baseline predictor. For

each of the 70 finally evaluated targets, 101 of the 150 models

submitted in ‘stage 2’ have randomly been selected. For the

CASP12 dataset, this results in �1.9 million per-residue data

points from 7070 models built for 70 unique targets. DisCo

scores for this set have been estimated from HHblits template

searches where every template with a release date after May 1,

2016 has been discarded.

Neural networks predicting per-residue lDDT scores are trained
with the tiny-dnn deep learning framework (https://github.com/tiny-
dnn/tiny-dnn). The objective is to identify optimal training param-
eter/network topology combinations among the following: error
functions: [‘absolute’, ‘mse’]; optimizing algorithms: [‘adam’,
‘rmsprop’]; training epochs: [100, 200, 400]; training batch sizes:
[100, 200, 400]; network topologies: [[n, 20, 20, 20, 1], [n, 40, 20,
20, 1], [n, 40, 20, 10, 1], [n, 40, 40, 40, 1], [n, 80, 80, 80, 1], [n, 80,
40, 20, 1], [n, 80, 40, 20, 20, 1], [n, 40, 40, 20, 20, 1], [n, 40, 20,
20, 10, 1]]. ‘ReLu’ has been used as activation function.

The size of the input layer is denoted with n. There are 11 per-
residue features as described in Section 2.3 and 8 as described in
Section 2.4. Eight features are full-model averages of the statistical
potential and agreement terms in Section 2.3. Amino acid specific
biases for composite scores have been identified in previous work
(Studer et al., 2014) and taken into account in the input layer by
using ‘one-hot’ encoding. This adds another 20 features, one for
each standard proteinogenic amino acid. The input layer thus com-
prises n ¼ 47 nodes if all input features are valid. All data points
with one or more invalid input features have been excluded in a first
stage. Examples are terminal residues for which no backbone dihe-
dral angles can be estimated or invalid DisCo scores due to lacking
HHblits search results.

A 5-fold cross-validation (80% training, 20% validation) has
been constructed with the data split on the level of modelling tar-
gets. A cross-validation means to evaluate five validation sets with
five neural networks that did not use any data from the correspond-
ing validation set for training. The predictions for all five validation
sets are pooled together and evaluated at once. We allow not only
performing a classical cross-validation on one dataset (e.g.

CAMEO) but also across datasets (e.g. training on CAMEO and val-
idation on CASP12).

A general trend for more difficult modelling targets in CASP
(Haas et al., 2018), as well as more diverse modelling approaches,
lead to significantly different per-residue lDDT distributions in the
CAMEO and CASP12 datasets (Supplementary Fig. S1). This may
introduce biases in the training procedure. A mixed dataset only for
training has therefore been constructed. For all five pairs of
CAMEO and CASP12 training sets, a mixed training set has been
constructed by randomly selecting 50% of the data points from the
other two. This results in a valid cross-validation across datasets
(e.g. training on mixed and validation on CASP12).

Networks for all training parameter/network topology combina-
tions have been trained on all cross-validation training sets
(CAMEO, CASP12, mixed) and validated on CAMEO and
CASP12. Both validations lead to a separate ranking of networks by
the mean per-model AUC as described in Section 2.2. The intersec-
tion of the top 100 from both rankings, a set of 59 training param-
eter/network topology combinations (Supplementary Table S1), is
considered further.

The problem of missing input data was approached by imple-
menting a neural network scorer (NNScorer). The NNScorer is com-
prised of a full ensemble of networks with equal training
parametrization and network topology, except the number of input
nodes n. The intention is to provide a network for each potential
combination of valid input features, so called feature groups that are
defined in the Supplementary Materials. There are 16 feature groups
and thus 16 networks per NNScorer. NNScorers have been trained
for the 59 successful training set/training parameter/network top-
ology combinations selected in the first validation round.

A second optimization round has been performed considering all
data points of the validation sets, as invalid input features can now
be handled by the NNScorer. Again, the validations on CAMEO
and CASP12 have separately been ranked by the expected per-model
AUC (Supplementary Table S2). The following has been found to be
a good compromise when validated on both, CAMEO and CASP12:
training data: mixed; error function: ‘mse’; optimizing algorithm:
‘rmsprop’; training epochs: 100; training batch size: 400; network
topology: [n, 20, 20, 20, 1]. The finally used NNScorer has been re-
trained with this parametrization/topology using the full mixed set
for training.

To conclude, the cross-validation performance was increased
when replacing the linear combination of QMEAN 3 with neural
networks and incorporating features specific to QMEANDisCo (see
Supplementary Tables S3 and S4).

Furthermore, no training parameter/network topology combin-
ation has reached the second round of validation when CASP12 has
been used for training. To thoroughly investigate the effect of train-
ing data, the two rounds of parameter/topology optimization
described in this section have been repeated only with CASP12 as
training data. The results in Supplementary Table S5 confirm that
the finally used NNScorer trained on mixed performs better than
any NNScorer trained on CASP12 even when validated on CASP12.

2.6 Full-model scoring
Given the nature of lDDT, the average of accurate per-residue qual-
ity estimates can be expected to be a good approximation of the glo-
bal overall quality. That is the definition of the QMEANDisCo
global score. The expected error of the global score prediction is
defined as the root mean square deviation of prediction and actual
global lDDT on a large set of models. As this is derived from the glo-
bal scoring evaluation, it will further be discussed in Section 3.5.

2.7 Blind test data
All data used for testing/benchmarking were obtained through regu-
lar blind predictions from QMEAN-Server instances registered to
CAMEO and CASP13. For CASP13, we registered a private
QMEAN-Server instance. The server initially deployed a develop-
ment method called FaeNNz. FaeNNz is conceptually equivalent to
QMEANDisCo 3 with the key difference of using less data from
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CAMEO in the training procedure described in Section 2.5 (data
collected during 10months instead of 1 year). Furthermore, FaeNNz
adequately reflects the performance of the final version of
QMEANDisCo as demonstrated with a retrospective analysis of
QMEANDisCo 3 on CASP13 data (Supplementary Table S7). Test
data collection in detail:

• CAMEO: per-residue predictions are evaluated on data collected

from �3000 models during a time range of 12 weeks for 13 reg-

istered methods (CAMEO submission dates December 1, 2018–

March 3, 2019). To have enough data to estimate the expected

error described in Section 2.6, data from additional �4500 mod-

els had been collected during 20 weeks for global scoring analysis

(CAMEO submission dates July 7, 2018–November 24, 2018).
• CASP13: the CASP13 EMA category submitted models for each

target in two stages. ‘Stage 1’ was a selection of 20 models and

‘stage 2’ the 150 best models according to the Davis–EMA con-

sensus baseline predictor. Per-residue predictions are evaluated

on data from the full set of �12000 models submitted as ‘stage

2’ for 80 unique targets for all registered methods that submitted

at least 50% of the requested per-residue predictions (27 meth-

ods). To evaluate global full-model predictions we refer to the

publicly available automated analysis provided by the CASP13

assessors.

2.8 Implementation and availability
The QMEAN-Server (https://swissmodel.expasy.org/qmean) makes
QMEANDisCo accessible to non-expert users with the option to ac-
cess it through an application programming interface. Alternatively,
the underlying source code can be downloaded from https://git.sci
core.unibas.ch/schwede/QMEAN under the permissive Apache v2.0
license. The software is based on the OpenStructure computational
structural biology framework (Biasini et al., 2010, 2013).
Computationally intensive tasks are implemented in Cþþ and
exported to the Python scripting language to increase flexibility and
speedup prototyping of new quality estimation algorithms.

3 Results

3.1 Overall AUC analysis
Comparing QMEAN and QMEANDisCo on CAMEO per-residue
data reveals large improvements in overall AUC (0.87 versus 0.94)
when adding the described scores and enhanced machine-learning

techniques (Fig. 3, Supplementary Table S6). This is consistent with
the observed improvements during training (Supplementary Table
S3). On both test sets, CAMEO and CASP13, QMEANDisCo,
FaeNNz, respectively, have the highest overall AUC among all
methods (Figs 3 and 4, Supplementary Tables S6 and S7).

3.2 Global effect on overall AUC
Already during training, the substantially different target value dis-
tribution of the used training sets was a concern. Similar distribu-
tions can be observed for the test sets (Supplementary Fig. S2).
CASP13 has many low quality data points largely originating from
random coil models. This gives rise to the hypothesis that much of
the overall AUC performance could already be retrieved by detecting
those random coils and predicts all their residues to be of low qual-
ity. To test this hypothesis, a naive predictor for CASP13 has been
implemented. The global full-model score of the Davis–EMA con-
sensus baseline predictor is blindly assigned to each residue of a
model. Detecting random coils and scoring their residues according-
ly is not necessarily a bad idea, but this implementation has the obvi-
ous flaw of not being able to discriminate correctly and wrongly
modelled residues in one particular model. The naive predictor
performs surprisingly well with an overall AUC value of 0.82
(Fig. 4, Supplementary Table S7). This observation suggests that a
good performance in terms of overall AUC might not solely be the
result of assigning meaningful per-residue scores but to some extent
also a global effect. Consequently, we extended our evaluation to

Fig. 3. Evaluation of per-residue quality estimates on CAMEO data. Squares repre-

sent performance in terms of overall AUC and circles the mean per-model AUC. The

raw data are available in Supplementary Table S6. ‘QMEANDisCo 2’ denotes an

initial version of QMEANDisCo briefly described in Waterhouse et al. (2018),

‘QMEANDisCo 3’ denotes the method described in this manuscript

Fig. 4. Evaluation of per-residue quality estimates on CASP13 data. Squares repre-

sent performance in terms of overall AUC and circles the mean per-model AUC.

Orange colours stand for results on the full dataset and blue for results from a subset

composed of high quality models with global lDDT>0.6. FaeNNz represents

QMEANDisCo 3 and NAIVE is the naive predictor described in Section 3.2. Raw

data are available in Supplementary Table S7. (Color version of this figure is avail-

able at Bioinformatics online.)
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include per-model performance indicators and, for CASP13,
repeated it on a subset composed of high quality models.

3.3 Per-model analysis
As for the overall AUC, QMEANDisCo performs best for the per-
model AUC on CAMEO (Fig. 3, Supplementary Table S6). On
CASP13, CPClab (Mulnaes and Gohlke, 2018) slightly outperforms
FaeNNz (per-model AUC of 0.79 versus 0.78) (Fig. 4,
Supplementary Table S7). Also ModFOLD7_cor (Maghrabi and
McGuffin, 2017), ProQ3D_LDDT and ProQ3D_CAD (Uziela et al.,
2018) exhibit no significant difference in per-model AUC (per-
model AUC of 0.77 for all three) (Fig. 4, Supplementary Table S7).

3.4 Analysis on high quality models in CASP13
Overall and per-model AUC analyses on CASP13 have been
repeated on a high quality subset composed of models with global
lDDT >0.6. Per-residue data points from �20% of the original
models remained and the target value distribution of the subset is
similar to what can be observed for CAMEO (Supplementary Fig.
S2). The performance of the naive predictor completely breaks
down (Fig. 4). Simply detecting random coils does not work in this
setup, as they are not prevalent anymore. A decline in overall AUC
is observed for all methods with some affected more than others.
FaeNNz still performs best with an overall AUC of 0.88 (Fig. 4,
Supplementary Table S7).

The contrary can be observed for per-model AUC. All methods
show increased performance which hints at general difficulties in
discriminating well and poorly modelled residues in models of me-
dium or low quality. FaeNNz ranks third, slightly outperformed by
CPClab and ProQ3-LDDT. PComb (Wallner and Elofsson, 2007)
and ModFOLD7_cor rank fourth and fifth with marginal lower per-
model AUC (per-model AUCs of the top five methods: 0.85, 0.85,
0.84, 0.84 and 0.84) (Fig. 4, Supplementary Table S7).

3.5 Global scoring
lDDT and other target values penalize for incomplete models. This
is not the case for QMEANDisCo as it evaluates a model ‘as is’. The
consequences are potential over-predictions in the CAMEO global
scoring evaluation (Supplementary Fig. S4). The fraction of residues
in the target structure that are covered in the model has therefore
been applied as pre-factor of the QMEANDisCo global score for
evaluation purposes. The result is an excellent correspondence be-
tween prediction and target reflected by a Pearson correlation coeffi-
cient of 0.95 (Fig. 5). The expected prediction error defined in
Section 2.6 is based on these results and provided to the user of the
QMEAN-Server. The expected error is not estimated on the full

results but as a function of model length to emphasize increased
uncertainties for smaller models (Fig. 5). For a model of length l,
data points from models of length l 6 40 are considered. The error
for short models (40 residues) is expected to be �0.12 but quickly
converges to �0.05 with increasing model size (Supplementary
Table S8). This is consistent with the average absolute lDDT predic-
tion error of FaeNNz in CASP13 (�0.05 for ‘stage 1’ and �0.06 for
‘stage 2’, http://predictioncenter.org/casp13/qa_diff_mqas.cgi).

In CASP13, FaeNNz global scores were normalized based on
model length and known target sequence. Table 1 displays a selec-
tion of top performing methods with respect to ROC AUC as calcu-
lated by the CASP13 assessors for global full-model scoring
evaluation. In addition to lDDT, ROC AUC values are also dis-
played for GDT_TS (Zemla, 2003) and CAD (Olechnovi�c et al.,
2013). The results show a superior prediction performance of con-
sensus methods for the superposition dependent GDT_TS score that
only considers Ca positions. However, for the superposition inde-
pendent full-atomic lDDT and CAD scores, the kind of scores we
aim to predict, single model methods catch up. FaeNNz ranks se-
cond when considering lDDT and first when considering CAD.

Another aspect discussed in the automated CASP13 results is model
selection, i.e. given all models submitted for a target, what is the accur-
acy difference between the model selected by a quality estimation
method and the optimal choice (http://predictioncenter.org/casp13/qa_
diff2best.cgi). For QMEANDisCo (represented by FaeNNz), the lDDT
difference for ‘stage 2’ is on average �0.07 as compared to �0.04 of
the top performing method MULTICOM_CLUSTER (Hou et al.,
2019). From all 48 evaluated methods returning global scores, FaeNNz
ranks 20th. For CAD, the average difference is �0.04 as compared to
�0.03 from the top performer MULTICOM_CLUSTER which leads
to rank eight.

4 Conclusion

In this work, we describe the QMEANDisCo composite score for
single model quality estimation. It employs single model scores suit-
able for assessing individual models, extended with a consensus
component by additionally leveraging information from experimen-
tally determined protein structures that are homologous to the
model being assessed. By using the found homologues directly,
QMEANDisCo avoids the requirement of an ensemble of models as
input.

To find the optimal combination of scores, we did profit from re-
cent developments in the machine-learning community providing
computational tools that efficiently learn complex interdependencies
in large amounts of training data. However, careful data

Fig. 5. Evaluation of full-model quality estimates on CAMEO data. The

QMEANDisCo global scores are length normalized to take the coverage depend-

ency of the global lDDT score into account. Model length is depicted as colour gra-

dient to emphasize increased prediction uncertainty when assessing small models.

(Color version of this figure is available at Bioinformatics online.)

Table 1. Global scoring ROC AUC analysis to evaluate the ability of

discriminating good and bad models in CASP13

Method GDT_TS lDDT CAD

Bhattacharya-ClustQ 0.942 0.949 0.932

FaeNNz 0.889 0.947 0.937

CPClab 0.909 0.936 0.928

MULTICOM_CONSTRUCT 0.945 0.931 0.914

MUfoldQA_T 0.961 0.929 0.909

ProQ3D-CAD 0.880 0.926 0.930

MUFoldQA_M 0.959 0.922 0.900

MULTICOM_CLUSTER 0.937 0.922 0.904

UOSHAN 0.959 0.917 0.898

ProQ4 0.875 0.913 0.907

Note: The data are extracted from http://predictioncenter.org/casp13/qa_

aucmcc.cgi. The top 10 methods were selected according to a sorting by

lDDT ROC AUC. ROC AUC values are displayed for lDDT and other scores

relevant for CASP13 (GDT_TS, CAD). Single model methods (i.e. methods

that need no ensemble of models as input) are highlighted with bold font,

with FaeNNz (representing QMEANDisCo 3) conceptually being a quasi-sin-

gle model method.
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preparation and handling is crucial for optimal prediction perform-
ance. We showed that despite being the de-facto standard of bench-
marking, CASP is not necessarily the ideal source of data to train
predictive models. The situation was improved by combining data
from CASP and CAMEO to increase training data diversity. The re-
sult was a predictive model that generalized the training data and
provides accurate per-residue and full-model quality estimates for
models of various origin. However, discriminating well and poorly
modelled residues in protein models of lower overall quality remains
a challenge.

QMEANDisCo has been developed with its application in the
SWISS-MODEL homology modelling server in mind. A template
search is the first step of any homology modelling pipeline. As this is
the computationally most expensive step in QMEANDisCo, its inte-
gration into SWISS-MODEL comes at minimal additional computa-
tional cost. The low response times are also reflected in CAMEO
where QMEANDisCo returns results within a few minutes with
most of the time being spent in the template search step.

We believe that we provide a valuable tool that can easily be
accessed through the QMEAN-Server. We demonstrated state-of-
the-art performance in predicting lDDT scores with a focus on per-
residue predictions. Prediction accuracy can expected to further in-
crease given the growing number of experimentally determined pro-
tein structures (Bienert et al., 2017).
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