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Abstract

In many real-world settings, a team of agents must

coordinate their behaviour while acting in a de-

centralised way. At the same time, it is often

possible to train the agents in a centralised fash-

ion in a simulated or laboratory setting, where

global state information is available and communi-

cation constraints are lifted. Learning joint action-

values conditioned on extra state information is

an attractive way to exploit centralised learning,

but the best strategy for then extracting decen-

tralised policies is unclear. Our solution is QMIX,

a novel value-based method that can train decen-

tralised policies in a centralised end-to-end fash-

ion. QMIX employs a network that estimates joint

action-values as a complex non-linear combina-

tion of per-agent values that condition only on lo-

cal observations. We structurally enforce that the

joint-action value is monotonic in the per-agent

values, which allows tractable maximisation of

the joint action-value in off-policy learning, and

guarantees consistency between the centralised

and decentralised policies. We evaluate QMIX

on a challenging set of StarCraft II microman-

agement tasks, and show that QMIX significantly

outperforms existing value-based multi-agent re-

inforcement learning methods.

1. Introduction

Reinforcement learning (RL) holds considerable promise to

help address a variety of cooperative multi-agent problems,

such as coordination of robot swarms (Hüttenrauch et al.,

2017) and autonomous cars (Cao et al., 2012).
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(a) 5 Marines map (b) 2 Stalkers & 3 Zealots map

Figure 1. Decentralised unit micromanagement in StarCraft II,

where each learning agent controls an individual unit. The goal is

to coordinate behaviour across agents to defeat all enemy units.

In many such settings, partial observability and/or com-

munication constraints necessitate the learning of decen-

tralised policies, which condition only on the local action-

observation history of each agent. Decentralised policies

also naturally attenuate the problem that joint action spaces

grow exponentially with the number of agents, often render-

ing the application of traditional single-agent RL methods

impractical.

Fortunately, decentralised policies can often be learned in a

centralised fashion in a simulated or laboratory setting. This

often grants access to additional state information, otherwise

hidden from agents, and removes inter-agent communica-

tion constraints. The paradigm of centralised training with

decentralised execution (Oliehoek et al., 2008; Kraemer

& Banerjee, 2016) has recently attracted attention in the

RL community (Jorge et al., 2016; Foerster et al., 2018).

However, many challenges surrounding how to best exploit

centralised training remain open.

One of these challenges is how to represent and use the

action-value function that most RL methods learn. On the

one hand, properly capturing the effects of the agents’ ac-

tions requires a centralised action-value function Qtot that

conditions on the global state and the joint action. On the

other hand, such a function is difficult to learn when there

are many agents and, even if it can be learned, offers no

obvious way to extract decentralised policies that allow each

agent to select only an individual action based on an indi-

vidual observation.
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The simplest option is to forgo a centralised action-value

function and let each agent a learn an individual action-value

function Qa independently, as in independent Q-learning

(IQL) (Tan, 1993). However, this approach cannot explic-

itly represent interactions between the agents and may not

converge, as each agent’s learning is confounded by the

learning and exploration of others.

At the other extreme, we can learn a fully centralised state-

action value function Qtot and then use it to guide the opti-

misation of decentralised policies in an actor-critic frame-

work, an approach taken by counterfactual multi-agent

(COMA) policy gradients (Foerster et al., 2018), as well

as work by Gupta et al. (2017). However, this requires on-

policy learning, which can be sample-inefficient, and train-

ing the fully centralised critic becomes impractical when

there are more than a handful of agents.

In between these two extremes, we can learn a centralised

but factored Qtot, an approach taken by value decompo-

sition networks (VDN) (Sunehag et al., 2017). By repre-

senting Qtot as a sum of individual value functions Qa that

condition only on individual observations and actions, a

decentralised policy arises simply from each agent selecting

actions greedily with respect to its Qa. However, VDN

severely limits the complexity of centralised action-value

functions that can be represented and ignores any extra state

information available during training.

In this paper, we propose a new approach called QMIX

which, like VDN, lies between the extremes of IQL and

COMA, but can represent a much richer class of action-

value functions. Key to our method is the insight that the

full factorisation of VDN is not necessary to extract decen-

tralised policies. Instead, we only need to ensure that a

global argmax performed on Qtot yields the same result as

a set of individual argmax operations performed on each

Qa. To this end, it suffices to enforce a monotonicity con-

straint on the relationship between Qtot and each Qa:

∂Qtot

∂Qa

≥ 0, ∀a. (1)

QMIX consists of agent networks representing each Qa,

and a mixing network that combines them into Qtot, not

as a simple sum as in VDN, but in a complex non-linear

way that ensures consistency between the centralised and

decentralised policies. At the same time, it enforces the

constraint of (1) by restricting the mixing network to have

positive weights. As a result, QMIX can represent complex

centralised action-value functions with a factored represen-

tation that scales well in the number of agents and allows

decentralised policies to be easily extracted via linear-time

individual argmax operations.

We evaluate QMIX on a range of unit micromanagement

tasks built in StarCraft II1. (Vinyals et al., 2017). Our exper-

iments show that QMIX outperforms IQL and VDN, both

in terms of absolute performance and learning speed. In par-

ticular, our method shows considerable performance gains

on a task with heterogeneous agents. Moreover, our abla-

tions show both the necessity of conditioning on the state

information and the non-linear mixing of agent Q-values in

order to achieve consistent performance across tasks.

2. Related Work

Recent work in multi-agent RL has started moving from

tabular methods (Yang & Gu, 2004; Busoniu et al., 2008)

to deep learning methods that can tackle high-dimensional

state and action spaces (Tampuu et al., 2017; Foerster et al.,

2018; Peng et al., 2017). In this paper, we focus on coopera-

tive settings.

On the one hand, a natural approach to finding policies for

a multi-agent system is to directly learn decentralised value

functions or policies. Independent Q-learning (Tan, 1993)

trains independent action-value functions for each agent

using Q-learning (Watkins, 1989). (Tampuu et al., 2017)

extend this approach to deep neural networks using DQN

(Mnih et al., 2015). While trivially achieving decentralisa-

tion, these approaches are prone to instability arising from

the non-stationarity of the environment induced by simul-

taneously learning and exploring agents. Omidshafiei et al.

(2017) and Foerster et al. (2017) address learning stabil-

isation to some extent, but still learn decentralised value

functions and do not allow for the inclusion of extra state

information during training.

On the other hand, centralised learning of joint actions can

naturally handle coordination problems and avoids non-

stationarity, but is hard to scale, as the joint action space

grows exponentially in the number of agents. Classical

approaches to scalable centralised learning include coordi-

nation graphs (Guestrin et al., 2002), which exploit con-

ditional independencies between agents by decomposing

a global reward function into a sum of agent-local terms.

Sparse cooperative Q-learning (Kok & Vlassis, 2006) is a

tabular Q-learning algorithm that learns to coordinate the

actions of a group of cooperative agents only in the states in

which such coordination is necessary, encoding those depen-

dencies in a coordination graph. These methods require the

dependencies between agents to be pre-supplied, whereas

we do not require such prior knowledge. Instead, we assume

that each agent always contributes to the global reward, and

learns the magnitude of its contribution in each state.

More recent approaches for centralised learning require

even more communication during execution: CommNet

1StarCraft and StarCraft II are trademarks of Blizzard
EntertainmentTM.
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(Sukhbaatar et al., 2016) uses a centralised network archi-

tecture to exchange information between agents. BicNet

(Peng et al., 2017) uses bidirectional RNNs to exchange

information between agents in an actor-critic setting. This

approach additionally requires estimating individual agent

rewards.

Some work has developed hybrid approaches that exploit

the setting of centralised learning with fully decentralised

execution. COMA (Foerster et al., 2018) uses a centralised

critic to train decentralised actors, estimating a counterfac-

tual advantage function for each agent in order to address

multi-agent credit assignment. Similarly, Gupta et al. (2017)

present a centralised actor-critic algorithm with per-agent

critics, which scales better with the number of agents but mit-

igates the advantages of centralisation. Lowe et al. (2017)

learn a centralised critic for each agent and apply this to

competitive games with continuous action spaces. These

approaches use on-policy policy gradient learning, which

can have poor sample efficiency and is prone to getting stuck

in sub-optimal local minima.

Sunehag et al. (2017) propose value decomposition networks

(VDN), which allow for centralised value-function learning

with decentralised execution. Their algorithm decomposes

a central state-action value function into a sum of individual

agent terms. This corresponds to the use of a degenerate

fully disconnected coordination graph. VDN does not make

use of additional state information during training and can

represent only a limited class of centralised action-value

functions.

A number of papers have established unit micromanage-

ment in StarCraft as a benchmark for deep multi-agent RL.

Usunier et al. (2017) present an algorithm using a centralised

greedy MDP and first-order optimisation. Peng et al. (2017)

also evaluate their methods on StarCraft. However, neither

requires decentralised execution. Similar to our setup is

the work of Foerster et al. (2017), who evaluate replay sta-

bilisation methods for IQL on combat scenarios with up

to five agents. Foerster et al. (2018) also uses this setting.

In this paper, we construct unit micromanagement tasks in

the StarCraft II Learning Environment (SC2LE) (Vinyals

et al., 2017) as opposed to StarCraft, because it is actively

supported by the game developers and SC2LE offers a more

stable testing environment.

QMIX relies on a neural network to transform the cen-

tralised state into the weights of another neural network,

in a manner reminiscent of hypernetworks (Ha et al., 2017).

This second neural network is constrained to be monotonic

with respect to its inputs by keeping its weights positive.

Dugas et al. (2009) investigate such functional restrictions

for neural networks.

3. Background

A fully cooperative multi-agent task can be described as

a Dec-POMDP (Oliehoek & Amato, 2016) consisting of

a tuple G = 〈S,U, P, r, Z,O, n, γ〉. s ∈ S describes the

true state of the environment. At each time step, each agent

a ∈ A ≡ {1, ..., n} chooses an action ua ∈ U , forming

a joint action u ∈ U ≡ Un. This causes a transition on

the environment according to the state transition function

P (s′|s,u) : S×U×S → [0, 1]. All agents share the same

reward function r(s,u) : S ×U → R and γ ∈ [0, 1) is a

discount factor.

We consider a partially observable scenario in which each

agent draws individual observations z ∈ Z according to

observation function O(s, a) : S × A → Z. Each agent

has an action-observation history τa ∈ T ≡ (Z × U)∗, on

which it conditions a stochastic policy πa(ua|τa) : T ×
U → [0, 1]. The joint policy π has a joint action-value

function: Qπ(st,ut) = Est+1:∞,ut+1:∞
[Rt|st,ut], where

Rt =
∑

∞

i=0
γirt+i is the discounted return.

Although training is centralised, execution is decentralised,

i.e., the learning algorithm has access to all local action-

observation histories τ and global state s, but each

agent’s learnt policy can condition only on its own action-

observation history τa.

3.1. Deep Q-Learning

Deep Q-learning represents the action-value function with a

deep neural network parameterised by θ. Deep Q-networks

(DQNs) (Mnih et al., 2015) use a replay memory to store the

transition tuple 〈s, u, r, s′〉, where the state s′ is observed

after taking the action u in state s and receiving reward r. θ

is learnt by sampling batches of b transitions from the replay

memory and minimising the squared TD error:

L(θ) =

b
∑

i=1

[

(

y
DQN
i −Q(s, u; θ)

)2
]

, (2)

where yDQN = r + γmaxu′ Q(s′, u′; θ−). θ− are the pa-

rameters of a target network that are periodically copied

from θ and kept constant for a number of iterations.

3.2. Deep Recurrent Q-Learning

In partially observable settings, agents can benefit from

conditioning on their entire action-observation history.

Hausknecht & Stone (2015) propose Deep Recurrent Q-

networks (DRQN) that make use of recurrent neural net-

works. Typically, gated architectures such as LSTM

(Hochreiter & Schmidhuber, 1997) or GRU (Chung et al.,

2014) are used to facilitate learning over longer timescales.
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3.3. Independent Q-Learning

Perhaps the most commonly applied method in multi-agent

learning is independent Q-learning (IQL) (Tan, 1993),

which decomposes a multi-agent problem into a collec-

tion of simultaneous single-agent problems that share the

same environment. This approach does not address the non-

stationarity introduced due to the changing policies of the

learning agents, and thus, unlike Q-learning, has no conver-

gence guarantees even in the limit of infinite exploration.

In practice, nevertheless, IQL commonly serves as a sur-

prisingly strong benchmark even in mixed and competitive

games (Tampuu et al., 2017; Leibo et al., 2017).

3.4. Value Decomposition Networks

By contrast, value decomposition networks (VDNs) (Sune-

hag et al., 2017) aim to learn a joint action-value func-

tion Qtot(τ ,u), where τ ∈ T ≡ T n is a joint action-

observation history and u is a joint action. It represents

Qtot as a sum of individual value functions Qa(τ
a, ua; θa),

one for each agent a, that condition only on individual

action-observation histories:

Qtot(τ ,u) =
n
∑

i=1

Qi(τ
i, ui; θi). (3)

Strictly speaking, each Qa is a utility function (Guestrin

et al., 2002) and not a value function since by itself it does

not estimate an expected return. However, for termino-

logical simplicity we refer to both Qtot and Qa as value

functions.

The loss function for VDN is equivalent to (2), where Q

is replaced by Qtot. An advantage of this representation is

that a decentralised policy arises simply from each agent

performing greedy action selection with respect to its Qa.

4. QMIX

In this section, we propose a new approach called QMIX

which, like VDN, lies between the extremes of IQL and

centralised Q-learning, but can represent a much richer

class of action-value functions.

Key to our method is the insight that the full factorisation

of VDN is not necessary in order to be able to extract de-

centralised policies that are fully consistent with their cen-

tralised counterpart. Instead, for consistency we only need

to ensure that a global argmax performed on Qtot yields

the same result as a set of individual argmax operations

performed on each Qa:

argmax
u

Qtot(τ ,u) =







argmaxu1 Q1(τ
1, u1)

...

argmaxun Qn(τ
n, un)






. (4)

This allows each agent a to participate in a decentralised

execution solely by choosing greedy actions with respect to

its Qa. As a side effect, if (4) is satisfied, then taking the

argmax of Qtot, required by off-policy learning updates, is

trivially tractable.

VDN’s representation is sufficient to satisfy (4). However,

QMIX is based on the observation that this representation

can be generalised to the larger family of monotonic func-

tions that are also sufficient but not necessary to satisfy (4).

Monotonicity can be enforced through a constraint on the

relationship between Qtot and each Qa:

∂Qtot

∂Qa

≥ 0, ∀a ∈ A. (5)

To enforce (5), QMIX represents Qtot using an architecture

consisting of agent networks, a mixing network, and a set

of hypernetworks (Ha et al., 2017). Figure 2 illustrates the

overall setup.

For each agent a, there is one agent network that repre-

sents its individual value function Qa(τ
a, ua). We represent

agent networks as DRQNs that receive the current individ-

ual observation oat and the last action ua
t−1 as input at each

time step, as shown in Figure 2c.

The mixing network is a feed-forward neural network that

takes the agent network outputs as input and mixes them

monotonically, producing the values of Qtot, as shown in

Figure 2a. To enforce the monotonicity constraint of (5), the

weights (but not the biases) of the mixing network are re-

stricted to be non-negative. This allows the mixing network

to approximate any monotonic function arbitrarily closely

(Dugas et al., 2009).

The weights of the mixing network are produced by sep-

arate hypernetworks. Each hypernetwork takes the state

s as input and generates the weights of one layer of the

mixing network. Each hypernetwork consists of a single

linear layer, followed by an absolute activation function, to

ensure that the mixing network weights are non-negative.

The output of the hypernetwork is then a vector, which is

reshaped into a matrix of appropriate size. The biases are

produced in the same manner but are not restricted to being

non-negative. The final bias is produced by a 2 layer hyper-

network with a ReLU non-linearity. Figure 2a illustrates the

mixing network and the hypernetworks.

The state is used by the hypernetworks rather than being

passed directly into the mixing network because Qtot is

allowed to depend on the extra state information in non-

monotonic ways. Thus, it would be overly constraining to

pass some function of s through the monotonic network

alongside the per-agent values. Instead, the use of hyper-

networks makes it possible to condition the weights of the

monotonic network on s in an arbitrary way, thus integrat-

ing the full state s into the joint action-value estimates as
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(a) (b) (c)

Figure 2. (a) Mixing network structure. In red are the hypernetworks that produce the weights and biases for mixing network layers shown

in blue. (b) The overall QMIX architecture. (c) Agent network structure. Best viewed in colour.

flexibly as possible.

QMIX is trained end-to-end to minimise the following loss:

L(θ) =

b
∑

i=1

[

(

ytoti −Qtot(τ ,u, s; θ)
)2
]

, (6)

where b is the batch size of transitions sampled from the

replay buffer, ytot = r + γmaxu′ Qtot(τ
′,u′, s′; θ−) and

θ− are the parameters of a target network as in DQN. (6) is

analogous to the standard DQN loss of (2). Since (4) holds,

we can perform the maximisation of Qtot in time linear in

the number of agents (as opposed to scaling exponentially

in the worst case).

4.1. Representational Complexity

The value function class representable with QMIX includes

any value function that can be factored into a non-linear

monotonic combination of the agents’ individual value func-

tions in the fully observable setting. This expands upon the

linear monotonic value functions that are representable by

VDN. However, the constraint in (5) prevents QMIX from

representing value functions that do not factorise in such a

manner.

Intuitively, any value function for which an agent’s best

action depends on the actions of the other agents at the

same time step will not factorise appropriately, and hence

cannot be represented perfectly by QMIX. However, QMIX

can approximate such value functions more accurately than

VDN. Furthermore, it can take advantage of the extra state

information available during training, which we show em-

pirically. A more detailed discussion on the representation

complexity is available in the supplementary materials.

Agent 2

A B
A

g
en

t
1

A 7 7

B 7 7

State 2A

Agent 2

A B

A
g

en
t
1

A 0 1

B 1 8

State 2B

Table 1. Payoff matrices of the two-step game after the Agent 1

chose the first action. Action A takes the agents to State 2A and

action B takes them to State 2B.

5. Two-Step Game

To illustrate the effects of representational complexity of

VDN and QMIX, we devise a simple two-step cooperative

matrix game for two agents.

At the first step, Agent 1 chooses which of the two matrix

games to play in the next timestep. For the first time step,

the actions of Agent 2 have no effect. In the second step,

both agents choose an action and receive a global reward

according to the payoff matrices depicted in Table 1.

We train VDN and QMIX on this task for 5000 episodes

and examine the final learned value functions in the limit

of full exploration (ǫ = 1). Full exploration ensures that

each method is guaranteed to eventually explore all avail-

able game states, such that the representational capacity

of the state-action value function approximation remains

the only limitation. The full details of the architecture and

hyperparameters used are provided in the supplementary

material.

Table 2, which shows the learned values for Qtot, demon-

strates that QMIX’s higher representational capacity allows
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(a)

State 1

A B

A 6.94 6.94

B 6.35 6.36

State 2A

A B

6.99 7.02

6.99 7.02

State 2B

A B

-1.87 2.31

2.33 6.51

(b)

A B

A 6.93 6.93

B 7.92 7.92

A B

7.00 7.00

7.00 7.00

A B

0.00 1.00

1.00 8.00

Table 2. Qtot on the two-step game for (a) VDN and (b) QMIX.

it to accurately represent the joint-action value function

whereas VDN cannot. This directly translates into VDN

learning the suboptimal strategy of selecting Action A at

the first step and receiving a reward of 7, whereas QMIX

recovers the optimal strategy from its learnt joint-action

values and receives a reward of 8.

6. Experimental Setup

In this section, we describe the decentralised StarCraft II

micromanagement problems to which we apply QMIX and

the ablations we consider.

6.1. Decentralised StarCraft II Micromanagement

Real-time strategy (RTS) games have recently emerged as

challenging benchmarks for the RL community. StarCraft,

in particular, offers a great opportunity to tackle competitive

and cooperative multi-agent problems. Units in StarCraft

have a rich set of complex micro-actions that allow the learn-

ing of complex interactions between collaborating agents.

Previous work (Usunier et al., 2017; Foerster et al., 2018;

Peng et al., 2017) applied RL to the original version of Star-

Craft: BW, which made use of the standard API or related

wrappers (Synnaeve et al., 2016). We perform our experi-

ments on the StarCraft II Learning Environment (SC2LE)

(Vinyals et al., 2017), which is based on the second version

of the game. Because it is supported by the developers of the

game, SC2LE mitigates many of the practical difficulties in

using StarCraft as an RL platform, such as the dependence

on complicated APIs and external emulation software.

In this work, we focus on the decentralised micromanage-

ment problem in StarCraft II, in which each of the learning

agents controls an individual army unit. We consider com-

bat scenarios where two groups of identical units are placed

symmetrically on the map. The units of the first, allied,

group are controlled by the decentralised agents. The en-

emy units are controlled by a built-in StarCraft II AI, which

makes use of handcrafted heuristics. The initial placement

of units within the groups varies across episodes. The diffi-

culty of the computer AI controlling the enemy units is set

to medium. At the beginning of each episode, the enemy

units are ordered to attack the allies. We compare our re-

sults on a set of maps where each unit group consists of 3

Marines (3m), 5 Marines (5m), 8 Marines (8m), 2 Stalkers

and 3 Zealots (2s 3z), 3 Stalkers and 5 Zealots (3s 5z), or 1

Colossus, 3 Stalkers and 5 Zealots (1c 3s 5z).

Similar to the work of Foerster et al. (2018), the action

space of agents consists of the following set of discrete

actions: move[direction], attack[enemy id],

stop, and noop. Agents can only move in four directions:

north, south, east, or west. A unit is allowed to perform the

attack[enemy id] action only if the enemy is within

its shooting range. This facilitates the decentralisation of the

problem and prohibits the usage of the attack-move macro-

actions that are integrated into the game. Furthermore, we

disable the following unit behaviour when idle: responding

to enemy fire and attacking enemies if they are in range. By

doing so, we force the agents to explore in order to find the

optimal combat strategy themselves, rather than relying on

built-in StarCraft II utilities.

Partial observability is achieved by the introduction of unit

sight range, which restricts the agents from receiving in-

formation about allied or enemy units that are out of range.

Moreover, agents can only observe others if they are alive

and cannot distinguish between units that are dead or out of

range.

At each time step, the agents receive a joint reward equal

to the total damage dealt on the enemy units. In addition,

agents receive a bonus of 10 points after killing each op-

ponent, and 200 points after killing all opponents. These

rewards are all normalised to ensure the maximum cumula-

tive reward achievable in an episode is 20.

The full details of the environmental setup, architecture and

training are available in the supplementary material.

6.2. Ablations

We perform ablation experiments in order to investigate the

influence of the inclusion of extra state information and

the necessity of non-linear transformations in the mixing

network.

First, we analyse the significance of extra state information

on the mixing network by comparing against QMIX without

hypernetworks. Thus, the weights and biases of the mixing

network are learned in the standard way, without condition-

ing on the state. We refer to this method as QMIX-NS. We

take the absolute value of the weights in order to enforce

the monotonicity constraint.

Second, we investigate the necessity of non-linear mixing

by removing the hidden layer of the mixing network. This

method can be thought of as an extension of VDN that uses
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(a) 3m (b) 5m (c) 8m

(d) 2s 3z (e) 3s 5z (f) 1c 3s 5z

Figure 3. Win rates for IQL, VDN, and QMIX on six different combat maps. The performance of the heuristic-based algorithm is shown

as a dashed line.

the state s to perform a weighted sum over Qa values. We

call this method QMIX-Lin.

Third, we investigate the significance of utilising the state

s in comparison to the non-linear mixing. To do this we

extend VDN by adding a state-dependent term to the sum of

the agent’s Q-Values. This state-dependent term is produced

by a network with a single hidden layer of 32 units and a

ReLU non-linearity, taking in the state s as input (the same

as the hypernetwork producing the final bias in QMIX). We

refer to this method as VDN-S.

We also show the performance of a non-learning heuristic-

based algorithm with full observability, where each agent

attacks the closest enemy and continues attacking the same

target until the unit dies. Afterwards, the agent starts attack-

ing the nearest enemy and so forth.

7. Results

In order to evaluate each method’s performance, we adopt

the following evaluation procedure: for each run of a

method, we pause training every 100 episodes and run 20

independent episodes with each agent performing greedy

decentralised action selection. The percentage of these

episodes in which the method defeats all enemy units within

the time limit is referred to as the test win rate.

Figures 3 and 4 plot the mean test win rate across 20 runs

for each method on selected maps, together with 95% confi-

dence intervals. The graphs for all methods on all maps are

available in the supplementary material.

7.1. Main Results

In all scenarios, IQL fails to learn a policy that consistently

defeats the enemy. In addition, the training is highly unsta-

ble due to the non-stationarity of the environment which

arises due to the other agents changing their behaviour dur-

ing training.

The benefits of learning the joint action-value function can

be demonstrated by VDN’s superior performance over IQL

in all scenarios. VDN is able to more consistently learn

basic coordinated behaviour, in the form of focus firing

which allows it to win the majority of its encounters on the

5m and 8m maps. On the 8m map, this simple strategy

is sufficient for good performance, as evidenced by the

extremely high win rate of the heuristic-based algorithm,

and explains the performance parity with QMIX. However,

on the 3m task, which requires more fine-grained control, it

is unable to learn to consistently defeat the enemy.

QMIX is noticeably the strongest performer on all of the

maps, in particular on the maps with hetergenous agent

types. The largest performance gap can be seen in the
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(a) 3m (b) 2s 3z (c) 3s 5z

Figure 4. Win rates for QMIX and ablations on 3m, 2s 3z and 3s 5z maps.

3s 5z and 1c 3s 5z maps, where VDN is unable to reach

the performance of the simple heuristic. The superior rep-

resentational capacity of QMIX combined with the state

information presents a clear benefit over a more restricted

linear decomposition.

7.2. Ablation Results

Our additional ablation experiments reveal that QMIX out-

performs, or is competitive with, all of its ablations dis-

cussed in Section 6.2. Figure 4a shows that non-linear value

function factorisation is not always required on a map with

homogeneous agent types. However, the additional com-

plexity introduced through the extra hidden layer does not

slow down learning. In contrast, Figures 4b and 4c show

that on a map with heterogeneous agent types a combination

of both central state information and non-linear value func-

tion factorisation is required to achieve good performance.

QMIX-NS performs on par or slightly better than VDN in

both scenarios, which suggests that a non-linear decompo-

sition is not always beneficial when not conditioning on

the central state in complex scenarios. Additionally, the

performance of VDN-S compared to QMIX-Lin shows the

necessity of allowing a non-linear mixing in order to fully

leverage central state information.

7.3. Learned Policies

We examine the learned behaviours of the policies in order

to better understand the differences between the strategies

learnt by the different methods. On the 8m scenario, both

QMIX and VDN learn the particularly sophisticated strat-

egy of first positioning the units into a semicircle in order

to fire at the incoming enemy units from the sides (as op-

posed to just head on). On the 2s 3z scenario, VDN first

runs left and then attacks the enemy once they are in range

with no regards to positioning or unit match-ups. QMIX,

on the other hand learns to position the Stalkers so that

the enemy Zealots cannot attack them. This is especially

important since Zealots counter Stalkers. QMIX achieves

this by having the allied Zealots first block off and then

attack the enemy Zealots (whilst the Stalkers fire from a

safe distance), before moving on to the enemy Stalkers.

The same behaviour is observed in the 3s 5z scenario for

QMIX. VDN-S does not learn to protect the Stalkers from

the Zealots, and first positions the units around their starting

location and then attacks the enemy as they move in.

The initial hump in the performance of both VDN and IQL

is due to both methods initially learning the simple strategy

of just attacking the first visible enemy (which is quite

successful as shown by the heuristic). However, due to

exploratory learning behaviour, they also attempt to move

around (instead of just firing), which results in the rapid

decline in performance. IQL is unable to then recover the

initial strategy, whereas VDN learns how to combine small

movements and firing together.

8. Conclusion

This paper presented QMIX, a deep multi-agent RL method

that allows end-to-end learning of decentralised policies in

a centralised setting and makes efficient use of extra state

information. QMIX allows the learning of a rich joint action-

value function, which admits tractable decompositions into

per-agent action-value functions. This is achieved by impos-

ing a monotonicity constraint on the mixing network.

Our results in decentralised unit micromanagement tasks in

StarCraft II show that QMIX improves the final performance

over other value-based multi-agent methods that employ less

sophisticated joint state-value function factorisation, as well

as independent Q-learning.

In the near future, we aim to conduct additional experiments

to compare the methods across tasks with a larger number

and greater diversity of units. In the longer term, we aim

to complement QMIX with more coordinated exploration

schemes for settings with many learning agents.
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Makhzani, Alireza, Küttler, Heinrich, Agapiou, John,

Schrittwieser, Julian, Quan, John, Gaffney, Stephen, Pe-

tersen, Stig, Simonyan, Karen, Schaul, Tom, van Has-

selt, Hado, Silver, David, Lillicrap, Timothy, Calderone,

Kevin, Keet, Paul, Brunasso, Anthony, Lawrence, David,

Ekermo, Anders, Repp, Jacob, and Tsing, Rodney. Star-

Craft II: A New Challenge for Reinforcement Learning.

arXiv preprint arXiv:1708.04782, 2017.

Watkins, Christopher. Learning from delayed rewards. PhD

thesis, University of Cambridge England, 1989.

Yang, Erfu and Gu, Dongbing. Multiagent reinforcement

learning for multi-robot systems: A survey. Technical

report, 2004.


