
Research Institute for Advanced Computer Science
NASA Ames Research Center

_/3 o 8 z--'

QMR: a Quasi-Minimal Residual Method

for Non-Hermitian Linear Systems

Roland W. Freund and No_l M. Nachtigal

(_ASA-CR-IGQ_2) QMR: A OUASI-MINIMAL

RE_IOUAL MLTHnD FOR NON-HERMITIAN LINEAR

SYSTEMS (Research Inst. for Advanced

ComDutJr 9ci_:nce) 3b p CSCL

NOi-32d10

09_ Unclas

G31_I 0043032

RIACS Technical Report 90.51

December 1990

1_ --i Iw

k

QMR: a Quasi-Minimal Residual Method

for Non-Hermitian Linear Systems

Roland W. Freund and Noel M. Nachtigal

The Research Institute for Advanced Computer Science is operated by

Universities Space Research Association (USRA),

The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative

Agreement NCC 2-387" between NASA and USRA.

QMR: a Quasi-Minimal Residual Method

for Non-Hermitian Linear Systems

Roland W. Freund

RIACS, Mail Stop Ellis Street

NASA Ames Research Center

Moffett Field, CA 94035, USA

and

Institut fiir Angewandte Mathematik und Statistik

Universit/it Wiirzburg

D-W8700 Wiirzburg, Federal Republic of Germany

and

Noel M. Nachtigai

Department of Mathematics

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Summary. The biconjugate gradient (BCG) method is the "natural" generalization of the

classical conjugate gradient algorithm for Hermitian positive definite matrices to general

non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible

to possible breakdowns and numerical instabilities. In this paper, we present a novel BCG

like approach, the quasi-minimal residual (QMR) method, which overcomes the problems

of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric

Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from

the QMR process. Some further properties of the QMR approach are given and an error

bound is presented. Finally, numerical experiments are reported.

Subjec_ Classification: AMS(MOS): 65F10, 65N20; CR: G1.3.

Running Title: A Quasi-Minimal Residual Method

This work was supported in part by DARPA via Cooperative Agreement NCC 2-387

between NASA and the Universities Space Research Association (USRA).

1. Introduction

The solution of large sparse systems of linear equations

Ax "-b (1.1)

is one of the most frequently encountered tasks in numerical computations. For exam-

ple, such systems arise from finite difference or finite element approximations to partial

differential equations. For Hermitian positive definite coefficient matrices A, the classical

conjugate gradient method (CG hereafter) of Hestenes and Stiefel [11] is one of the most

powerful iterative schemes for solving (1.1), especially when combined with a precondi-

tioning technique. For general non-Hermitian matrices, the situation is less satisfactory.

An ideal CG-type method for solving non-Hermitian linear systems would have features

similar to the classical CG algorithm. It would produce approximate solutions to (1.1)

which:

(i) are characterized by a minimization property over Krylov subspaces generated by A;

(ii) can be computed with little work and low storage requirements per iteration.

Unfortunately, for general non-Hermitian matrices, there are no CG-type algorithms which

fulfill both requirements (i) and (ii); this was proved by Faber and Manteuffel [2]. Instead,

most CG-type methods for non-Hermitian linear systems satisfy either (i) or (ii).

In the first category, the most successful scheme is the generalized minimal residual

algorithm (GMRES) by Saad and Schultz [21]. It fumlls (i), but not (ii), since work and

storage per iteration grow linearly with the iteration number. Consequently, in practice,

one cannot afford to run the full algorithm and it is necessary to use restarts. For difficult

problems, this often results in very slow convergence.

In the second category, the archetype is the biconjugate gradient algorithm (BCG

hereafter) due to Lanczos [13]. At least in the generic case, BCG is based on simple three-

term recurrences, which keep work and storage requirements constant at each iteration.

However, the BCG iterates are defined by a Galerkin condition rather than a minimization

property (i), which means that the algorithm can exhibit -- and typically does -- a rather

irregular convergence behavior with wild oscillations in the residual norm. Furthermore,

in the BCG algorithm, breakdowns -- more precisely, division by 0 -- may occur. In finite

precision arithmetic, such exact breakdowns are very unlikely; however, near-breakdowns

may occur, leading to numerical instabilities in subsequent iterations. Recently, two mod-

ifications of BCG, namely CGS [22] and Bi-CGSTAB [24], have been proposed. However,

while these methods seem to work well in many cases, they do not address the problem

of breakdowns, and thus they too, like BCG, are susceptible to instabilities. In exact

arithmetic, both CGS and Bi-CGSTAB break down every time BCG does.

In this paper, we present a novel BCG-like approach for general nonsingular non-

Hermitian linear systems (1.1), the quasi-minimal residual algorithm (QMR hereafter),

which overcomes the problems of BCG. The method uses a look-ahead variant of the

nonsymmetric Lanczos process to generate basis vectors for the Krylov subspaces induced

by A. The look-ahead Lanczos approach was first proposed by Taylor [23] and Parlett,

Taylor, and Liu [18]. For the QMR method, we use the implementation of the look-ahead

Lanczos process recently developed by Freund, Gutknecht, and Nachtigal [6, 7]. Using the

Lanczos basis, the actual QMR iterates are then defined by a relaxed version of (i), namely

a quasi-minimal residual property. This approach was first proposed by Freund [5] for the

special case of linear systems with complex symmetric coefficient matrices A = A T.

The QMR method can be implemented using only short recurrences and hence it still

satisfies the requirement (ii). The quasi-minimal residual property ensures that QMR,

unlike BCG, converges smoothly; moreover, existing BCG iterates can also be easily and

stably recovered from the QMR process. Finally, for the QMR method, it is possible to

obtain error bounds which are essentially the same as the standard bounds for GMRES.

To the best of our knowledge, this is the first convergence result for a BCG-like algorithm.

The outline of this paper is as follows. In Section 2, the implementation of the look-

ahead Lanczos algorithm derived in [6, 7] is briefly outlined. In Section 3, we describe

the basic idea of the QMR approach. In Section 4, details of an implementation of the

QMR algorithm are given. In Section 5, we discuss the connection of QMR with BCG.

In Section 6, a convergence theorem for QMR is derived. In Section 7, we show how to

incorporate preconditioning into the QMR method and describe two preconditioners which

we have used for our numerical tests. In Section 8, we present numerical examples. Finally,

in Section 9, we make some concluding remarks.

Throughout the paper, all vectors and matrices, unless otherwise stated, are assumed

to be complex. As usual, M T = (mji) and M H = (mji) denote the transpose and

the conjugate transpose, respectively, of the matrix M = (rnii). We use am,,x(M) and

amin(M) for the largest and smallest singular value of M, respectively. The vector norm

Ilxll = _ is always the Euclidean norm and IIMII = am,,,,(M) is the corresponding

matrix norm. The set of eigenvalues of a square matrix M is denoted by A(M). We use

the notation

gn(c,B) := span{c, Bc,...,Bn-lc}

for the nth Krylov subspace of C N generated by c E C N and the N x N matrix B.

Furthermore, it is always assumed that A is a complex, in general non-Hermitian, N x N

matrix.

Finally, one more note. In our formulations of BCG and of the nonsymmetric Lanczos

algorithm, we use A T rather than A H. This was a deliberate choice in order to avoid

complex conjugation of the scalars in the recurrences; the algorithms can be formulated

equally well in either terms.

2. The Look-Ahead Lanczos Algorithm

Given two nonzero starting vectors vl E C N and wl E C N, the classical nonsymmetric

Lanczos method [12], [25, pp. 388-394] generates two sequences of vectors vl, v2,..., vn

and wl,w2,...,w,,, n = 1,2,..., such that

span{vl,v2,...,v,} = K,(vI,A),

span {Wl,W2,...,wn} = K,(wl,AT),

(2.1)

and

0 if j # I, (2.2)wTvl= dj#O ifj=l.

The actual construction of each new pair v,,+l and w,,+l of Lanczos vectors is based on

two simple three-term recurrences. If

T =0, (2.3)Wn+lVn+l

the Lanczos algorithm needs to be terminated, since (2.3) would lead to a division by 0 at

the next iteration. In exact arithmetic, (2.3) will occur after a finite number, m = n (< N),

of steps. If (2.3) is caused by vm+l = 0 or wm+_ = 0, then Kin(v1, A) is A-invariant or

Km(w_,A T) is AT-invariant, respectively, and, by (2.1), the Lanczos process has con-

structed a basis for this invariant subspace. This is referred to as regular _ermina*ion.

Unfortunately, it can also happen that (2.3) is satisfied with v_,+_ # 0 and w,,,+_ # 0. In

this case, the Lanczos algorithm stops before an invariant subspace has been found. This

is referred to as serious breakdown [25, p. 389].

It is the possibility of serious breakdowns, or, in finite precision arithmetic, of near-

breakdowns, i.e.

T vw,,+l ,,+_ _ O, w,,+_ # O, v,,+_ _ O,

that has brought the classical nonsymmetric Lanczos algorithm into discredit. However,

there are so-called look-ahead [23, 18] variants of the Lanczos process which allow to skip

-- except in the very special case of an incurable breakdown [23] -- over those iterations

in which the standard algorithm would break down. We refer the reader to [9, 10, 17]

for a detailed theory of the look-ahead Lanczos process. In [6, 7], we have developed a

robust implementation of the look-ahead Lanczos algorithm, which we briefly sketch here;

for details and the actual FORTRAN code, see [6, 7].

Like the classical process, the look-ahead Lanczos algorithm generates two sequences of

vectors vl,v2,...,v,, and wl,w2,...,w,,, n = 1,2,..., which satisfy (2.1). Possible break-

downs are prevented by relaxing the biorthogonality condition (2.2) whenever a breakdown

(exact or near) would occur. More precisely, for each fixed n = 1, 2,..., the Lanczos vec-

tors vl,..., v, and wl,..., w,, generated by the look-ahead algorithm can be grouped into

3

k = k(n) blocks

El = [vnl Vntq-1 "'" Vnl+l--1] ,

Wk "- [Vnk 13n_,q-1 "'" vn]_

Wt = [w,, wm+l "'" win+l-l],

l= 1,2,...,k- 1,

wk = [_0._ w._+l ... w.],

(2.4)

where

1 = nl < n2 < "" < nt < ." < nk <_ n < nk+l.

The blocks are constructed such that, instead of (2.2), we have

wTv_ _- r_o
ifj #l,

Dt if j = l,k

j,l= 1,2,...,k, (2.5)

where

Dt is nonsingular, I = 1, 2,..., k - 1, and Dk is nonsingular if n = nk+l -- 1. (2.6)

In the sequel, we denote by

ht=nt+l-nl, l=l,2,...,k-1, hk=n--nk

the number of vectors in each block. The first vectors v, t and w m in each block are

called regular, the remaining vectors are called inner. The kth block is called complete if

n = nt+l - 1; in this case, at the next step n + 1, a new block is started with the regular

vectors v,,+l and w,,+ t. Otherwise, if n < nt+l - 1, the kth block is incomplete and at

the next step, the Lanczos vectors v,+l and w,+l are added to the kth block as inner

vectors.

With these preliminaries, the basic structure of the look-ahead Lanczos algorithm is

as follows.

Algorithm 2.1 (Sketch of the look-ahead Lanczos process).

o) Choose vl, wl e c N with IIv,II= IIw,ll = 1;

Set VI = Vl, W1 = wl, 91 = wTv1;

Set nl = l, k = l, vo = wo = O, Vo = Wo = O, Pl = _l = l;

Forn = 1,2,... :

I) Decide whether to construct v,+l and w,,+l as regular or inner vectors

and go to 2) or 3), respectively;

2) (Regu/ar step.) Compute

_,+1 = Av, - VkD;1WTAv, - Vk_IDkl_,wT-1Av,,

_.+1 ATw. WkD'_TvTATw. ,,r n-T _zT ATw-- -- _ Vrk--l't'lk-1 rk-1 n,

(2.7)

4

setnk+1 = n + l, k = k + l, Vk = Wk = O, and go to 4);

a) seep.)Compute

(2.8)

4) Compute p.+l = I1 .+111and n+l = I1 -+III;
IfP.+i = 0 or _.+i = O, stop;

Otherwise, set

Vn+l = Vn+l/Pn+l, Wn+l = %On+l/{n+l,

(2.9)

Vk = [Vk V,+l], Wk = [Wk W,+l], D k = W[V k .

If only regular steps 2) are performed, all blocks have size ht = 1 and Algorithm 2.1 reduces

to the classical Lanczos process. Therefore, the strategy for the decision in step 1) should

be such that regular steps are performed whenever possible and blocks of size ht > 1 are

built only to avoid exact or near-breakdowns. In [6], we proposed a practical procedure

for the decision in step 1) based on three different checks. Clearly, for a regular step, it

is necessary that Dk is nonsingular. Therefore, one of the checks monitors the relative

size of amin(Dk). The other two checks monitor the size of the components along the two

previous blocks of vectors Vk and Vk-1 respectively Wk and Wk-1 in (2.7). A regular step

is performed only if these terms do not dominate the components Av, respectively ATw,

in the new Krylov subspaces. These checks are necessary to ensure linear independence of

the La.nczos vectors. We refer the reader to [6] for details.

At each step, Algorithm 2.1 requires the computation of Euclidean norms of two

vectors, v,+l and w,+l, of length N. In addition, inner products of vectors of length N

occur in the terms wT_IAvn, vT_IAwn, wTvk, and, if a regular step is performed, in

WTAv, and VTAw,. However, as shown in [6], all these inner products can be generated

stably based on the actual computation of only two inner products per iteration. Therefore,

Algorithm 2.1 requires the same number of inner products per iteration as the standard

nonsymmetric Lanczos process.

Note that, in (2.8), the inner recurrence coefficients Q, r/j, j = 0, 1,..., r/0 = 0, are

still arbitrary. For example, Chebyshev iteration [14] would be a possible choice for these

coefficients. On the other hand, in practice, the blocks built by the look-ahead Lanczos

algorithm are usually small and the choice Q - r/j - 0 is feasible.

Next, we list some properties of Algorithm 2.1 which will be used in the sequel. First,

in view of (2.9), we have

IIv.II- IIw.II- 1, n- 1,2, (2.10)

It is convenient to introduce the notation

v(")=[,, ,2 ... ,.] (=[y, v2 ... yk]),

w(")=[wl w2 ... w.] (=[w, w2 ... wk]).
(2.11)

Hence, by (2.1),

= c"}.
(2.12)

Moreover, the recursions for the v's in (2.7) and (2.8) can be rewritten in matrix formulation

as follows:

AV (')= V(n)H ('0+[0 ..- 0 _n+1]. (2.13)

Here,

H (") :=

"al _2 0 ... 0

')'2 _2

0 "'. ". "'. 0

• • • •

"" '" "" _k

0 .-- 0 7k a_

is a n x n block tridiagonal matrix with blocks of the form

(2.14)

O_1 =

* * 0 .." 0 *"

• • • •

.Pnt+ l *

0 On,+2 "" "'. 0 "

0 0 phi+t-1 *

[i0 n]"-. 0 (2.15), "71:

0

The blocks/_t are in general full matrices. Furthermore, for 1 = 1,..., k - 1, the matrices

at, fit, and 7t are of size hi x hi, hi-1 x hi, and hi x hi-a, respectively. The matrices ak, _k,

and "rk corresponding to the current block k are of size hk x hk, hk-1 x hk, and hk x hk-1,

respectively. Here hk = hk if the kth block is complete.

In view of (2.14) and (2.15), H ('0 is an upper Hessenberg matrix with subdiagonal

elements

pj > O, j = 2,3,...,n. (2.16)

In exact arithmetic, the stopping criterion in step 4) of Algorithm 2.1 will be satisfied

after at most N steps _ except in a very special situation. Recall that in order to close the

6

current block k, it is necessary that wTvk is nonsingular. However, in general, it cannot be

excluded that Algorithm 2.1 produces infinite blocks Vk and Wk of nonzero Lanczos vectors

such that wTvk is the infinite zero matrix. This is called an incurable breakdown [23];

such a breakdown is very rare and does not present a problem in practice. Furthermore,

even in the case of an incurable breakdown, the look-ahead Lanczos process still yields

information on the spectrum of A, as Taylor [23] showed in his Mismatch Theorem (see

also [9, 17]). For later use, we summarize the termination properties of the look-ahead

Lanczos process in the following

Proposition 2.2. There is a "termination index" m __ N such that, in exact arithmetic,

Algorithm 2.1 will either stop in step n = m with pm+l = 0 or _m+l = O, or, starting with

the regular vectors vm+l and win+l, an incurable breakdown will occur. If p,-,,+l = 0 or

(m+l "- O, then vl,... ,vm or wl,... ,wm span the A-invariant subspace Km(vl,A) or the

A T-invariant subspace K,-, (wl , AT), respectively. Moreover, in all cases,

A(H (m)) C_ A(A). (2.17)

3. The Quasi-Minimal Residual Approach

In this section, we describe the basic idea of the QMR approach for the solution of linear

systems (1.1). From now on, it is always assumed that A is nonsingular.

Given any initial guess z0 E C N for the exact solution A -1 b of (1.1), we will construct

iterates x,, n = 1, 2,..., such that

z, E z0 + K,(,0,A). (3.1)

Let r, = b - Axn denote the residual vector corresponding to the nth iterate x,, and set

p0 -- lit011, ,, --,'0/p0. (3.2)

Let vl, v2,..., v, be the right Lanczos vectors generated by Algorithm 2.1, with the nor-

realized initial residual vl as one of the two starting vectors. From (2.12), the v's span

K,(ro, A), and hence we have the pararnetrization

x,_ = x0 + V(")z, z E C", (3.3)

for all possible iterates (3.1). Note that the second starting vector, Wl E C N, is still

unspecified. Due to the lack of a criterion for the choice of wl, one usually sets wl = va in

practice.

Next, letting

H!"):= [H(")] e(")=[0 --. 0 1]TERn, (3.4)

we can rewrite (2.13) as

AV (") = V(.+I)H(,,).

From (3.2) and (3.5), the residual vectors corresponding to (3.3) satisfy

(3.5)

r. = ro - AV(")z = ro - V("+I)H_")z = V ("+1) [_(.+1) ")z)kP0_l -- He (, (3.6)

_(,+1) [1 0 .-. o]T ER"+l. Next, weintroducean(n+l) x(n+l)diagonalwhere e I =

weight matrix

f_(") = diag(wl,w2,...,w,+l), wj > 0, j = 1,...,n + 1, (3.7)

to serve as a free parameter that can be used to modify the scaling of the problem. With

it, (3.6) reads

.._v,.+,

= d (") - _(n)H ")z , with d (") = wlpoe I (3.8)

Ideally, we would like to choosez E C" in (3.8) such that I[r,I[is minimal. However, since

in general V ("+1) is not unitary, this would require O(Nn 2) work, which is too expensive.

We will instead minimize just the Euclidean norm of the bracketed terms in (3.8), i.e., we

will choose z = z (n) E C" as the solution of the least squares problem

d(" - = mi . Id¢n'-]. (3.9)
zE

By (2.16), (3.4), and (3.7), H_ ") and f/(")H_ '0 are (n + 1) x n matrices with full column

rank n. This guarantees that the solution zOO of (3.9) is unique and hence, via (3.3),

defines a unique nth iterate x,. In view of the minimization property (3.9), we refer

to this iteration scheme as the quasi-minimal residual (QMR) method. Clearly, the QMR

iterates still depend on the choice of the weights w¢ in (3.7). In our numerical experiments,

the simplest scaling

wj=l, j=l,2,..., (3.10)

gave satisfactory results. Recall from (2.10) that all the columns of V ("+1) are unit vectors.

Hence, the scaling (3.10) ensures that all basis vectors vj/wj, j = 1,...,n + 1, in the

representation (3.8) of r,, have the same Euclidean length; this is a "natural" requirement.

However, better strategies for choosing _(n) might be possible, and therefore we have

formulated the QMR approach with a general scaling matrix _(n).

For the solution of the least squares problem (3.9), we use the standard approach (see,

e.g., [8, Chapter 6]) based on a QR decomposition of _(")H_"):

(")H") = (Q("))H [R(")]0 " (3.11)

Here, Q(") is a unitary (n + 1) × (n + 1) matrix, and R (") is a nonsingular upper triangular

n × n matrix. Inserting (3.11) in (3.9) yields

zcC" zE

= rain

zEC"

Hence, z (n) is given by

z(n) = (R(n))-l t(n),
T1

where t (n) = "

Tn

[too] = Q(,)d(").' [r.+l
(3.12)

Furthermore, we have

We conclude this section by summarizing the basic structure of the QMR algorithm.

9

Algorithm 3.1 (QMR algorithm).

o) Choose xo _ CN and set ro = b- Axo, po = Ilroll,va = _o/po;

Choose ,,.,, _ c N with Ilwlll= 1;

Forn=l,2,... :

1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.1;

This yields matrices V ("), V ('_+1), H(e ") which satisfy (3.5);

2) Update the QR £actorization (3.11) o[fl(")H_ ") and the vectort (") in (3.12);

3) Compute

x. = xo + V (") (R(")_-'t('O; (3.14)
\]

4) If x, has converged, stop.

10

4. Implementation Details

In this section, we give some of the details for the actual implementation of steps 2), 3),

and 4) of the QMR Algorithm 3.1. In particular, it is shown that the QMR iterates x, can

be computed with short recurrences. This approach for updating the iterates xn is based

on a technique which was first used by Paige and Saunders [16] in connection with their

SYMMLQ and MINRES algorithms for real symmetric matrices•

First, note that the QR decomposition (3.11) of f_(")H} n) can be computed by means

of n Givens rotations, taking advantage of the fact that f_(n)H(") is an upper Hessenberg

matrix• Hence, the unitary factor in (3.11) is of the form

where, for j = 1,2,...,n,

Gj =

I j-1 0

0 cj

0 -s" 7

0

sj ,

cj

2

with cj E R, sj E C, cj + lsjl 2=1.

Recall that, in view of (2.14), f_(")H ('0 is block tridiagonal. Therefore, the upper triangular

factor in (3.11) is of the form

R('0 =

61 e2 63 0 ... 0

0 62 e3 "'. ".

". 63 ". ", 0

". ". ". _k

• . •

£k

0 0 6k

(4.2)

where the blocks 61 and el are of the same size as the blocks al and ill, respectively, in (2.14).

Moreover, the diagonal blocks 6t are nonsingular upper triangular matrices. Clearly, a QR

decomposition based on unitary matrices (4.1) limits fill-in to the row above each block fit

in (2.14)• Hence each of the blocks 8t in (4.2) has possible nonzero entries only in its last

row•

Next, we no_e that the decomposition (3.11) is easily updated from the factorization

of f'l(n-1)H_n-1) at the previous step n - 1. Indeed, to obtain R (n), one only needs to

compute its last column,

... n), (4.3)

11

and append it to R (n-l). This is done by first multiplying the last column of f_(")H_ (n)

by the previous Givens rotations; by (2.14), this last column has zero entries in positions

1, 2,..., nG where

= _ max (nk-1 - 1, 1)nG

t max (nk-2 -- 1,1)

if vn is an inner vector,

if vn is a regular vector.

Therefore, only the Givens rotations with indices nG, nc + 1,..., n - 1 have to be applied,

and, by setting

i ll= o (4.4)

we obtain the desired vector (4.3) up to its last component/_n. It remains to multiply (4.4)

by a suitably chosen Givens rotation Gn which zeros out the last element r, = wn+lp=+l.

To achieve this, set

Igl v
c,,= , s-7=c.-, if/*#O,

V/I_I2+ I_1_

c. = O, s-7 = 1, if/z = O,

(4.5)

and finally one gets #n = cng + s,v. For later use, we notice that

I*._.1-- _.+,p.+_, (4.6)

which is readily verified using (4.5). The vector t(") in (3.12) is updated by setting

Clearly, t(") differs from t ("-1) only in its last two entries which are given by

r, = c,% and "_,,+1 = -s-'V _,. (4.7)

Next, we turn to the computation of the QMR iterates xn in (3.14). We define vectors

pj via

[Pl P2 ... P.]= V (") (R(")) -1 (4.8)p(-)=

12

Then, with (3.14) and (3.12), it follows that

Xn "--" Xn-- i "1-pnT-n.

It remains to show how to compute pn. In analogy to the partitioning of V (n) in (2.4) and

(2.11), we group the columns of P('_) into blocks

P(") = [P1 P_ ...

With (4.8), (4.2), and (4.9), one obtains the relation

P,,]. (4.9)

Pk = (wk- Pk-_k - Pk-2ek),_k-_,

and thus pn can be updated via short recurrences.

Finally, for step 4) of Algorithm 3.1, a convergence criterion is needed. We stop the

QMR iteration as soon as

IIr,,ll _< tot. Ilroll; (4.10)

here tol is a suitable tolerance, e.g. tol = 10 -6. In the QMR algorithm described so far,

neither the residual vectors rn nor their norms I]r,_ It are generated explicitly. However, in

part a) of the next proposition, we derive an upper bound for IIr.II which is available at

no extra cost. In our implementation, the convergence criterion is checked for this upper

bound, (4.11), rather than [Irnl[. Once this test is satisfied, we switch to checking (4.10)

for the true residual norm Ilrnl]. Typically, this is necessary only in the last one or two

iterations, since (4.11) is a good upper bound for IIr, ll (see Sections for ex_ples).

The residual vector itself can be easily updated at the expense of one additional

SAXPY per iteration, based on the recursion given in part b) of the following

Proposition 4.1. For n = 1,2,... :

a) "

IIr-II < Ilroll vq+ 1 Is,_--'s,,-ls.I (4.11)max (wl/wj) ;
j----1,...,n+l

_)

Cn_n÷l

r, = Is,,12r,,_l + v,,+_. (4.12)
t.,dn-t 1

Proof. By taking norms in (3.8) and with (3.13), we obtain

Ilr-II --<IIV("+')II"I1(_("_)-_II• I÷-+al. (4.13)

Now, from (2.10) and (2.11), V (n+l) has n + 1 columns of Euclidean norm 1, and this

implies

IIV<"+a)ll_<.,/g + 1. (4.14)

13

Furthermore, by (3.7),

Finally, by (4.7),

m_ (1/.,A.II(a("))-' II-<j=,,...,,+l

I_.+11--ifil" Is,s=... s.-is.l,

(4.15)

(4.16)

where, in view of (3.12), (3.8), and (3.2/,

÷, -I],'011,,,1. (4.17)

By combining (4.13-17), one obtains the inequality (4.11).

Now we turn to part b). By inserting z = z (n) from (3.12 / in (3.8) and using (3.11/,

one obtains

r,, -- _,+,y,,+l, (4.18)

where

and Yn in (4.18) are

(4.19)

yn.+l -- V(n+l) (_'_(n))-I (Q(n)) H

b'¥om (4.1), one readily verifies that two successive vectors y,,+l

connected by

Cn

Yn+I --" --Snyn + --Vn+l.

(Mn+l

Finally, by inserting (4.19 / in (4.18) and using the second relation in (4.7/, we arrive at

(4.12). E]

14

5. The Connection Between QMR and BCG

In this section, we are concerned with the connection between QMR and BCG. In partic-

ular, it is shown that BCG iterates can be easily recovered from the QMR process.

In the BCG approach, one aims at computing iterates x, which are characterized by

the Galerkin type condition

wT(b - Ax,) = 0 for all w 6 K,(_o,AT), xn £ xo + Kn(r0,A). (5.1)

(see, e.g., [19]). Here, _0 6 C N is any nonzero vector. Usually, one sets _0 = r0. In the

classical BCG algorithm [13, 4], the iterates (5.1) are generated as follows.

Algorithm 5.1 (BCG).

O) Choose x 0 E C N arid set q0 = r0 = b - Axo;

Choose _o 6 C N, _o # O, and set qo = to;

For n = 1,2,... :

= rn_lrn_a/qn_aAqn_l and set Xn = Xn-1 + _Snqn--1;1) Compute 6. ~T ~T

Set rn = rn-1 - 6,Aqn-a and ?n = rn-1 - 6,AT77n-1;

2) Computep. =

Set q, = rn + P.q.-a and _. = _n + P.q.-a;

3) If r, = O or {, = O , stop.

BCG is closely related to the classical nonsymmetric Lanczos algorithm. Indeed (see

e.g. [19]), for n = 1,2,...,

r,-l=¢,vn, ¢,6C, ¢#0, and _,,-1 =¢-wn, ¢,6C, ¢#0, (5.2)

where Vn and w, denote the vectors generated by the standard Lanczos process with

starting vectors

vl = 0/lIr0ll and Wl= 0/lI 0l[. (5.3)

Unfortunately, like the Lanczos algorithm, BCG is also susceptible to breakdowns and

numerical instabilities. Obviously, Algorithm 5.1 breaks down prematurely, if

~T
qn-lqn-1 = 0, rn-i # 0, rn-1 # 0, (5.4)

or

Tlr. 1=0, _.-a#0, r.-a#0, (5.5)

occurs. We will refer to (5.4) and (5.5) as breakdown of the first and second kind, respec-

tively. In general, Galerkin iterates (5.1) need not exists for every n. This is the cause

of the breakdown of the first kind. Indeed, one can show that (5.4) occurs if no BCG

iterate x,, exists. Breakdowns of the second kind have a different cause: by (5.2), (5.5) is

equivalent to a serious breakdown in the classical nonsymmetric Lanczos process.

15

Next, we rewrite the Galerkin condition (5.1) in terms of the look-ahead Lanczos

Algorithm 2.1, started with the initial vectors (5.3). This yields a formulation of the BCG

approach for which breakdowns of the second kind, except for ones caused by an incurable

breakdown in the look-ahead Lanczos process, cannot occur. In analogy to (3.3), we use

the parametrization

z, = Zo + V(")u ("), u (") E C n, (5.6)

for the BCG iterates. Then, by (2.13), the corresponding residual vector satisfies

with f(")=[po 0 ... 0]TER '_.

(5.7)

By inserting (5.7) in (5.1) and using (2.12), it follows that the iterate (5.6) satisfies (5.1)

if, and only if,

(5.8)

To simplify the discussion of (5.8), we will attempt to recover the BCG iterate only when

the current block k in Algorithm 2.1 is complete. Therefore, in the sequel, it is always

assumed that n = n_.+z - 1. This ensures that, in view of (2.5-6), the linear system (5.7)

reduces to

= f(n), (5.9)

from which we can now derive a simple criterion for the existence of the nth BCG iterate.

In the following proposition, superscripts _ and QMR are used to distinguish it-

erates and residuals of the BCG and QMR approaches. The remaining notation is as

introduced in Sections 3 and 4.

Proposition 5.2. Let n = nk+a - 1, k = 0,1,

are equWMent:

(i) the BCG i*erate x_ det_ned by (5.1) exists;

(ii) H (") is nonsingular;

(iii) cn # O.

Moreover, if xff °a exists, then

Then, the following three conditions

= .OMn+ rnl*.?

0)1

_dn+ l C n "

(5.10)

(5.11)

16

Proof. Clearly, an nth BCG iterate exists if, and only if, the linear system (5.9) has a

solution. From (5.7) and (2.14-16), the extended coefficient matrix If(n) H(n)] of (5.9)

is an upper Hessenberg matrix whose subdiagonal elements are all nonzero, and thus it

has full row rank n. Consequently, (5.9) has a solution if, and only if, H (') is nonsingular.

This shows the equivalence of (i) and (ii).

Next, using (3.11), (3.4), and (4.1), one readily verifies that

(5.12)

This relation implies that (ii) and (iii) are equivalent.

Now assume cn # 0. From (5.9) and (5.12) it follows that

o= 1/Cn] Q(n-1)l'2(n-1)f(n)"
(5.13)

Recalling the definitions of d (n) and f(n) in (3.8) and (5.7), and using (3.12), we can rewrite

(5.13) as follows:

u(")= z(n) + (R('O)-l [0]_',lc,- "rn " (5.14)

By comparing (5.6) and (5.14) with (3.3) and (3.12), and by using (4.8), we obtain the

relation

= M"+ ,. p°

which, by (4.7), is just (5.10). By inserting (5.9) in (5.7), it follows that

r.'c_ = - (u(")) _+a. (5.15)

From (5.15), (5.14), and (3.12), we obtain

I1 tl- I1_,,+,11e,, I (_(-)3c. _ where]An -- \ _ n,n "

(5.16)

In view of (4.6),

I1_-+,11= p-+_- I_,,_,,I (5.17)
tMn..t- 1

Then, by inserting (5.17), (4.16), and (4.17) in (5.16), we get (5.11), and this concludes

the proof. [3

17

Remark 5.,9. Proposition 5.2 shows that existing BCG iterates can be recovered easily

from the QMR process. By (5.11), 1It, ll can be computed at no extra cost from quantities

which are generated in the QMR Algorithm 3.1 anyway. In particular, one may monitor

[Ir,_-'_[I during the course of the QMR iteration, and compute x, B°a via (5.10) whenever

the actual BCG iterate is desired.

Remark 5.4. CGS [22] and Bi-CGSTAB [24] are modifications of the BCG Algorithm

5.1. In many cases, these algorithms have better convergence properties than BCG. How-

ever, neither CGS nor Bi-CGSTAB addresses the problem of breakdowns. Indeed, one can

show that, in exact arithmetic, CGS as well as Bi-CGSTAB break down every time BCG

does. Numerical examples for that will be given in Section 8.

18

6. A Convergence Theorem

In this section, we derive bounds for the QMR residuals which are essentially the same as

the standard bounds for GMRES. To the best of our knowledge, this is the first convergence

result for a BCG-like algorithm for general non-Hermitian matrices.

Let rn denote the termination index of the look-ahead Lanczos Algorithm 2.1, as

introduced in Proposition 2.2. We remark that, in exact arithmetic, the QMR Algorithm

3.1 will also terminate in step n = m. For a diagonalizable matrix M, we denote by

_(M) = min]IX H • [[X-a[[

X: X-1MX diagonal

the condition number of the eigenvalue problem of M. Furthermore, we denote by YI,_ the

set of all complex polynomials of degree at most n.

With these notations, the main result of this section can be formulated as follows.

Theorem 6.1. Suppose that the rn x m matrix H (m) generated by m steps of the look-

ahead Lanczos Algorithm 2.1 is diagonalizable, and set

H = _(m-1)H(m)(_(m-D)-l. (6.1)

Then, Torn = 1,2,... ,m- 1, the residual vectors oT the QMR Algorithm 3.1 satisfy

llr,,ll < II,'oll,_(H)_d") max (_a/_),
-- j=l,...,n+l

(6.2)

where

e(") = min max IP(,X)I. (6.3)

PEIIn: P(0)=I XeX(A)

Moreover, iT Algorithm 2.1 terminates with pm+a = O, then Xm

solution of Ax = b.

= A-ab is the exact

Proof. Using (4.13-15), (3.13), (3.8-9), and (3.2), one readily verifies that

I1,,11< II,ollx/_+ 1o,, max (o.,_/_.),
-- j=l,...,n+l

where O. is given by

I [_(n+:)On= rain e_n+X)-ft(")H(_n)z , e I =[0 .-. 0 1] T6W '+1.
z6C"

(6.4)

Therefore, for the proof of (6.2), it remains to show that

o. ____(H) d n). (6.5)

19

In the following, let rz E {1, 2,..., m - 1} be arbitrary, but fixed. By

and (6.1), we have

Recall that H (m), and therefore also H, is an upper Hessenberg matrix with nonzero

subdiagonal elements. This implies that

Using (6.6-7), we can rewrite (6.4) as follows:

tg,= min Ile_m)-H[Z]ll-" min I[P(H)e_m) I • (6.8)
zEC" 0 PEI'I,: P(0)=I

H (m) is assumed diagonalizable, so by (6.1) H is also diagonalizable, and by exI_nding

e_m) into any set of eigenvectors of H, we deduce from (6.8) that

tg,, _< _(H) min max IP(_X)[. (6.9)

P 6 1-I, : P(0) = 1 AE,k(H)

By (6.1) and (2.17), we have ,k(H) = ,k(H(")) = ,k(A), and thus (6.9) is equivalent to the

desired inequality (6.5).

Finally, we need to show that xm = A-lb, if Algorithm 2.1 terminates with p,,+l = 0.

For n = m and pr,+l = 0, the least squares problem (3.9) reduces to a linear system with

coefficient matrix f_(m-1)H(m). Since A is nonsingular, by (2.17), this linear system is

nonsingular, and hence it can be solved exactly. Therefore, rm = 0 and this concludes the

proof. F]

Recall (cf. Proposition 2.2) that, in exact arithmetic, it can also happen that the QMR

algorithm terminates with pm+l _ 0. In this case, one restarts the QMR method, using

the last available QMR iterate as the new initial guess. Theorem 6.1 shows that xm-1

is a good choice. However, the finite termination property of the look-ahead Lanczos

Algorithm 2.1 is usually lost in finite precision arithmetic. In particular, situations where

the QMR algorithm needs to be restarted are very rare in practice.

2O

We remark that for the "natural" scalingwj - 1, the bound (6.2) simplifies somewhat.

Next, we contrast the bounds (6.2) for QMR with the standard bounds [21] for GM-

RES. Assume that A is a diagonalizable matrix. Then, the residuals rn--CMP'_ generated by

the GMRES algorithm (without restarts) satisfy

IIr,aMR_ll _< Hr0H,_(A)c(n), n = 1,2,... ,

where, as before, ¢(n) is given by (6.3). Hence, up to the slow growing factor _ + 1 in

(6.2) and different constants, the error bounds for QMR and GMRES are essentially the

same.

In genera/, simple upper bounds for (6.3) are known only for special cases. For ex-

ample, assume that the eigenvalues are contained in an ellipse in the complcx plane which

does not contain the origin:

_(A) C $, 0¢g.

Let fl _ f2 denote the two loci of £. The ellipse can be represented in the form

with r > 1.

Moreover, let R be the unique solution of

l(R+R)-Ifll+lf212 Ill-f2[' R>I.

It can be shown that 0 _ $ implies R > r. Then, by [3, Theorem 2], we have the following

upper bound for (6.3):

r n -t- 1/r"
e ('*) < n = 1, 2,

R"+I/R"'

21

7. Preconditioning

As for other conjugate gradient type methods, when solving realistic problems, it is crucial

to combine the QMR algorithm with an efficient preconditioning technique. In this section,

we show how to incorporate preconditioners into the QMR algorithm. Also, we briefly

describe two preconditioning techniques.

Let M be a given nonsingular N x N matrix which approximates in some sense the

coefficient matrix A of the linear system (1.1), Ax = b. Moreover, assume that M is

decomposed in the form

M - M1M2. (7.1)

Instead of solving the original system (1.1), we apply the QMR algorithm to the equivalent

linear system

A'y=b', where A'= M71AM_ I, b'= M_I(b-Axo), y= M2(x-Xo).

Here x0 denotes some initial guess for the solution of Ax - b. The iterates yn and residual

i bIvectors r,, -- - A'yn for the preconditioned system (7.1) are transformed back into the

corresponding quantities for the original system by setting

x. = x0 + M_-_y. and r. = M1r'. (7.2)

For the special cases M1 = I or M2 = I in (7.1) one obtains right or left preconditioning,

respectively.

Using (7.2), the QMR Algorithm 3.1 combined with preconditioning can be sketched

as follows:

Algorithm 7.1 (QMR approach with preconditioning).

O) Choose xo E C N and set r' o = MFI(b- Axo), po = Ilrgll, .1 --- ¢o/po, vo = o;

Choosewl _ CN with IIwlll= 1;
For n = 1,2,... :

1) Perform the nth iteration of the look-ahead Lanczos A1gorlthm 2.1 (applied to A');

This yields matrices V("), V (n+l), H_ n) which satisfy A'V (n) = V(n+_)H_n) ;

2) Update the QR factorization (3.11) of f_(")H_ (") and the vector t OO in (3.12);

3) Compute yn - V(n)(R(n))-_t(n);

4) If y,, has converged, compute x,_ - xo + _/121y,, , and stop.

In the case of right or left preconditioning, Algorithm 7.1 simplifies somewhat. In

general, however, for the QMR algorithm applied to a preconditioned system, one has to

be able to compute M(lz, M_-Tz, M_lz, and M_Tz, for arbitrary vectors z.

For the numerical examples in Section 8, we have used SSOR and ILUT(k) precondi-

tioning.

22

• SSOR

The SSOR preconditioner is basedon a decomposition of the matrix A into a non-

singular diagonal matrix D, a strictly lower triangular matrix L, and a strictly upper

triangular matrix U, such that A = D + L + U. D might have to be block diagonal to

ensure it is nonsingular. The preconditioner matrix M is given by

M=(D+L)D-I(D+U).

For our experiments, we have used SSOR as a right or left preconditioner.

• ILUT(k)

The Incomplete LU decomposition is based on the LU decomposition of the coefficient

matrix A into a unit lower triangular matrix L and an upper triangular matrix U. The full

LU decomposition of A would result in factors L and U which, in general, have far more

nonzero elements than A. The incomplete LU factorization aims to reduce this additional

fill-in in the factors L and U.

In ILUT(k), we use a strategy due to Saad [20] for dropping nonzero elements which

would fill-in L and U. Each row of L and U is constructed subject to the restriction that

only a small amount of fill-in, /_ more elements for each, is allowed beyond the number

of elements of A already present in that row (in the lower and upper part, respectively).

Furthermore, elements which are deemed to make only an insignificant contribution to the

decomposition are also dropped. For example, this means that if nmaxL is the maximum

number of elements Mlowed for some row of L, nL is the actual number of elements of

that row computed by the elimination process, and ctoI is the cutoff tolerance, then the

Mgorithm orders the nL elements in decreasing order of magnitude, and keeps only up

to min(nL, nmaxL) elements, or until the elements reach the level ctol, whichever cutoff

comes first. The resulting matrices L and U can be used either as M1 = L and M2 = U

in (7.1), or in M2 = LU respectively M1 = LU for right respectively left preconditioning.

The variant of ILU used is different from the standard one. For a Hermitian matrix

A, the standard ILU preconditioner [15] preserves the sparsity structure of the matrix, i.e.,

for/_ = 0, the preconditioner matrices have nonzero elements only in those locations where

A itself has nonzero elements. In [15] it is shown that this strategy does produce a good

preconditioner, provided that A is a Hermitian M-matrix. For a general non-Hermitian

matrix, there is no reason to preserve the sparsity structure of A. Instead, the ILUT(k)

variant discards elements subject only to the constraints of fill-in and size, without regard

to the sparsity structure of A. However, this does mean that if A is Hermitian, we do not

recover the standard ILU preconditioner.

23

8. Numerical Experiments

We have performed extensive numerical experiments with the QMR algorithm and the

other iterative methods mentioned in this paper. In this section, we present a few typical

results of these experiments. Further numerical results are reported in [7] and, for the case

of complex symmetric matrices, in [5].

For our test runs, we always chose x0 = 0 as initial guess. The iteration was stopped

as soon as the convergence criterion (4.10) (with tol - 10 -8) was satisfied. We always

used the QMR algorithm with no scaling, i.e., f_(") - In+l in (3.7). For GMRES [21],

work and storage per iteration step n grows linearly with n and hence one needs to use

restarts. In the sequel, GMRES(n0) refers to GMRES restarted after every no iterations.

A typical value for the restart parameter is no - 20; work and storage per iteration are

then roughly comparable for GMRES and QMR. Furthermore, unless stated otherwise, the

BCG iterates were always obtained from the QMR process via (5.10), rather than from the

BCG Algorithm 5.1. Examples 1, 3, and 4 were run using right preconditioning. We also

tried left preconditioning, and in all cases, the number of iterations needed to converge was

roughly the same. In all our experiments with QMR, the look-ahead Lanczos Algorithm

2.1 performed almost exclusively regular steps and only few blocks of size ht > 1 were

built. The biggest block that occurred was of size hi = 4. For all examples, we report

the exact numbers ot'bi0cks of Size 2, 3, and 4: Finally, the convergence plots Show the

relative residual norms IIr, ll/nroH (on the vertical axis) versus the iteration number n (on

t;he horizontal axis):

All examples were run on a Cray-2 at the NASA Ames Research Center.

Example 1. We consider the partial differential equation

-- A u + 7 X -_x + Y -_y + Z -_z + tbu -- f on (0,1) x(0,1)x(0,1),
(s.1)

with Dirichlet boundary conditions. We discretize (8.1) using centered differences on a

uniform 25 x 25 x 25 grid with mesh size h = 1/26. The resulting linear system has

a sparse coefficient matrix A of order N = 15625 with 105625 nonzero elements. For

our experiments, we have chosen the parameters fl = -250 and 7 = 40. Note that this

choice guarantees that the cell Reynolds number is smaller than one, and hence centered

differences yield a stable discretization of (8.1). The right-hand side was chosen such

that the vector of all ones is the exact solution of the linear system. QMR was run with

identical starting vectors vl = wl. This example was run with SSOR preconditioning.

In Figure 1, we show the convergence curves for QMR (solid line), BCG (dotted line),

GMRES(19) (dash-dotted line), and GMRES(20) (dashed line). As the plot indicates, the

convergence curve for QMR is rather smooth; we also see the typical oscillations in the

BCG convergence curve. Also, we see that GMRES, while being optimal as long as it is

not restarted, loses its edge once it is restarted, and furthermore its behavior after being

restarted can be quite sensitive to the length no of the restart cycle. Finally, we note that

in the course of the QMR run, 4 blocks of size 2 were built.

24

10 3 ! i i

10 2

101

10 o

10-1

10-2

10-3

10-4

10-5

10-6
0

• . .-':

:. • [::

4

\
I

i

t
t

I I I •

50 100 150 200

Figure 1. Convergence curves for Example 1, right SSOR.

Example 2. This example was taken from the Harwell-Boeing set of sparse testmatrices

[1]. It is the fifth matrix from the SHERMAN collection, called SHERMAN 5. It comes

from a fully implicit black oil simulator on a 16 x 23 x 3 grid, with three unknowns per grid

point. The order of the matrix is 3312, and it has 20793 nonzero elements. The right-hand

side b was chosen as a vector with random entries from a normal distribution with mean

0.0 and variance 1.0. Again, QMR was run with identical starting vectors vl = wl.

If no preconditioning is used, this linear system is very difficult to solve by iterative

methods. As Figure 2 shows, QMR needs almost 1500 iterations to converge. On the

other hand, GMRES(100) (dash-dotted line), even with an unrealistically large restart

value no = 100, does not converge within a reasonable number of iterations. Figure 2 also

shows the relative residual norms (dots) of the BCG iterates as obtained from the QMR

algorithm. During the QMR run, the underlying look-ahead Lanczos algorithm built 49

blocks of size 2, 7 blocks of size 3, and 1 block of size 4.

Next, we ran the SHERMAN 5 problem with SSOR and ILUT(0) preconditioning

(cf. Section 7). For ILUT(0) the cutoff tolerance ctol = .001 was chosen; this choice

leads to approximate factors L and U which together have 19899 nonzero elements. In

Figure 3 (for SSOR) and Figure 4 (for ILUT(0)), we show the convergence curves for QMR

(solid line), BCG (dotted line), and GMRES(20) (dash-dotted line). We have also plotted

(dashed line) the upper bound (4.11) for the QMR residuals. Clearly, these bounds are very

close to the true QMR residuals. In Figure 4, we have also added the convergence curve

25

(lower dash-dotted line) for a full GMRES run without restart to the onefor GMRES(20).
A comparison of this curve with the QMR curve showsthat the quasi-minimal residual
property is very closeto the true minimal residual property of GMRES. Finally, we note
that, for both SSOR and ILUT(0), only blocks of size1 were built during the QMR run.

104

10 3

10 2

I0 _

I0 0

I0 d

I0-2

I0-3

10-4

10-5

I I !

i0_ ' , ,
0 500 I000 1500 2000

Figure 2. Convergence curves for Example 2, no preconditioning

2500

26

103 l I I | I
I !

10 2

101

10 o

10-I

10-2

10-3

10-4

10-5

10-6
0

.-... ."'..

:...... .. -.....
.: :.

:-: . ! "

'. I L I. I

I '

I

10 20 30 40 50 60 70 80

Figure 3. Convergence curves for Example 2, right SSOR.

27

102
i i i ! i ! l

101

10 o

10"1

10-2

10-3

10-4

10-5

:..".. ..

...'_. :" -., : ".. .

v ,,._;_ :

_%. i :.

. '_

\, : i •
\.,., X_-X_ ,,

, i , I """_'i.\ ._."'""" "" _'_":...._''"" """

5 10 15 26 25 30 35

Figure 4. Convergence curves for Example 2, right ILUT(0).

40

28

Examples 3 and 4. Next, we present two exampleswhich were constructed such that
a breakdown of the first kind (Example 3) respectively of the secondkind (Example 4)

occurs (cf. Section 5). In both casesthe matrix A is of order N = 20. For Example 3,

the matrix /-/5 generated by 5 steps of the Lanczos process is singular and thus, in view

of Proposition 5.2, x_ does not exist. Consequently, BCG, CGS, and Bi-CGSTAB all

break down in step 5 (cf. Remark 5.4). Example 4 was constructed such that an exact

breakdown occurs in step 2 of the standard Lanczos algorithm. This then leads to a

breakdown of BCG, CGS, and Bi-CGSTAB in step 3. In Figure 5 and Figure 6, we show

the convergence curves for QMR (solid line), BCG (dotted line), CGS (dashed line), and

Bi-CGSTAB (solid line becoming vertical at step 5 respectively 3). In both cases, the BCG

iterates were computed by the BCG Algorithm 5.1 before the breakdown occurs and via

the QMR process after the breakdown. Finally, we note that, for both examples, 2 blocks

of size 2 were built during the QMR run.

10 9 r 1 "r_'r r I v_

10 6

10 3

10 o

10-3

r--r--r --7- _

10 _ j _ _ _ j 1__--_ _ _ -
0 2 4 6 8 10 12 14 16 18 20

Figure 5. Convergence curves for Example 3.

29

10 3

10 2

101

10 o

10"1

10-2

10 "3

10 4

10-5

.... __ f

S

10-6 , ,
0 2 4

:'".,.....

: *""..

I I . I I

6 8 10 12 14 16 18

Figure 6. Convergence curves for Example 4.

2O

3O

9. Concluding Remarks

In this paper, we have proposed a robust iterative solver, the QMR algorithm, for general

nonsingular non-Hermitian linear systems. The method uses a recently proposed [6, 7]

robust implementation of the look-ahead Lanczos algorithm to generate basis vectors for

the Krylov subspaces Kn(r0, A). The QMR iterates are characterized by a quasi-minimal

residual property over Kn(r0, A). Both the look-ahead Lanczos algorithm and the compu-

tation of the actual QMR iterates can be implemented using only short recurrences. The

QMR approach is closely related to the BCG algorithm; however, unlike BCG, the QMR

algorithm has smooth convergence curves and good numerical properties. Furthermore, we

have derived bounds for the QMR residuals which are essentially the same as the standard

bounds for GMRES. To the best of our knowledge, this is the first convergence result for

a BCG-like algorithm for general non-Hermitian matrices.

FORTRAN 77 implementations of the QMR method and the underlying look-ahead

Lanczos algorithm are available electronically from the authors (na.freund@na-net.ornl.gov

or na.nachtigal@na-net.ornl.gov).

31

References

[1] Duff, I.S., Grimes, R.G., Lewis, J.G.: Sparse matrix test problems. ACM Trans.

Math. So£tw. 15, 1-14 (1989)

[2] Faber, V., Manteuffel, T.: Necessary and sufficient conditions for the existence of a

conjugate gradient method. SIAM J. Numer. Anal 21,352-362 (1984)

[3] Fischer, B., Preund, R.W.: On the constrained Chebyshev approximation problem on

ellipses. J. Approx. Theory 62, 297-315 (1990)

[4] Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Numerical Anal-

ysis Dundee 1975 (G.A. Watson, ed.), pp. 73-89. Lecture Notes in Mathematics 506.

Berlin, Heidelberg, New York: Springer 1976

[5] Freund, R.W.: Conjugate gradient type methods for linear systems with complex sym-

metric coefficient matrices. Technical Report 89.54, RIACS, NASA Ames Research

Center, December 1989

[6] Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-

ahead Lanczos algorithm for non-Hermitian matrices, Part I. Technical Report 90.45,

RIACS, NASA Ames Research Center, November 1990

[7] Freund, R.W., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algo-

rithm for non-Hermitian matrices, Part II. Technical Report 90.46, RIACS, NASA

Ames Research Center, November 1990

[8] Golub, G.H., Van Loan, C.F.: Matrix computations. Baltimore: The Johns Hopkins

University Press 1983

[9] Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related

algorithms, Part I. IPS Research Report No. 90-10, Z(irich, June 1990

[10] Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related

algorithms, Part II. IPS Research Report No. 90-16, Ziirich, September 1990

[11] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.

J. Res. Nat1. Bur. Stand. 49, 409-436 (1952)

[12] Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. J. Res. Natl. Bur. Stand. 45,255-282 (1950)

[13] Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res.

Natl. Bur. Stand. 49, 33-53 (1952)

[14] Manteuffel, T.A.: The Tchebychev iteration for nonsymmetric linear systems. Numer.

Math. 28, 307-327 (1977)

[15] Meijerink, J.A., van der Vorst, H.A.: An iterative solution for linear systems of which

the coefficient matrix is a symmetric M-matrix. Math. Comp. 31,148-162 (1977)

[16] Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations.

SIAM J. Numer. Anal 12, 617-629 (1975)

32

[17] Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. Preprint,
Berkeley,January 1990

[18] Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsym-

metric matrices. Math. Comp. 44, 105-124 (1985)

[19] Saad, Y.: The Lanczos biorthogonalization algorithm and other oblique projection

methods for solving large unsymmetric systems. SIAM J. Numer. Ana/. 19,485-506

(1982)

[20] Saad, Y.: SPARSKIT: a basic tool kit for sparse matrix computations. Technical

Report 90.20, RIACS, NASA Ames Research Center, May 1990

[21] Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM J. Sci. Star. Compu_. 7, 856-869 (1986)

[22] Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems.

SIAM J. Sci. Sta_. Compu$. 10, 36-52 (1989)

[23] Taylor, D.R.: Analysis of the look ahead Lanczos algorithm. Ph.D. Dissertation,

University of California, Berkeley, November 1982

[24] van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG

for the solution of nonsymmetric linear systems. Preprint, Utrecht, September 1990

[25] Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford: Oxford University Press

1965

33

