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ABSTRACT

Summary: QMSim was designed to simulate large-scale genotyping
data in multiple and complex livestock pedigrees. The simulation
is basically carried out in two steps. In the first step, a historical
population is simulated to establish mutation-drift equilibrium, and in
the second step, recent population structures are generated, which
can be very complex. A wide variety of genome architectures, ranging
from infinitesimal model to single-locus model, can be simulated.
The program is efficient in terms of computing time and memory
requirements.
Availability: Executable versions of QMSim for Windows and Linux
are freely available at http://www.aps.uoguelph.ca/~msargol/qmsim/.
Contact: msargol@uoguelph.ca

1 INTRODUCTION
Linkage disequilibrium (LD) and linkage analyses have been
extensively used to identify quantitative trait loci (QTL) in human
and livestock species. Recently, interest in whole genome fine
mapping and especially genome-wide selection has grown as a
result of the dramatic increase in the number of known single
nucleotide polymorphisms (SNP) and the decrease in genotyping
costs. The access to dense marker maps has opened up the
possibility for new approaches for fine mapping and genome-wide
selection. However, even though genotyping costs have substantially
decreased, large-scale genome-wide association studies are still
costly.

Simulation is a highly valuable tool for assessing and validating
proposed methods for QTL mapping and genome-wide selection at
very low cost, allowing also for the prediction of future changes
in genetic parameters. During the last few decades, simulation has
played a major role in population genetics and genomics. Several
software programs have been developed for simulating genomes as
a means of validating new algorithms and methods especially in
human research (e.g. Hoggart et al., 2008; Hudson, 2002; Li and
Li, 2007; Schaffner et al., 2005). However, most of the developed
software tools simulate non-overlapping generations and do not
provide the functionality required for many studies in livestock.
In addition, most of the existent genome simulation programs for
livestock are not publicly available.

Simulating and analyzing genomic livestock data differ in several
aspects from analyses carried out in humans. For instance, in
livestock, a common strategy for detecting QTL is either to use
multi-generational pedigrees, large family sizes, in which artificial
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insemination is practiced, or to design crossbreeding programs,
such as F2 and back crosses (Andersson, 2001). Moreover, human
populations have been experiencing an expansion in effective
population size (Ne), while Ne in livestock populations has
decreased. Consequently LD in livestock usually extends over
longer distances than in humans (Farnir et al., 2000). Furthermore,
combined LD and linkage QTL mapping has attracted more atten-
tion in livestock due to strong family structure (Meuwissen et al.,
2002). Therefore, the population structure is crucial to identify
and correctly interpret the associations between molecular and
phenotypic diversity (Pritchard and Rosenberg, 1999).

The objective of this article is to introduce a forward-in-time
software named QMSim that was designed to simulate large
genomes and complex pedigree structures, mimicking livestock
populations. QMSim is basically a family based simulator, which
can also take into account predefined evolutionary features, such as
LD, mutation, bottlenecks and expansions.

2 METHODS AND DISCRIPTION OF THE
ALGORITHMS

Population structure: Step (1) in order to create initial LD and to establish
mutation-drift equilibrium, a historical population is simulated based on
forward-in-time approach by considering only two evolutionary forces:
mutation and drift. The mating system is based on the union of gametes
randomly sampled from the male and female gametic pools. Expansion
and contraction of the historical population and unbalanced sex ratio are
allowed. Step (2) after creating a historical population, one or multiple
recent population structures are simulated. Animals from the last historical
generation can be chosen as founders of the recent populations. However,
for the case of multiple recent populations, founders can also come
from previously defined recent populations. Selection and culling can be
implemented based on different criteria such as phenotypes, true genetic
values or estimated breeding values for a single trait with predefined
heritability and phenotypic variance. Breeding value is a measure of the
additive genetic value of an individual as a parent and, in QMSim, it
can be estimated using three different approaches: (i) best linear unbiased
prediction via an animal model; (ii) based on predefined accuracy; and (iii)
approximated based on the number of offspring with record. The mating
design can be random, assortative (positive or negative) or optimized
to minimize or maximize inbreeding. The mating design that maximizes
inbreeding allows one to quickly create an inbred line. Optimization
of inbreeding is carried out using the simulated annealing method. The
program can simulate sex limited traits, such as milk yield. Owing to the
object-oriented programming, it is easy to simulate multiple populations
with different structures and selection criteria. QMSim has flexibility for
simulating wide range of population structures. For example, in livestock,
some of QTL mapping designs involve line crosses produced from inbred
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lines with divergent phenotypes. In this case, inbred lines can be generated
and subsequently crossed. Another example is the simulation of two lines
coming from the same base population to assess accuracy of genomic
breeding values for a particular genomic evaluation method. Here, one line
can be treated as training set and the other one as validation set. These
scenarios can be readily simulated by QMSim.

Genome: A wide range of parameters can be specified for simulating the
genome such as: mutation rate, crossover interference, length and number of
chromosomes, number of markers, number of QTL, location of markers and
QTL, number of alleles, allelic frequencies, allelic effects, missing genotype
rate and genotyping error rate. This flexibility permits for wide variety of
genetic architectures to be simulated.

No allelic effects are simulated for markers, so they are treated as neutral.
For QTL, additive allelic effects can be sampled from gamma, normal or
uniform distributions. Alternatively, predefined relative additive variance for
each QTL can be supplied by the user.

Crossover is a key factor that gradually breakdowns the allelic associations
or LD. The number of crossover events for each chromosome is sampled
from a Poisson distribution with mean equal to the length of chromosomes
in Morgan. Then locations of crossovers along chromosomes are assigned
at random. Because QMSim requires centiMorgan positions for markers
and QTL as input information, simulating recombination hot spots and
cold spots is straightforward by adjusting the distance between markers or
QTL. For example, for generating a hot spot one might increase the interval
between loci and the size of the interval will determine the intensity of the hot
spot. For recent genealogies, positions of crossover events can be stored in an
output file, allowing one to trace the haplotype blocks. To establish mutation-
drift equilibrium in the historical generations either infinite-allele mutation
model or recurrent mutation model is used. The infinite-allele mutation model
assumes that a mutation creates a new allele, while the recurrent mutation
model assumes that a mutation alters an allelic state to another and, hence,
does not create a new allele. In the recurrent model, transition probabilities
from one allelic state to another are assumed equal. Different mutation rates
for markers and QTL can be defined. The number of mutations is sampled
from a Poisson distribution.

3 INPUTS AND OUTPUTS
The program requires a parameter file, in which various parameters
for the simulation are specified. A simple internal lexer reads and
translates the parameters from the input file and, in the case of
incorrect inputs, an appropriate message is displayed. The parameter
file consists of five main sections. Parameters for each section are
explained in details in the user’s guide.

The current version of the simulator can optionally produce
several detailed output files in text format, such as pedigree
information, population structure, phenotypes, true genetic values,
crossover positions, LD statistics, linkage map, phased genotypes
and allele frequencies and effects. In order to make the program
as memory efficient as possible, output files are saved during
simulation. However, when simulating large marker panels or large
populations over many replicates, large genotype files might become
an issue. In this situation, the genotype file can be stored for user-
specified generations or in binary format by altering the output
options. Additionally when simulating bi-allelic markers (i.e. SNP),
the two alleles can be coded in one genotype for each locus to save
hard disk space.

Initial seed numbers are backed up for each simulation run, thus
allowing one to regenerate the same outputs whenever needed.

4 IMPLEMENTATION AND EFFICIENCY
The program is written in C++ and is portable to multiple operating
systems. Executable files are currently available for Windows and
Linux platforms. QMSim is equipped with the high-quality and
fast Mersenne Twister random number generator (Matsumoto and
Nishimura, 1998). Computing time for simulating 500 K SNP panel
in a historical population of 1000 individuals for 20 discrete
generations (i.e. a total of 21 000 individuals) and in a recent
population with the same size and number of discrete generations
on an AMD Opteron server, running at 2.6 GHz with 16 GB RAM
was 5 and 12 min, respectively. RAM requirement was around 2 GB.
The corresponding times for 50 K SNP panel were 14 and 70 s and
for the 10 K SNP panel were 2 and 10 s, respectively.

5 CONCLUSIONS
As genomic applications continue to develop in livestock, there is
an increasing demand for efficient and reliable tools to simulate
genomic data in complex pedigree populations. QMSim is a user-
friendly tool for simulating large-scale genomic data in livestock,
which helps to validate new approaches for fine mapping and
genomic selection. QMSim integrates efficient and fast algorithms,
which lead to high computing performance.
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