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Abstract We have studied the quasinormal modes (QNMs)
of a slowly rotating black hole with Lorentz-violating param-
eter in Einstein–Bumblebee gravity. We analyse the slow
rotation approximation of the rotating black hole in the
Einstein–Bumblebee gravity, and obtain the master equations
for scalar perturbation, vector perturbation and axial gravi-
tational perturbation, respectively. Using the matrix method
and the continuous fraction method, we numerically calculate
the QNM frequencies. In particular, for scalar field, it shows
that the QNMs up to the second order of rotation parameter
have higher accuracy. The numerical results show that, for
both scalar and vector fields, the Lorentz-violating parame-
ter has a significant effect on the imaginary part of the QNM
frequencies, while having a relatively smaller impact on the
real part of the QNM frequencies. But for axial gravitational
perturbation, the effect of increasing the Lorentz-violating
parameter � is similar to that of increasing the rotation param-
eter ã.

1 Introduction

Lorentz symmetry is a very basic and important spacetime
symmetry, which is not only the basis of quantum field theory
and the standard model of modern particle physics, but also
plays a fundamental role in relativity. Motivated by estab-
lishing the quantum gravity, and the evidence from high
energy cosmic rays, the possibility of Lorentz symmetry
breaking (LSB) on Planck energy scale is expected and has
been extensively discussed [1]. The suggestions for sources
of Lorentz violation (LV) included string field theory [2,3],
loop quantum gravity theory [4], noncommutative field the-
ories [5,6], quantum gravity inspired spacetime foam sce-
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narios [7], and varying couplings [8,9]. However, in the low
energy scale, this Lorentz symmetry breaking and its effects
should be largely supressed, otherwise it would be inconsis-
tent with many current ground-based experimental observa-
tions. Thus, over the past few decades, the search for quan-
tum gravity effects in the low energy scale attached much
attention. Especially, the standard-model extension is a can-
didate which offers a broad theoretical foundation for testing
Lorentz symmetry.

The Lorentz symmetry is broken when a vector field has a
nonzero vacuum expectation value. A straightforward effec-
tive theory of gravity with a standard model extension LV
is the Bumblebee model, where the Lorentz violation results
from the dynamics of a single vector or axial-vector field
Bμ, also known as the bumblebee field. Kostelecky and
Samuel first used the bumblebee gravitational model to inves-
tigate the effects of spontaneous LV [10,11]. Bertolami and
Páramos derived the vacuum solutions of this gravity model,
including the purely radial LSB, the radial/temporal LSB or
the axial/temporal LSB [12,13]. In recent years, Casana et al.
presented a Schwarzschild-like bumblebee black hole solu-
tion [14]. After that, a series of other spherically symmetric
solutions within the framework of the bumblebee gravity the-
ory have been discovered, including a traversable wormhole
solution [17], the solution with the global monopole [18], the
cosmological constant [19], or the Einstein-Gauss-Bonnet
term [20]. A Kerr-like exact solution in Bumblebee gravity
was obtained by Ding et al. [21], which does not seem to
satisfy the corresponding field equation [22]. However, we
find that this solution can be satisfied under some certain
conditions.

Linear perturbation of black holes play a important role
in physics. Many astrophysical processes can be regarded as
small derivations from the black hole background spacetime.
For example, QNMs is considered as a good description of
the late stage of the merge of binary black holes or the grav-
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itational collapse. In order to calculate the QNMs, one need
obtain the decoupled second-order differential equation in the
frequency domain. For spherically symmetric spacetimes,
one can always decompose the perturbed metric into spher-
ical harmonics. And this process generally ensures that the
angular part and the radial part can be automatically decou-
pled, while the odd-parity perturbation and the even-parity
perturbation are also automatically separated [23–26]. But
this decomposition is no longer valid in rotating spacetime.
One important work is Teukolsky discovered that a class of
perturbation equations of Kerr spacetime can be decoupled
in Newman-Penrose formalism [27], the underlying reason
is that the Kerr spacetime is of type-D in the Petrov classi-
fication. However, it is very difficult to decouple the pertur-
bation equations in other rotating spacetimes, such as Kerr–
Newman metric or metric for most modified gravity theories.
For Proca perturbation of Kerr spacetime, the separability of
perturbation equation also seems not easy [28]. In recently,
Frolov et al. successfully solved this problem [29].

Recently, a new idea was provided by Pani et al., that
is, if the slowly rotating backgrounds are close enough to
a spherical symmetric spacetime, then the separability of
the perturbation equations becomes possible [30–35]. This
method originated from Kojima’s work on the perturbations
of slowly rotating neutron stars [36]. Under the slowly rotat-
ing limit, considering that the dimensionless rotation param-
eter ã = a/M of the background spacetime is sufficiently
small, using the harmonic basis to expand the metric pertur-
bation, the field equations can always reduce to a coupled
ordinary differential equations. Different from the spheri-
cally symmetric case, in the limit of slowly rotating there
exist a “selection rule”, i.e. the perturbations with a given
parity and multipolar index l are coupled to three parts [30]:
the perturbations with opposite parity and index l ± 1 at first
order of ã, the perturbations with the same parity and the
same index l up to second order of ã2, and the perturbations
with the same parity and index l ± 2 at the second order of
ã.

The aim of this manuscript is to apply the slow rota-
tion method to Einstein–Bumblebee gravity theories, and
obtain the massive scalar perturbation, the Proca field per-
turbation and the axial gravitational perturbation for rotating
Einstein–Bumblebee black hole, respectively. We also cal-
culate the QNMs of these perturbations by numerical meth-
ods, and study how the LV parameter affect the QNMs. The
manuscript is organized as follows. In Sect. 2, we briefly
review the Einstein–Bumblebee theory and the slow rotation
technique. In Sect. 3, we derive the Schrödinger-like equa-
tion for the massive scalar perturbation, the proca perturba-
tion and the axial gravitational perturbation for slowly rotat-
ing Einstein–Bumblebee black hole, respectively. In Sect.
4, using both the matrix method and the continued frac-
tion method, we calculated the QNM frequencies of rotat-

ing Einstein–Bumblebee black holes. Section 5 is devoted to
summary and discussion.

2 The theoretical framework

2.1 The field equations

Here we briefly review the Einstein–Bumblebee gravity
model and the black hole solutions under this gravity. This
model is known as an example that extends the standard for-
malism of general relativity. Under a suitable potential, the
bumblebee vector field Bμ acquires a nonzero vacuum expec-
tation value and induces a spontaneous Lorentz symmetry
breaking in the gravitational sector. The action for a single
bumblebee field Bμ coupled to gravity can be described as
[14–16]

S =
∫

d4x
√−g

[
1

16πGN

(
R + �BaBbRab

)

−1

4
BabBab − V

]
+ LM , (1)

� is the real coupling constant which controls the non-
minimal gravity interaction to bumblebee field Ba , and the
bumblebee field strength is defined by

Bab = ∂a Bb − ∂bBa . (2)

The potential V is chosen to provide a nonvanishing vacuum
expectation value for bumblebee field Ba , and has a minimum
at BaBa ± b2, where b is a real positive constant. Hence the
potential can be expressed as [14]

V = V (BaB
a ± b2), (3)

and this potential can drive a nonzero vaccum value 〈Ba〉 =
ba with baba = ∓b2.

Taking the variation of Eq. (1) yields the vacuum gravita-
tional equation and the equation of motion for the bumblebee
field

Rab − 1

2
gabR = κT B

ab, (4)

∇a Bab = 2V ′Bb − �

κ
Ba Rab. (5)

where κ = 8πGN , T B
ab is the bumblebee energy momentum

tensor,

T B
ab = BacB

c
b − 1

4
gabB

cd Bcd − gabV + 2BaBbV
′

× �

κ

[
1

2
gabB

cBd Rcd − BaB
cRcb − BbB

cRca
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+1

2
∇c∇a

(
BcBb

) + 1

2
∇c∇b

(
BcBa

)

−1

2
∇2 (BaBb) − 1

2
gab∇c∇d

(
BcBd

)]
, (6)

and V ′ denotes ∂V (y)/∂y at y = BaBa ±b2. Using the trace
of Eq. (4), we obtain

Rab = κT B
ab + 2κgabV − κgabB

cBcV
′

+ �

4
gab∇2 (

BcBc
) + �

2
gab∇c∇d

(
BcBd

)
. (7)

Now further assume that the bumblebee field is fixed to be
Ba = ba , then the particular form of the potential is irrelevant
and V = V ′ = 0. Define

R̄ab = Rab − κbacb
c
b + κ

4
gabb

cdbcd + �bab
cRcb

+ �bbb
cRca − �

2
gabb

cbdRcd + B̄ab, (8)

B̄ab = �

2

[
∇2 (babb) − ∇c∇a

(
bcbb

) − ∇c∇b
(
bcba

)]
, (9)

and the gravitational field Eq. (6) is equivalent to

R̄ab = 0. (10)

In the following subsection, the satisfied of Eq. (10) deter-
mines that whether the metric is the exact solution of the
vacuum Einstein–Bumblebee action.

2.2 Slowly rotating Einstein–Bumblebee black hole

Recently, using the condition baba = constant , and then
considering the bumblebee field ba = (0, b0

ρ√
�

, 0, 0), Ding
et al. find the Kerr-like solution for Einstein–Bumblebee the-
ory can be written as [21]

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4Mra

√
1 + � sin2 θ

ρ2 dtdϕ

+ ρ2

�
dr2 + ρ2dθ2 + A sin2 θ

ρ2 dϕ2 (11)

where

ρ2 = r2 + (1 + �)a2 cos2 θ, (12)

� = r2 − 2Mr

1 + �
+ a2, (13)

A =
[
r2 + (1 + �)a2

]2 − �(1 + �)2a2 sin2 θ. (14)

and � = �b2
0 is the Lorentz-violating parameter. This metric

is the solution for rotating spacetime with a radial bumble-
bee field. It is obvious that the metric becomes the usual Kerr

metric when � → 0 and the static Einstein–Bumblebee met-
ric when ã → 0. Unfortunately, the metric (11) seems not the
exact-solution [22]. Considering that ã is a sufficiently small
parameter, and expanding the metric to the second order of
rotation parameter ã, we obtain

ds2 = g(2)
ab dx

adxb

= −
(

1 − 2M

r
+ 2a2M(1 + �) cos2 θ

r3

)
dt2

− 4aM
√

1 + � sin2 θ

r
dtdϕ + (1 + �)ρ2

�̃
dr2

+
[
r2 + a2(1 + �) cos2 θ

]
dθ2

+ sin2 θ

[
r2 + a2 (1 + �)

(
1 + 2M

r
sin2 θ

)]
dϕ2,

(15)

Note that �̃ is equivalent to � in the second order of ã, and
which can determine the singular points r+ and r− as the
roots of �̃

�̃ = (r − r+)(r − r−). (16)

where

r+ = 2M − (1 + �)
a2

2M
, r− = (1 + �)

a2

2M
. (17)

We find that this metric yields some components of the field
equation do not satisfied. However, we find the non vanish-
ing terms for field equations are all proportional to �2ã2.
Under certain conditions, this metric can be considered as an
approximate solution of the Einstein–Bumblebee Eq. (10).
The detailed discussions are presented in Appendix A.

3 Perturbations of slowly rotation Einstein–Bumblebee
black hole

In this section, using the slow rotation approximation, we
analysis the perturbations of Einstein–Bumblebee black hole.
For massive scalar field perturbation, our analysis up to the
second order of ã. And for massive vector field perturbation
or odd-parity gravitational perturbation, our analysis only up
to the first order of ã. Here we briefly introduce the notations
of the spherical harmonic basis [37]. First we define two
unnormalized and orthogonal co-vectors v and n as

va = (−1, 0, 0, 0), na = (0, 1, 0, 0), (18)

the projection operator onto the sphere surface

�ab = r2diag(0, 0, 1, sin2 θ), (19)
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and the spatial Levi–Civita tensor, εabc ≡ vdεdabc, where
εtrθφ = r2 sin θ . using the scalar spherical harmonics Y lm =
Y lm(θ, ϕ), the pure-spin vector harmonics are given by

Y E,lm
a = r∇aY

lm,

Y B,lm
a = rεcabn

b∇cY
lm,

Y R,lm
a = naY

lm, (20)

and the pure-spin tensor harmonics are given by

T T 0,lm
ab = �abY

lm,

T L0,lm
ab = nanbY

lm,

T E1,lm
ab = rn(a∇b)Y

lm,

T B1,lm
ab = rn(aε

d
b)cn

c∇dY
lm,

T E2,lm
ab = r2

(
�c

a�
d
b − 1

2
�ab�

cd
)

∇c∇dY
lm,

T B2,lm
ab = r2�c

(aε
d
b)en

e∇c∇dY
lm . (21)

These spherical harmonic basis will be used to decompose
vector or tensor perturbations. For axially symmetric back-
ground, the perturbation with different values ofm are decou-
pled, therefore we ignore the indexm in the following discus-
sions. And the linearized perturbed equations always imply
a sum over (l,m). Some identities will be used, which are
given by [36]

cos θY l = Ql+1Y
l+1 + QlY

l−1, (22)

sin θ∂θY
l = Ql+1lY

l+1 − Ql(l + 1)Y l−1, (23)

cos2 θY l =
(
Q2

l+1 + Q2
l

)
Y l

+ Ql+1Ql+2Y
l+2 + QlQl−1Y

l−2, (24)

cos θ sin θ∂θY
l =

[
lQ2

l+1 − (l + 1)Q2
l

]
Y l

+ Ql+1Ql+2lY
l+2

− QlQl−1(l + 1)Y l−2, (25)

where

Ql =
√
l2 − m2

4l2 − 1
. (26)

3.1 Massive scalar perturbation

Considering that the scalar field coupling to the bumblebee
field is neglected, then the massive Klein-Gordon equation
reads

1√−g
∂a

(√−ggab∂bφ
)

= μ2φ, (27)

where ms = μh̄ represents the scalar field’s mass. We
decompose the field in spherical harmonics:

φ =
∑
lm

�l(r)√
r2 + a2

e−iωt Y lm(θ, ϕ). (28)

Since in axially symmetric background, perturbations with
different values of m are decoupled, the index of m can
be neglected. Substituting the metric (15) into Eq. (27) and
expanding the equation up to the second order of ã, we obtain

AlY
l + a2Dl cos2 θ · Y l = 0, (29)

We find that the parameters Al and Dl are constructed by
�l and its derivatives, and present their specific expression
in Appendix B. It shows that in Eq. (29) the radial and the
angular sections are still coupled together, hence one needs
to decouple the angular section to obtain a purely radial equa-
tion.

Expanding Eq. (29) up to the first order of ã, one can
obtain

d2

dx2 �
(1)
l + V (1)

l �
(1)
l = 0, (30)

where dr/dx = F = 1 − 2M/r , and the effective potential
is

V (1)
l = (1 + �)

(
ω2 − √

1 + �
4aMmω

r3

)

− F
[

2M

r3 + (1 + �)

(
l(l + 1)

r2 + μ2
)]

, (31)

to represent the potential expanded up to the first order of ã.
When the Lorentz-violating parameter � vanishes, the effec-
tive potential will be consistent with Eq. (23) in Ref. [30].

Now we separate the angular part of Eq. (29) up to the
second order of ã. Using the identity Eq. (24) and taking the
inner product of the Eq. (29) with the conjugate of scalar
spherical harmonics on the sphere, we can get

Al + a2
[(

Q2
l+1 + Q2

l

)
Dl + Ql−1Ql Dl−2

+Ql+2Ql+1Dl+2
] = 0, (32)

the parameters Dl±2 is made up of �l±2 and its derivatives,
which are written as

Dl±2 = 1

r2(2M − r)

(
d2

dx2 �l±2 + Wl±2�l±2

)
. (33)

Note that the explicit expression of Wl±2 is unnecessary. The
reason is that all Dl±2 terms is proportional to ã2, one should
only consider Dl±2 at the zeroth order of ã. This implies that
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the functions �l±2 in Eq. (33) can be only considered as the
solutions of

d2

dx2 �
(0)
l±2 + V (0)

l±2�
(0)
l±2 = 0. (34)

where V (0) = V (1)|a=0. And the expression of Dl±2 at the
zeroth order can be obtained,

D(0)
l±2 = (1 + �)(ω2 − μ2)

r3 �
(0)
l±2, (35)

Then, using the explicit form of the coefficients Al±2 and
Dl±2, the field equation (32) has the form as

d2

dr2∗
�

(2)
l + V (2)

l �
(2)
l = a2F(1 + �)2(μ2 − ω2)

r2

×
[
Ql+1Ql+2�

(0)
l+2 + Ql−1Ql�

(0)
l−2

]
, (36)

where dr/dr∗ = f ,

f = (1 + �)�̃

r2 + a2 , (37)

and the potential is given by

V (2)
l = V (1)

l + a2

r6

[
− 24M2 + 2Mr

(
6 − 2l(l + 1)(1 + �)

− 3� − 2r2(1 + �)μ2 + r2(1 + �)2ω2)
+ r2

(
l − 1 + 2� − l�2 + m2(1 + �)2 − l2(�2 − 1)

+r2μ2 − r2
(
ω2 + �2μ2 − �2ω2

))

− r4F(1 + �)2(μ2 − ω2)
(
Q2

l + Q2
l+1

) ]
. (38)

This potential coincides with Pani’s result when � → 0. To
obtain the single variable equation for �l , we need define

Zl = �
(2)
l + a2cl�

(2)
l−2 − a2cl+2�

(2)
l+2, (39)

where cl reads as

cl = (1 + �)

2(2l − 1)

(
μ2 − ω2

)
Ql−1Ql . (40)

Then, the wave-like equation for scalar field perturbation is
given by

d2

dr2∗
Zl + V (2)

l Zl = 0, (41)

and which can be analyzed by standard methods.

3.2 Massive vector perturbation

The field equations of a massive vector field, or known as
Proca field, is

�b = ∇a F
ab − μ2Ab = 0, (42)

where Aa is the vector potential, μ = mv/h̄ is the mass of the
vector field and Fab = 2∇[a Ab]. We also consider this vector
field satisfied the Lorentz condition ∇a Aa = 0. With the help
of the vector spherical harmonic basis (20), we expand the
perturbed vector δAa as,

δAa = −Pl

r
vaY

lm + Rl

r f
Y R,lm
a

+ Sl

r�
Y E,lm
a −

√
1 + �Ql

r�
Y B,lm
a , (43)

where � = l(l+1), and Pl , Rl , Sl , Ql are all scalar functions
of coordinate (t, r). The functions Pl , Rl , Sl belong to the
polar sector and the function Ql belongs to the axial sector.
Moreover, assume an harmonic time-dependence in time, for
instance,

Pl(t, r) = e−iωtPl(r). (44)

The perturbation of the four components of Eq. (42) and
the Lorentz condition can be naturally separated into three
groups:

δ�I =
(
A(I )
l + Ã(I )

l cos θ + D(I )
l cos2 θ

)
Y l

+
(
B(I )
l + B̃(I )

l cos2 θ
)

sin θ
∂

∂θ
Y l = 0, (45)

δ�θ =
(
αl + ρl sin2 θ

) ∂

∂θ
Y l − imβl

Y l

sin θ

+ (ηl + σl cos θ) sin θY l = 0, (46)

δ�ϕ

sin θ
=

(
βl + γl sin2 θ

) ∂

∂θ
Y l + imαl

Y l

sin θ

+ (ζl + λl cos θ) sin θY l = 0. (47)

The index I = {t, r, L} represents the t component, the r
component of Eq. (45), and the expansion of the Lorentz
condition ∇a Aa = 0, respectively. The explicit expression of
the coefficients in Eqs. (45)–(47) are presented in Appendix
C.

For Eq. (45), the angular part can be separated by taking
the inner product to Y ∗

lm . But for Eqs. (46) and (47), in order
to completely separate the angular part, we need construct a
new vector �̃a as

�̃a ≡ (
0, 0, δ�θ , δ�ϕ

)
. (48)
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Taking the inner product with Ya∗
E,l ′m′ and Ya∗

B,l ′m′ , respec-
tively,

∫
�̃aY

a∗
E,l ′m′d�, (49)

∫
�̃aY

a∗
B,l ′m′d�, (50)

and also using the identities Eqs. (22)–(25), then the radial
equations can be obtained. We list these radial equations in
Appendix C, see Eqs. (C24)–(C26).

First we consider the static Proca field equations. When
ã → 0, Eqs. (C24)–(C26) yield

D̂2Rl − 2F
r2

(
1 − 3M

r

)
[Rl − (1 + �)Sl ] = 0, (51)

D̂2Sl + 2�F
r2 Rl = 0, (52)

D̂2Ql = 0, (53)

where the operator D̂2 is introduced as

D̂2 = d2

dx2 + (1 + �)

[
ω2 − F

(
�

r2 + μ2
)]

. (54)

It shows that in this case, two sectors are naturally decoupled.
Using Eq. (52) to eliminate Rl in Eq. (51), one can obtain

D̂2

[
r2

F D̂2Sl

]
−

(
1 − 3M

r

) [
2D̂2 + (1+�)

4�F
r2

]
Sl = 0,

(55)

which is a fourth order differential equation. Note that we
can classify the eigenvectors of the system according to the
three degrees of freedom of the vector Aa , i.e., the three
polarizations, which include one scalar type polarization and
two vector type polarizations. And the electric mode of the
vector potential Aa has one scalar type polarization and one
vector type polarization. The reason of the above equation as
a fourth order differential equation is that, Sl contains both
scalar type polarization and vector type polarization.

Now we consider the situation of expanding the field equa-
tions to the first order of ã. The polar sector of the field equa-
tions gives

D̂2Rl − 2F
r2

(
1 − 3M

r

)[
Rl − (1 + �)Sl

]
= Spo

1 , (56)

D̂2Sl + 2�F
r2 Rl = Spo

2 , (57)

whereSpo
1 andSpo

2 are the source terms, and the explicit form
of which are presented in Appendix C. While the axial sector

of the field equations gives

D̂2Ql − (1 + �)
3
2

4aMmω

r3 Ql = Sax. (58)

where Sax is the source term and given in Appendix C. It
shows that the expressions of Spo

1 , Spo
2 and Sax are propor-

tional to ã, therefore it is only necessary to consider the com-
ponents of S, such as Ql or Rl , to the zeroth order of ã.

Note that for the first order rotation approximation, the
massive scalar perturbation and the massive vector perturba-
tion can be uniformly written as

D̂2�l − 2M

r3

[
(1 − s2)F + 2am(1 + �)

3
2 ω

]
�l = 0. (59)

where s = 0 for scalar perturbations and s = ±1 for vector
perturbations with axial parity. However, from the nextsub-
section, it shows that in Einstein–Bumblebee theory, the grav-
itational perturbation with axial parity can not be uniformly
written in the form of the above equation.

3.3 Gravitational perturbation

We consider that the metric gab can be decomposed into the
background g(0)

ab and the perturbation hab

gab = g(0)
ab + hab. (60)

Using the scalar spherical harmonic, the pure-spin vector
harmonics (20) and the tensor harmonics (21), one can obtain
ten orthogonal spherical harmonic basis [37]. And the metric
perturbation can be decomposed as [38]

hlmab = Al vavbY
lm + 2Bl v(aY

E,lm
b) + 2Cl v(aY

B,lm
b)

+ 2Dl v(aY
R,lm
b) + El T

T 0,lm
ab + Fl T

E2,lm
ab

+ Gl T
B2,lm
ab + 2Hl T

E1,lm
ab + 2Jl T

B1,lm
ab

+ Kl T
L0,lm
ab . (61)

where the coefficients Al to Kl are scalar functions. Adopting
the well known Regge-Wheeler gauge [23,38–44], we set

Bl = Fl = Hl = Gl = 0, (62)

After separating the angular components of Eq. (10), ten pure
radial equations can be obtained, which are naturally sepa-
rated into axial parity and polar parity. The two independent
components for the axial parity equation are given by

R̄tϕ : �F
2

(
2C′

l + rC′′
l − 3iωJl − irωJ′

l

) + aMm
√

1 + �

r2

×
[

2 − �

F ωCl + i

(
12M

r2 Jl − 4 + �

r
Jl + 2FJ′

l

)]
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+ �(4M − r�)

2r2 Cl = 0, (63)

R̄rϕ : (1 + �)�

2F
(

2(2 − �)M

r2 + � − 2 − r2ω2

r

)
Jl

+ iω(1 + �)�

2F
(
Cl − rC′

l

) + aMm(1 + �)
3
2

F
×

[
i
6 − �

r3 Cl + �

r2

(
2ωJl + iC′

l

)] = 0. (64)

Together with Eqs. (64) and (63), define Ul as

Jl = 1

F
(

1 − 2
√

1 + �
aMm

r3ω

)
Ul , (65)

then the modified master equation describing the axial grav-
itational perturbation up to the first order of ã can be written
as

d2

dx2 Ul +
[
ω2 − Vl

]
Ul = 0, (66)

where

Vl = F
(

�

r2 − 6M

r3

)
+ √

1 + �
4aMm

r3

×
[
ω + 6F

(
3r − 7M

r3�ω

)]
. (67)

From the expression of the above potential, we find that the
Lorentz-violating parameter coupled with rotation parameter
ã, which implies that the axial parity perturbation equation
for the static black hole solution in Einstein–Bumblebee the-
ory is the same as Schwarzschild black hole.

4 The eigenvalue problem for quasinormal modes

4.1 Boundary conditions

In this manuscript, we are concerned about how the Lorentz-
violating parameter � affects the QNMs. Hence we only
investigate the QNMs at the massless limit. At the first order
of ã, the relation (17) shows that there is only one horizon at
r+ = 2M . For scalar field or vector field, the generic wave
function �l has the asymptotic behavior as

�l ∼
{

(r − 2M)−i �̃σ+ for r → 2M,

ei �̃ωx for r → + ∞,
(68)

where x is the tortoise coordinate given in Eq. (30), �̃ and σ+
are defined as

�̃ = √
1 + �, σ+ = 2Mω − �̃

ma

2M
. (69)

But for the gravitational field Eq. (67), the generic wave func-
tion Ul has the asymptotic behavior as

Ul ∼
{

(r − 2M)−iσ+ for r → 2M,

eiωx for r → + ∞.
(70)

Using these asymptotic solutions, in order to apply the
numerical method, we can impose �l and Ul satisfied the
relation as

�l = ei �̃ωr r i �̃(2Mω+σ+) (r − 2M)−i �̃σ+ ψl , (71)

Ul = eiωr r i(2Mω+σ+) (r − 2M)−iσ+ ψl . (72)

If we consider the case that up to the second order of
rotation parameter ã, two horizons of the rotation black hole
are determined by the Eq. (17). At this case the asymptotic
behavior of Zl can be written as

Zl ∼
{

(r − r+)−i �̃� for r → r+,

ei �̃ωr∗ for r → + ∞,
(73)

where

r+ = 2M − (1 + �)
a2

2M
, � = (4M − r+) ω − �̃

ma

2M
.

(74)

According to this asymptotic behavior, Zl can be assumed to
be written as

Zl =ei �̃ωr r i �̃(2Mω+�) (r − r+)−i �̃� ψl . (75)

In the following sections, we will analyze QNMs by using
the matrix method and the continued fraction method, respec-
tively.

4.2 Matrix method for quasinormal modes

To compute the QNMs, here we briefly describe the matrix
method presented by Lin et al. [45–48]. By taking into
account the boundary conditions mentioned in the previous
subsection, we perform a coordinate transformation

y = 1 − r+
r

, (76)

so the region of QNMs calculation becomes y ∈ [0, 1]. Con-
sidering the boundary condition, assuming the wave function
can be reconstructed as

χ(y) = y(1 − y)ψl(y), (77)

then the boundary condition at the event horizon and the
spatial infinity becomes

χ(0) = χ(1) = 0. (78)
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This boundary condition ensures that the resulting matrix
equation is homogenous, as will be seen below. It can be
proved that all perturbation field equations can be rewritten
as

C2(y, ω)χ ′′(y) + C1(y, ω)χ ′(y) + C0(y, ω)χ(y) = 0, (79)

where the functions C(y, ω) can be derived by substituting
the behavior of the wave function into the corresponding field
equations. For instance, together with Eqs. (76) and (77), one
can substitute Eq. (75) into (41) and obtain the equation in
the form of Eq. (79). Note that all C j ( j = 0, 1, 2) are linear
functions of ω, so C j can be decomposed as C j (y, ω) =
C j,0(y) + ωC j,1(y).

Using the matrix method to discretize Eq. (79), we intro-
duce equally spaced grid points into the internal [0, 1]. By
expanding the function χ(y) around each grid point using
the Taylor series, the corresponding differential matrices can
be constructed. Thus, Eq. (79) is rewritten as an algebraic
equation in matrix form

(M0 + ωM1) χ(y) = 0, (80)

where M0 and M1 are matrices consisting of the functions
C j and the corresponding differential matrices. Calculating
these matrices [45,46], and then the solve of QNMs becomes
a simple algebraic solution problem.

4.3 Continued fraction method

Since the groundbreaking work by Leaver [49], the continued
fraction method is an accurate method in determining the
QNMs. In this method, the eigenfunction can be expressed as
a series whose coefficients adhere to a finite term recurrence
relation. In order to obtain a more concise recurrence relation,
in this subsection we set M = 1/2.

A solution to the perturbation equation that expands at the
event horizon can be written in the following form:

ψl =
∞∑
n=0

dn

(
r − r+
r − r−

)n

. (81)

For the Eq. (59) controlling the scalar and electromagnetic
fields, the expansion coefficients are defined by a three-term
recursion relations

[1 + i(1 + �)mã − 2i �̃ω]d1 + [
s2 − 1 − (1 + �)(� − 8ω2)

+ 4i �̃ω − (1 + �)mã(i + 3�̃ω)
]
d0 = 0, (82)

dn+1αn + dnβn + dn−1γn = 0, n = 1, 2, 3 · · · (83)

The recurrence coefficients αn , βn , and γn are simple func-
tions consisting of n and other differential equation parame-

ters, the explicit forms are as follows

αn = 4(1 + n)(1 + n + i(1 + �)mã − 2i �̃ω), (84)

βn = 4(s2 − 1 − 2n2) − 8n[1 + i(1 + �)mã − 4i �̃ω]
− 4�̃[�̃� + �̃mã(i + 3�̃ω)] + 16�̃ω(i + 2�̃ω), (85)

γn = 4(n2 − s2) + 4in[(1 + �)mã − 4�̃ω]
+ 8(1 + �)(�̃mã − 2ω)ω. (86)

The quasi-normal frequencies can be obtained by solving the
algebraic Eq. (83) at sufficiently large n for any initial value
d0. Without loss of generality, we set d0 = 1.

For the case of gravitational perturbations Eq. (67), the
recursion relations appear to be more complicated. The
explicit form of these relations are given by

d1 = C̃1,0 d0,

d2 = C̃2,0 d0 + C̃2,1 d1,

d3 = C̃3,0 d0 + C̃3,1 d1 + C̃3,2 d2,

d4 = C̃4,0 d0 + C̃4,1 d1 + C̃4,2 d2 + C̃4,3 d3, (87)

dn+1αn + dnβn + dn−1γn

+ dn−2σn + dn−3τn + dn−4δn = 0, n = 4, 5, 6 · · ·
(88)

where C̃i, j , as well as αn , βn , γn , σn , τn and δn , are functions
consisting of n and other parameters. The explicit form are
presented in Appendix D.

4.4 Numerical results

Using the matrix method and the continued fraction method,
we numerically calculated QNMs and show the result in this
subsection. In matrix method, we set N = 18, to ensure
that the relative error becomes smaller than 10−5. In con-
tinuous fraction method, we computed the 60th order for
scalar or electromagnetic perturbations and 16th order for
gravitational perturbation. The reason is that the latter equa-
tion is more complex and consumes too much computing
resources. However, the numerical results shows that the dif-
ference between two methods is smaller than 10−4. In the
calculating of QNMs, we set M = 1. In this paper we only
provide data for the l = m = 2 modes, which expected to be
the most astrophysically relevant. The detailed calculation
data can be found in Appendix E.

4.4.1 Static of Bumblebee modes

First, we consider the static black hole in the Einstein–
Bumblebee theory. When ã → 0, the metric (11) becomes
the static Schwarzschild-like black hole solution given by
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Fig. 1 Complex massless scalar frequencies for the n = 0 mode for
varying values of �

Fig. 2 Complex massless electromagnetic frequencies for the n = 0
mode for varying values of �

Ref. [14]. Note that this static Einstein–Bumblebee solu-
tion is an exactly solution without any approximation. From
the determinant of the metric (11), in order to maintain the
Lorentz signature, the parameter � should satisfied � > −1
[16]. For the gravitational perturbation of the static Einstein–
Bumblebee black hole, the perturbation equation is the same
as that in Schwarzschild case, hence the QNM frequencies
of the gravitational field are completely independent of the
Lorentz-violating parameter �. We calculated the QNMs for
massless scalar perturbation, the electromagnetic perturba-
tion with the range 0 < � < 1, respectively. Figures 1 and
2 show the QNM frequencies for the scalar field and the
electromagnetic field in the complex plane as calculated via
matrix method.

4.4.2 A consistency check for massless scalar perturbation

Before the calculation of the QNMs of the rotation Einstein–
Bumblebee black hole, we consider the special case of scalar
field at � = 0, i.e., the Kerr black hole. The QNMs of the Kerr
black holes are widely discussed [45,49–51]. We compute
the QNMs by slow rotation approximation at first and second
order, and then compare the results with the exact Kerr results
provided by [51].

Fig. 3 Comparison between the exact Kerr result and the results
obtained by slow rotation at first or second order for varying values
of a with l = m = 2 and M = 1

Figure 3 show that, the QNM frequencies results cal-
culated via slow rotation approximation matches the exact
massless scalar perturbation of a Kerr black hole, for l =
m = 2 mode. The figures reveal that, including the real and
imaginary parts, the difference between our approach and the
exact values is about 1% up to ã = a/M ∼ 0.4. It is obvious
that the first order approximation for the QNM frequencies
begins to fail at smaller values of ã, and the second order
approximation has much higher accuracy. And it also shows
that the frequencies of QNMs do not deviate significantly
from the standard result until ã ∼ 0.2.

4.4.3 QNMs of slowly rotating Einstein–Bumblebee black
hole

Now we turn to the slowly rotating Einstein–Bumblebee case
with non-vanishing ã and �. The rotation parameter ã is lim-
ited in the range 0 ≤ ã ≤ 0.3.

For massless scalar field, we computed the QNM frequen-
cies under both the first order and the second order approxi-
mations of the rotation. Figure 4 show that, for determined �,
the imaginary part of the second-order approximation shows
a more obvious change with the increase of ã. While for deter-
mined ã, the absolution of the imaginary part will decrease
with the increase of �.

For the electromagnetic and gravitational fields, we calcu-
late the QNM frequencies under the first order approximation
of the rotation parameter ã. Figures 5 and 6 show that, in the
rotating Einstein–Bumblebee black hole, with the increase
of � of the Lorentz-violating parameter, the real part of the
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Fig. 4 Real and imaginary parts of the l = m = 2 massless scalar
mode for varying values of a, where the dashed line represents the
first-order approximation of the rotation parameter and the solid line
represents the second-order approximation of the rotation parameter

Fig. 5 Real and imaginary parts of the l = m = 2 massless electro-
magnetic mode for varying values of a/M that belong to the axial sector

QNM frequencies will increase, but the absolution of the
imaginary part will decrease.

Figure 6 also shows quite intuitively that with a relatively
small rotation parameter, ã < 0.1, the Lorentz-violating

Fig. 6 Real and imaginary parts of the l = m = 2 gravitational mode
for varying values of a/M

parameter can hardly have a significant effect on the QNM
frequencies. The reason is that for gravitational fields, the
Lorentz-violating parameter only affects the first-order rota-
tional correction term of the effective potential. Analyzing
the effective potential of the gravitational field shows that
following the definition

ā = √
1 + �a, (89)

the form of the gravitational field master Eq. (67) will remain
the same as in the Kerr case [34]. It should be noted that this
equivalence is a coincidence at the first order of ã. Whether
this coincidence would be satisfied at the higher order needs
further exploration.

The results of QNMs for gravitational perturbations also
show that, the parameters ã and � affecting the QNMs are
degenerate. This implies that it is hard to determine whether
the deviation of QNMs is coming from the rotation or the LV,
and the effect of the bumblebee field may be misinterpreted
as being due to the rotation.

5 Conclusions and extensions

In this paper, we investigate the calculations of QNMs of the
rotation Einstein–Bumblebee black hole, which is an approx-
imation solution of stationary and axisymmetric black hole of
Einstein–Bumblebee theory. In this solution, the bumblebee
field only has a pure radial vacuum energy expectation and
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assumed to be as bμ = (0, br , 0, 0). The strength of the LV
can be determined by a coupling constant �. For the rotation
solution, expanding the metric to the second order of rotation
parameter ã, we obtain the first and second order differential
equations for the massive scalar perturbation. And we also
give the Proca field perturbation equation and the odd parity
of gravitational perturbation equation at the first order of ã,
respectively. It shows that the first order scalar field equation
and the first order Proca field equation can be written in a
form that includes these two perturbations.

Using the matrix method and the continued fraction
method, we calculated the QNMs for different fields. Our
results show that, the QNMs errors obtained by the two
methods are negligible. It clearly show that, as we expected,
compare with the exactly result in Kerr solution, the second
order approximation has a higher accuracy than the first order
approximation. For scalar, vector and gravitational perturba-
tion, we find that the real part of the QNM frequencies are
not sensitive to the change of Lorentz-violating parameter �.
However, the results shows that with the increase of �, the
absolute values of the imaginary part of the QNM frequen-
cies decrease, which indicate that the perturbation will decay
slower.

It should be noted that the rotation metric we consider
corresponding to the bumblebee field has only the radial
component. In this theory the Lorentz-violating parameter
� is determined by both coupling constant � and non-zero
VEV ba . Actually, the bumblebee field can be assumed to be
bμ = (0, b(r), b(θ), 0) [52] or bμ = (b(t), b(r), 0, 0) [53],
and the corresponding metrics can be obtained. In these cases,
how LV affects the QNMs is also a open problem.

Another point worth noting is that the isospectrality of
axial and polar perturbations has been shown in many space-
times, for example, the Schwarzschild metric and the Reiss-
ner Nordström metric [54]. The numerical results of Pani et
al. provide a strong evidence that the electromagnetic and
the gravitational modes of slowly rotation Kerr metric are
isospectral at the first order of ã [32]. However, the isospec-
trality is violated in some modified theories of gravity, the
violation of isospectrality, such as Lovelock gravity [55],
Chern-Simons gravity [56] and loop quantum gravity [57].
For Einstein–Bumblebee gravity, since we do not know how
to construct the master equation for even parity of electro-
magnetic or gravitational perturbations, whether the bum-
blebee black hole has the isospectral property is still an open
question.
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Appendix A: Conditions for solutions up to second order
of ã

In this appendix, we discuss that the metric (15) is the slowly
approximation solution of the Einstein–Bumblebee theory,
i.e., satisfied the condition Eq. (10).

By resolving the Einstein–Bumblebee gravitational field
equations, Ding et. al. presented an Kerr-like solution. But
Ref. [22] pointed out that their solution is not the exact
solution. However, with sufficiently small Lorentz-violating
parameter �, considering the slow rotation approximation and
the parameter ã is small, we can get an approximation solu-
tion. Substituting the metric (15) into the Eq. (10), we find
the zero components include

R̄tr = R̄tθ = R̄tϕ = R̄rθ = R̄rϕ = R̄θϕ = 0, (A1)

and the non-zero components are

R̄tt = r − 2M

r
δ, R̄rr = r(1 + �)

r − 2M
δ,

R̄θθ = −r2δ, R̄ϕϕ = −r2 sin2 θ δ, (A2)

where δ is

δ = a2�2

4r4 (1 + 3 cos 2θ) . (A3)

If � and ã are small parameters, we consider that the non
vanishing R̄tt and R̄θθ can be neglected. Hence the metric
(15) can be seen as an approximate slowly rotating solution.
In our numerical calculation, we restrict the values of � and
ã to [0, 0.2] and [0, 0.3], respectively, to ensure that δ ≈ 0.
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Appendix B: Coefficients of the scalar perturbation

The coefficients appearing in equation (29) are listed in this
Appendix and the relation � = l(l + 1) is also used in this
appendix. The coefficients are as follows:

Al = a2

(
4 + � + r2

(
μ2 − ω2

)
2r4(r − 2M)

− M
(
4 + � + r2μ2

)
r5(r − 2M)

+ m2(1 + �)

r4(r − 2M)
− 4M2(1 + �)ω2

r3(r − 2M)2 − 3(r − 3M)

r6(1 + �)

)
�l

+ 2M
(
� + r2μ2

)
r3(r − 2M)

�l − � + r2
(
μ2 − ω2

)
r2(r − 2M)

�l

+ 2M

r4(1 + �)

(
r� ′

l − �l
) + r − 2M

r2(1 + �)
� ′′
l

+ a2(r + 2M + 2r�)

2r4(1 + �)
� ′′
l − a2(5M + 2r�)

r5(1 + �)
� ′
l

− 4mMa
√

1 + �ω

r3(r − 2M)
�l , (B1)

Dl = 2M

r6 �l − (1 + �)
[
2M

(
� + r2ω2

) − r�
]

r5(r − 2M)
�l

− 2M

r5
� ′
l − r − 2M

r4 � ′′
l . (B2)

Appendix C: Coefficients and source terms of the Proca
perturbation

In this appendix we present the explicit expressions of the
parameters and the relations for the massive vector perturba-
tion. The explicit form of the coefficients appearing in Eqs.
(45)–(47) is

A(0)
l = i(r − 4M)ω

r2(r − 2M)(1 + �)
Rl − � + r2μ2

r3 Pl − iω

r2 Sl

+ iω

r(1 + �)
R′
l + r − 2M

r2(1 + �)
P′′
l + 2mMa

√
1 + �

r3(r − 2M)

×
[

i

r(1 + �)

(
Rl − r − 2M

�
S′
l

)
− ωPl − irω2

�
Sl

]

+ m2a2(1 + �)

r4(r − 2M)

(
Pl + iωr

�
Sl

)
+ ia2ω

r3(1 + �)
R′
l

+ 2a2(r + M)

r6

(
Pl − rP′

l + r3

2(r + M)
P′′
l

)

+ iωa2

r − 2M

(
4M2

r4(r − 2M)
− 1

r3(1 + �)

)
Rl , (C1)

A(1)
l = 2M

(
� + r2μ2

) − r� − r3
(
μ2 − ω2

)
r2(r − 2M)2 Rl + 1

r2 S′
l

+ iω

r(r − 2M)
Pl − iω

r − 2M
P′
l − 2iaMm

√
1 + �

r2(r − 2M)�

×
[

�

r2 Pl − 2i�ω

r − 2M
Rl − �

r
P′
l + iωS′

l

]

+ a2
(
rω2 − μ2(r − 2M)

r2(r − 2M)2 − �

r4(r − 2M)

)
Rl

+ (1 + �)a2

r4(r − 2M)2

[(
r� − 4r2M2 + r4

r − 2M

)
Rl

+ (
rm2 + r3μ2) Rl + 4iM2ω

(
rP′

l − Pl
)

−r(r − 2M)m2

�
S′
l

]
(C2)

A(L)
l = −2aMm

√
1 + �

�(r − 2M)r3 (i�Pl + rωSl) + a2(1 + �)

r3(r − 2M)

×
(
m2

�
Sl − 4iM2ω

r − 2M
Pl

)
+ a2

r4(1 + �)

(
rR′

l − Rl
)

+ iω

r − 2M
Pl + Rl + rR′

l

r2(1 + �)
− 1

r2 Sl , (C3)

Ã(0)
l = 4aM

√
1 + �

r5
Ql − 4a2Mm(1 + �)ω

�r5
Ql , (C4)

Ã(1)
l = −2ia2m(1 + �)

�r4 Q′
l , (C5)

Ã(L)
l = 0, (C6)

B(0)
l = 2aM

√
1 + �ω2

r2(r − 2M)�
Ql + 2aM

r4
√

1 + ��
Q′
l

− a2m(1 + �)ω

r3(r − 2M)�
Ql , (C7)

B(1)
l = 2iaM

√
1 + �ω

�(r − 2M)r2 Q′
l − ia2m(1 + �)

�(r − 2M)r3 Q′
l , (C8)

B(L) = −2iaM
√

1 + �ω

�(r − 2M)r2 Ql + ia2m(1 + �)

�(r − 2M)r3 Q, (C9)

B̃(0)
l = 4a2M(1 + �) (�Pl + irωSl )

�r6 , (C10)

B̃(1)
l = 2a2(1 + �)

[
�Rl − (r − 2M)S′

l

]
�(r − 2M)r4 , (C11)

B̃(L)
l = 0, (C12)

D(0)
l = a2

(r − 2M)r6 [(2M − r) (6M − �r(1 + �)) Pl

+r (i(10M − r)rωRl − (2M − r) (ir(1 + �)ωSl

+6MP′
l + r

(−irωR′
l + (2M − r)P′′

l

)))]
, (C13)

D(1)
l = a2(1 + �)

r4(r − 2M)2

[(
�(r − 2M) − 2Mr2ω2) Rl

× (r − 2M)
(
2iMrωP′

l − (r − 2M)S′
l

)
+2iM(2M − r)ωPl ] , (C14)

D(L)
l = − a2

(r − 2M)r4 [2iMr(1 + �)ωPl

+(r − 2M)
(
Rl − (1 + �)Sl + rR′

l

)]
, (C15)

αl = (1 + �)−1

(2M − r)r2�

[
ir2(1 + �)�ωPl − (r − 2M)�Rl

+ r2(1 + �)
(
rμ2 − rω2 − 2Mμ2) Sl + r�(r − 2M)R′

l

− (r − 2M)
(
2MS′

l + r(r − 2M)S′′
l

) ]

+ 2aMm
√

1 + �

�(r − 2M)r3 (i�Pl − rωSl) + a2(1 + �)−1

r4(r − 2M)2�

× [
2i�Mr2(1 + �)2ωPl − 3�(r − 2M)2�Rl

+(r − 2M)2 (
�r�R′

l − 2M(1 + �)
(
3S′

l − rS′′
l

))
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−2Mr3(1 + �)2ω2Sl
]
, (C16)

βl =
(

1

r2 + μ2

�
− rω2

�(r − 2M)

)
Ql − 2M

r2�(1 + �)
Q′
l

− (r − 2M)

r�(1 + �)
Q′′
l + 2aMm

√
1 + �ω

�(r − 2M)r2 Ql

− (1 + �)a2

r4 Ql + 2Ma2(1 + �)ω2

r(r − 2M)2�
Ql

+ 2Ma2

r3�

(
3

r
Q′
l − Q′′

l

)
, (C17)

ζl = 6aM

r4
√

1 + �

(
ir2ω

r − 2M
Rl − Pl + rP′

l

)
+ a2m

r4�

×
[

2Mr(1 + �)�ω

r − 2M
Pl − i(8M − r)�

r − 2M
Rl − ir�R′

l

+2iMr2(1 + �)ω2

r − 2M
Sl + i

(
8MS′

l + (r − 2M)rS′′
l

)]
,

(C18)

ηl = 2iaM
√

1 + �ω

(2M − r)r2 Ql + ia2m

r4�

[
2M(1 + �)

(
� + r2ω2

)
r − 2M

Ql

− 2 (r − 3M) Q′
l + r(r − 2M)Q′′

l

]
, (C19)

ρl = a2

r4(r − 2M)�
[2Mr(1 + �)ω (rωSl − i�Pl )

−2(r − 3M)(r − 2M)S′
l + r(r − 2M)2S′′

l

+�(r − 2M)
(
3Rl − rR′

l

)]
, (C20)

λl = −4a2M(1 + �)

r5
Ql , (C21)

σl = 0, (C22)

γl = a2

r4(r − 2M)�

[
(1 + �)

(
r� − 2M(� + r2ω2)

)
Ql

−8M(r − 2M)Q′
l − r(r − 2M)2Q′′

l

]
. (C23)

After the angular parts are separated, Eqs. (45)–(47) can
be rewritten as the pure radial equations, which are given by

A(I )
l + Q2

l+1

[
D(I )
l + l B̃(I )

l

]
+ Q2

l

[
D(I )
l − (l + 1)B̃(I )

l

]

+ Ql

[
Ã(I )
l−1 + (l − 1)BI

l−1

]
+ Ql+1

[
Ã(I )
l+1 − (l + 2)B(I )

l+1

]

+ Ql−1Ql

[
D(I )
l−2 + (l − 2)B̃(I )

l−2

]

+ Ql+2Ql+1

[
D(I )
l+2 − (l + 3)B̃(I )

l+2

]
= 0, (C24)

Ql+1
[
lηl+1 + im ((l + 2)γl+1 − λl+1)

]
− Ql−1Ql(l + 1)

[
(l − 2)ρl−2 + σl−2

]
+ Ql+2Ql+1l

[−(l + 3)ρl+2 + σl+2
]

+ �αl − imζl + Q2
l+1l [lρl + σl ]

+ Q2
l (l + 1) [(l + 1)ρl − σl ]

+ Ql
[−(l + 1)ηl−1 − im ((l − 1)γl−1 + λl−1)

] = 0,

(C25)

Ql+1
[
lζl+1 − im ((l + 2)ρl+1 − σl+1)

]

− Ql−1Ql(l + 1)
[
(l − 2)γl−2 + λl−2

]
+ Ql+2Ql+1l

[−(l + 3)γl+2 + λl+2
]

+ �βl + imηl + Q2
l+1l

[
lγl + λl

]
+ Q2

l (l + 1)
[
(l + 1)γl − λl

]
+ Ql

[−(l + 1)ζl−1 + im ((l − 1)ρl−1 + σl−1)
] = 0.

(C26)

The source term corresponding to the coupled system
described by Eqs. (56), (57) is

Spo
1 = (1 + �)

3
2

6iaMFω

�r3

[
lQl+1Ql+1 − (l + 1)QlQl−1

]

+ √
1 + �

2aMm

�r5ω

[
�

(
2(1 + �)r2ω2 + 3F2

)
Rl

+3F
(
r�F (Rl)

′ − (1 + �)
(
�F + r2ω2

)
Sl

)]
,

(C27)

Spo
2 = √

1 + �
2aMm

r5ω

[
2(1 + �)r2ω2Sl + 3rF2S′

l

−3F
(
� + r2μ2

)
Rl

]
, (C28)

and the corresponding source term of Eq. (58) is

Sax = − 6iaMF√
1 + �r5ω

[
(l + 1)Qlψl−1 − lQl+1ψl+1

]
,

(C29)

where we have defined the polar function

ψl = (1 + �)
[
(� + r2μ2)Rl − (r − 2M)S′

l

]
. (C30)

Note that this term is similar to Eq. (25) in Ref. [28]. As
expected, the axial perturbation Ql is coupled to the polar
functions with l ± 1.

Appendix D: Recurrence coefficients of gravitational per-
turbation

In this appendix, we present the explicit expressions of the
recurrence coefficients when we used the continued fraction
method. The recurrence coefficients in Eq. (87) are

n1C1,0 = �̃mã[3i + �ω(1 − 3iω)]
− i�ω[� − 3 − 4ω(i + 2ω)], (D1)

n2C2,0 = �̃mã[30i + �(1 − 2iω)ω]
× i�ω[3 + 4ω(i + ω)], (D2)

n2C2,1 = 3i �̃mã[�ω(i + ω) − 1]
+ i�ω[1 + � − 4ω(3i + 2ω)], (D3)

n3C3,0 = 72i �̃mã, (D4)
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n3C3,1 = 4�(2 − iω)ω2 + 2i �̃mã[�ω(i + ω) − 15], (D5)

n3C3,2 = �̃mã[3i + �(5 − 3iω)ω]
− i�ω[9 + � − 4ω(5i + 2ω)], (D6)

n4C4,0 = 66i �̃mã, (D7)

n4C4,1 = −72i �̃mã, (D8)

n4C4,2 = �̃mã[30i + �(3 − 2iω)ω]
+ i�ω[4ω(3i + ω) − 5], (D9)

n4C4,3 = i�ω[21 + � − 4ω(7i + 2ω)]
+ i �̃mã[�ω(7i + 3ω) − 3], (D10)

where

n1 = �ω(�̃mã − 2ω − i), (D11)

n2 = 2�ω(2i − �̃mã + 2ω), (D12)

n3 = 3�ω(�̃mã − 2ω − 3i), (D13)

n4 = 4�ω(4i − �̃mã + 2ω). (D14)

The recurrence coefficients in Eq. (88) are

αn = 4�(1 + n)(1 + n + i �̃mã − 2iω)ω, (D15)

βm = 4�ω[3 − � − 2n2 − n(2 − 8iω) + 4iω + 8ω2]
+ 4�̃mã[3 − �ω(i + 2in + 3ω)], (D16)

γm = 4�ω(n2 − 4 − 4inω − 4ω2)

+ 4�̃mã[i�nω + 2(�ω2 − 15)], (D17)

σn = 288�̃mã, (D18)

τn = −264�̃mã, (D19)

δn = 84�̃mã. (D20)

Appendix E: QNM frequency tables

See Tables 1, 2 and 3.

Table 1 Comparison of the
n = 0, l = m = 2 mode
massless scalar QNM
frequencies calculated by the
matrix method and the
continued fraction method under
the first order slow rotation
approximation

a Matrix method Continued fraction method % error
Re(Mω) -Im(Mω) Re(Mω) -Im(Mω) Re(Mω) -Im(Mω)

� = 0 0 0.483644 0.096759 0.483644 0.096759 0.000044 0.000027

0.05 0.491268 0.096749 0.491268 0.096749 0.000042 0.000059

0.10 0.499093 0.096735 0.499093 0.096735 0.000040 0.000089

0.15 0.507125 0.096718 0.507125 0.096718 0.000037 0.000118

0.20 0.515367 0.096699 0.515367 0.096699 0.000033 0.000143

� = 0.1 0 0.482542 0.092212 0.482542 0.092212 0.000032 0.000026

0.05 0.490533 0.092203 0.490533 0.092203 0.000031 0.000053

0.10 0.498746 0.092189 0.498746 0.092189 0.000029 0.000078

0.15 0.507188 0.092172 0.507188 0.092172 0.000026 0.000101

0.20 0.515863 0.092153 0.515863 0.092153 0.000023 0.000122

� = 0.2 0 0.481622 0.088251 0.481622 0.088251 0.000024 0.000025

0.05 0.489964 0.088242 0.489964 0.088242 0.000023 0.000048

0.10 0.498551 0.088229 0.498550 0.088229 0.000021 0.000069

0.15 0.507387 0.088212 0.507387 0.088212 0.000019 0.000088

0.20 0.516479 0.088193 0.516479 0.088193 0.000016 0.000105
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Table 2 Comparison of the
n = 0, l = m = 2 mode
massless electromagnetic QNM
frequencies calculated by the
matrix method and the
continued fraction method under
the first order slow rotation
approximation

a Matrix method Continued fraction method % error
Re(Mω) -Im(Mω) Re(Mω) -Im(Mω) Re(Mω) -Im(Mω)

� = 0 0 0.457596 0.095005 0.457596 0.095004 0.000052 0.000190

0.05 0.464821 0.094935 0.464821 0.094934 0.000045 0.000230

0.10 0.472255 0.094857 0.472255 0.094857 0.000037 0.000264

0.15 0.479904 0.094773 0.479904 0.094773 0.000028 0.000292

0.20 0.487773 0.094684 0.487773 0.094684 0.000019 0.000313

� = 0.1 0 0.458850 0.090690 0.458850 0.090690 0.000038 0.000143

0.05 0.466461 0.090626 0.466461 0.090626 0.000032 0.000176

0.10 0.474301 0.090554 0.474301 0.090554 0.000026 0.000204

0.15 0.482377 0.090476 0.482377 0.090476 0.000019 0.000226

0.20 0.490697 0.090394 0.490697 0.090394 0.000012 0.000241

� = 0.2 0 0.459896 0.086913 0.459896 0.086913 0.000028 0.000112

0.05 0.467874 0.086855 0.467873 0.086855 0.000023 0.000139

0.10 0.476102 0.086788 0.476102 0.086788 0.000018 0.000161

0.15 0.484589 0.086715 0.484589 0.086715 0.000013 0.000179

0.20 0.493342 0.086639 0.493342 0.086639 0.000007 0.000191

Table 3 Comparison of the
n = 0, l = m = 2 mode
gravitational QNM frequencies
calculated by the matrix method
and the continued fraction
method under the first order
slow rotation approximation

a Matrix method Continued fraction method % error
Re(Mω) -Im(Mω) Re(Mω) -Im(Mω) Re(Mω) -Im(Mω)

� = 0 0 0.373671 0.088963 0.373670 0.088959 0.000176 0.005109

0.05 0.380020 0.088861 0.380019 0.088858 0.000198 0.004226

0.10 0.386486 0.088750 0.386486 0.088747 0.000200 0.003370

0.15 0.393064 0.088616 0.393063 0.088614 0.000187 0.002555

0.20 0.399747 0.088446 0.399746 0.088445 0.000166 0.001789

� = 0.1 0 0.373671 0.088963 0.373670 0.088959 0.000176 0.005109

0.05 0.380333 0.088856 0.380332 0.088853 0.000199 0.004183

0.10 0.387124 0.088738 0.387123 0.088735 0.000199 0.003289

0.15 0.394036 0.088594 0.394035 0.088592 0.000185 0.002439

0.20 0.401063 0.088407 0.401063 0.088406 0.000161 0.001646

� = 0.2 0 0.373671 0.088963 0.373670 0.088959 0.000176 0.005109

0.05 0.380632 0.088851 0.380631 0.088848 0.000199 0.004142

0.10 0.387734 0.088726 0.387733 0.088724 0.000199 0.003211

0.15 0.394967 0.088572 0.394966 0.088570 0.000182 0.002330

0.20 0.402325 0.088368 0.402324 0.088367 0.000156 0.001511
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