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Abstract—HTTP-based live streaming has become increasingly
popular in recent years, and more users have started generating
4K live streams from their devices (e.g., mobile phones) through
social-media service providers like Facebook or YouTube. If the
audience is located far from a live stream source across the global
Internet, TCP throughput becomes substantially suboptimal
due to slow-start and congestion control mechanisms. This is
especially the case when the end-to-end content delivery path
involves radio access network (RAN) at the last mile. As a result,
the data rate perceived by a mobile receiver may not meet the
high requirement of 4K video streams, which causes deteriorated
Quality-of-Experience (QoE). In this paper, we propose a scheme
named Edge-based Transient Holding of Live sEgment (ETHLE),
which addresses the issue above by performing context-aware
transient holding of video segments at the mobile edge with
virtualized content caching capability. Through holding the
minimum number of live video segments at the mobile edge cache
in a context-aware manner, the ETHLE scheme is able to achieve
seamless 4K live streaming experiences across the global Internet
by eliminating buffering and substantially reducing initial startup
delay and live stream latency. It has been deployed as a virtual
network function at an LTE-A network, and its performance has
been evaluated using real live stream sources that are distributed
around the world. The significance of this paper is that by
leveraging virtualized caching resources at the mobile edge, we
address the conventional transport-layer bottleneck and enable
QoE-assured Internet-wide live streaming services with high data
rate requirements.

Index Terms—HTTP live streaming, mobile edge computing,
network function virtualization, quality of experience, video
caching

I. INTRODUCTION

As the 5G era is fast approaching, so is the landscape of

ultra-high quality Internet video streaming applications. More

users are now generating 4K live streams directly from their

devices through social-media service providers (SMSP) such

as Facebook, YouTube or Twitch. Immersive video streaming

applications that involve virtual reality (VR) or augmented
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reality (AR) content are also becoming more popular, where

these contents can be streamed through social networks across

the Internet. These applications not only require much higher

video quality in terms of resolution and data rate than conven-

tional 2D streams; they also set more stringent requirements on

receivers’ Quality-of-Experience (QoE). For example, in a VR

streaming session where the receiver wears a head-mounted

display, the video quality must be above a certain threshold to

avoid motion sickness caused by blurry pictures. Furthermore,

receivers are generally less tolerant of QoE deteriorating events

such as buffering when watching live.

It has become common practice for SMSPs to rely on

content delivery networks (CDNs) to distribute user-generated

content such as live streams. The benefit is that, once the

streamed content becomes available at a local CDN server’s

cache, the receivers will be able to access it locally without

resorting to the remote live video source. However, the first

group of receivers that join the stream will experience cache

misses since the content has not yet been cached and needs to

be retrieved from the live source over the public Internet. If a

live stream is of broadcasting nature with millions of receivers,

according to statistics by Facebook [1], around 1.8% of them

(which can still be a significant number) will have to stream

from the original source due to cache misses. Furthermore, if

a live stream is of more private nature (e.g., with only friends

watching) and the receivers are very sparsely distributed across

the Internet, they are much more likely to experience cache

misses at their local CDN servers and hence have to stream

directly from the remote live source.

HTTP live streaming typically uses TCP as its underlying

protocol. In the scenario where a receiver is located geograph-

ically far away from a live stream’s source, TCP is known

to experience suboptimal throughput over network paths with

long round-trip time (RTT) due to e.g., slow-start and con-

gestion control. This is especially the case when the end-

to-end (E2E) content delivery path involves combined radio

access network (RAN) and long-latency backhaul (including

the public Internet) [2]. In this scenario, even if the RAN

has adequate bandwidth resources, the E2E video quality still

cannot be guaranteed due to the TCP bottleneck. Such an issue

at the transport layer is conventionally circumvented through

deploying storage capability at the mobile edge to compen-

sate poor TCP performance via caching and/or prefetching

[2]. While such techniques work well for video-on-demand

applications, they have distinct limitations for supporting live

streaming, especially if video segments are not even produced

yet at the video source. This is particularly the case for
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those receivers who suffer from cache misses even with CDN

support (as mentioned in the previous paragraph). Another

option is to deploy split TCP proxies at the mobile edge to

improve transport-layer performance. However, besides issues

such as false ACKs which may lead to video frame drops, most

importantly, TCP proxies work on a per-flow basis and can

incur significant and continuous computational overhead at the

mobile edge due to coping with a large number of concurrent

live user-generated streaming sessions [3].

In this paper, we propose a policy-driven context-aware QoE

assurance scheme named Edge-based Transient Holding of

Live sEgment (ETHLE), which addresses the issues above at

the application layer. Such a scheme is deployed at the mobile

edge within the mobile network operator (MNO) infrastructure

as a virtual network function (VNF) called ETHLE edge, and

it is operated and owned by stakeholders such as SMSP or

CDN operators who rent virtualized computation and storage

resources from the MNO, so that the E2E content security and

privacy can be retained. The ETHLE edge’s objective is to

enable QoE-assured live streaming at the global Internet scale

(subject to RAN conditions), where QoE assurance means a)

guaranteed 4K video quality; b) no buffering is experienced by

the receiver; and c) the live stream latency and initial waiting

time are minimal subject to a) and b). Note that the ETHLE

edge assures the QoE of live streaming receivers regardless

of their distance to the live source, even for the ones who

get cache misses in the conventional CDN-based streaming

scenario.

In a nutshell, during a live streaming session, the receiver

relies on periodically requesting the stream manifest’s content

to gain knowledge on up-to-date content availability at the live

source. When all requests for video segments and manifest

files are handled by the ETHLE edge, if it “holds back” the

availability of some segments from the receiver, the receiver

will be given the “false” impression on the live video source’s

production progress and hence requests segments that were

produced a small while ago (depending on the number and

length of the held segments). Here, the distinct research

challenge is how to define a set of segment holding policies

in a context-aware manner, such that receivers’ QoE can be

assured at global scale while maintaining the live stream

latency at a minimal level by holding the minimal number

of segments. Note that although transient segment holding

may incur minor extra live stream latency, it is needed to

eliminate all buffering events and the unexpected latency

introduced by them. Otherwise, without such a technique, the

accumulated live stream latency caused by buffering events

will substantially exceed the deterministic latency introduced

by segment holding (as we will show in Section V).

In order to enable transient holding, the ETHLE edge

collects multi-dimensional context information at the mobile

edge. These include backhaul context (E2E latency), stream

context (bitrates and segment length) and RAN context (mo-

bile receivers’ signal strength). The backhaul and stream

context are relatively stable and do not require real-time

monitoring, and the RAN context is already monitored by the

MNO’s radio network information service (RNIS) in today’s

practice [4] and is simply passed on to the ETHLE edge.

Therefore, it requires minimal monitoring overhead.

The ETHLE scheme contains an enhanced reverse HTTP

proxy (namely ETHLE proxy) with caching capability, which

breaks the E2E content delivery path into two parts, where the

first part mainly consists of the RAN, and the second part

contains the backhaul (including the public Internet). Such

an approach not only brings improved and more predictable

TCP performance on both parts; it also enables the transient

segment holding operations at the mobile edge. Furthermore,

because it operates at the application layer, it does not have

conventional TCP proxies’ issues such as frame drops caused

by false ACKs. It also realizes emulated application-layer

multicast (see more in Section III-C), which means for each

live stream, it only originates one flow from the live source

regardless of the number of its receivers. As we will show in

Section V, the QoE metrics of initial startup delay, buffering

and live stream latency are assured at the global Internet scale

even with E2E RTT of up to 350ms, which is commonly

recognized as the worst-case RTT across the Internet.

The main contributions of this paper are briefly summarized

below:

• To the authors’ best knowledge, ETHLE is the first

scheme that not only assures 4K live streaming receivers’

QoE at global Internet scale, but also is future-proof by

meeting next-generation content applications’ stringent

requirements at up to 50Mbps based on our real-world

experiments. It can be flexibly deployed as a VNF by an

SMSP or CDN operator through renting virtual resources

from an MNO, so that even though the content delivery

path is broken into two segments, the E2E content secu-

rity/privacy is preserved when using HTTPS.

• ETHLE is the first QoE-assurance scheme for live stream-

ing that has been comprehensively deployed and evalu-

ated in an LTE-A network testbed and by using real video

sources that are geographically distributed at different

continents around the world (see Section V). These

real-word experiment results have also been statistically

consistent with our theoretical modeling based on a rep-

resentative transport-layer congestion control principle.

• We provide practical insights into how to use a policy-

driven segment holding technique to assure live users’

QoE under a variety of real-world network scenarios.

Such holding policies, which have been validated through

both theoretical modeling and real-world experiments,

can be directly adopted by SMSPs or CDN operators to

tailor their live streaming operations for the sake of their

customers’ QoE assurance.

The remainder of this paper is organized as follows. In Sec-

tion II, we describe the related background as well as existing

QoE improvement techniques of HTTP streaming applications.

The proposed ETHLE system overview is presented in Section

III, which includes a high-level functional overview, decision-

making process on transient segment holding and application-

layer signaling under typical scenarios. In Section IV, we

show how to model backhaul throughput when a specific TCP

congestion control mechanism is used. We then discuss in

Section V the results of experiments performed in an LTE-
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A testbed using real live streams that are globally distributed.

Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. HTTP-based Live Streaming

There are a number of HTTP-based live streaming protocols

such as Apple HLS (HTTP Live Streaming) [5] and MPEG-

DASH (Dynamic Adaptive Streaming over HTTP) [6]. These

protocols work in a similar manner, which is illustrated in

Figure 1. We use a user-generated live stream as an example

here because of this paper’s scope. First, the SMSP user creates

a raw live video feed through e.g., the YouTube app on his

phone. This raw feed is uploaded to YouTube’s data center

via e.g., RTMP (Real-Time Messaging Protocol), where it

is encoded and compressed into multiple RTSP (Real-Time

Streaming Protocol) streams in real time with different bitrates.

Each RTSP stream is then periodically packaged into a series

of media segments, whose information is kept up-to-date in a

manifest file that is regularly updated.

When a receiver starts watching a live stream, it first re-

quests the stream’s manifest via HTTP. The receiver then reads

the available segments and bitrates in the stream and picks one

to start with. Afterwards, the receiver periodically requests the

subsequent video segments as well as the manifest to check

if any new entry has been produced at the source. During this

process, the receiver is able to switch to any video quality that

is available in the manifest on a per-segment basis. The quality

switching criteria vary among different implementations and

depend on the specific adaptation algorithm that is adopted,

which is generally based on the receiver-perceived throughput

and/or video buffer.

B. Generic QoE Improvement Techniques of HTTP Streaming

There are many well-defined QoE metrics for HTTP stream-

ing receivers, which have been comprehensively studied in [7]

and [8]. The most common ones include initial startup delay,

buffering frequency and duration, overall video quality and

switching between qualities. These metrics apply to both on-

demand and live streaming. Furthermore, for live streaming

receivers, there is the additional metric of live stream latency,

which indicates how far is the receiver’s playback behind the

video source’s production progress. It is discussed in [9] that

abruptly downgrading video quality during playback would

significantly deteriorate QoE. Also, it is shown in [10] that

when streaming a monoscopic or stereoscopic 360◦ video,

visual discomfort on the viewers’ eyes are mainly caused by

decreased video quality as well as buffering.

Generally, the common practice to avoid buffering is to

perform video quality adaptation, where a number of well-

known algorithms such as FESTIVE [11], PANDA [12] and

BOLA [13] have been proposed in this context. However, in

the RAN+backhaul scenario that this paper focuses on, the

poor E2E TCP throughput means downgrading video quality

is inevitable from time to time, which would cause deteriorated

QoE. Therefore, in next-generation 4K VR streaming applica-

tions, the video quality must be maintained at the 4K threshold,

which means quality adaptation needs to be either limited
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Fig. 1: User-generated HTTP-based live stream lifecycle

(video bitrates are for illustration only)

or disabled. Another common practice to improve QoE is to

cache popular content at the mobile edge [14] [15] [16] and to

prefetch video segments on-the-fly at the receiver’s device [17]

or at the mobile edge [2] [18] [19]. However, such techniques

can only be applied to on-demand video applications, because

live video segments cannot be cached or prefetched beforehand

either at the client or at the mobile edge as they are produced

on-the-fly. Therefore, they are outside this paper’s scope.

C. QoE Improvement Techniques of HTTP Live Streaming

In the literature of improving QoE specifically for HTTP

live streaming receivers, the related work can be generally

categorized into two types. The first type involves quality

adaptation or real-time transcoding to avoid buffering. In [20],

the authors evaluated a number of typical throughput-driven

and buffer-driven adaptation algorithms in a real live stream-

ing trace-driven study, which revealed different algorithms’

tradeoffs on QoE. The authors in [21] proposed an adapta-

tion technique for MPEG-DASH live streaming that works

through enabling a “tracker” on the receiver’s device, which

shares control information among receivers to help adaptation

decisions. In [22], a real-time server-based transcoding scheme

for HLS live streaming is proposed, in which the server keeps

tracking the receivers’ real-time download throughput and

adjusts the bitrate of the HLS segments that are served to

the receivers. However, these schemes all achieve improved

QoE through quality adaptation which, as discussed earlier,

may cause visual discomfort to receivers.

The second type focuses on reducing live stream latency. In

[23], the authors propose to reduce DASH segment length to as

low as 1s, and use the HTTP/2 server push technique to avoid

the excessive request overhead caused by short segments.

However, it is shown that when using 1s segments, server push

itself does not introduce any benefit in live stream latency.

In [24], the authors further reduced the segment length to as

low as 0.1s. They designed an SDN controller to prioritize

video traffic and hence reduce buffering. However, it is not

clear what was the network characteristic that the experiments

were based on. In [25], the authors studied the live streaming

QoE in terms of initial startup delay, buffering and quality

switches. The emulation was carried out using measured LTE

throughput in Belgium and included an artificial delay of up
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to 400ms. It was first shown that segment length should be

maintained above 0.5s to avoid excessive encoding overhead

when using HEVC. HTTP/2 server push was also shown to

reduce buffering and initial delay. However, the results also

showed that simply using HTTP/2 is still unable to eliminate

buffering under 300ms RTT.

It is important to note that no prior work in the HTTP live

streaming literature has examined the TCP performance issue

that is caused by mixing RAN and long-distance backhaul

in the E2E content delivery path over the global Internet.

Therefore, our work is the first of its kind to address this

issue. As we will show in Section V through extensive real-

world experiments, regardless of how far the video source is

located from the live streaming receiver, the proposed ETHLE

scheme is always able to eliminate buffering and minimize

initial startup delay and live stream latency while guaranteeing

4K video quality.

III. ETHLE SYSTEM OVERVIEW

At the mobile network edge in the MNO infrastructure,

some computing and storage resource can be virtualized and

leased to e.g., an SMSP or CDN operator1. Here, we envisage

that an SMSP or CDN operator rents such virtualized resources

from the MNO and deploys the proposed ETHLE scheme.

When a content producer wants to produce a live stream that

can be shared with remote audiences through the SMSP, the

approach that is illustrated in Figure 1 is followed. In this

section, we describe how the ETHLE scheme handles remote

live receivers’ requests and assures their QoE.

A. Functional Overview

A high-level functional overview of the ETHLE edge (i.e.,

the VNF that contains the ETHLE scheme, as well as its

supporting virtual resources) is presented in Figure 2. The key

strategy of ETHLE is to break the conventional E2E content

delivery path into two parts containing the RAN and the

backhaul respectively, which further enables transient segment

holding operations at the mobile edge, through which the

ETHLE edge is able to make sure receivers can always get

local access to live segments in time. Note that the split content

delivery path approach above does not incur any third-party

security issue, because the ETHLE edge is still owned and

operated by the SMSP thanks to virtualization.

The core function of the ETHLE edge is an enhanced

HTTP reverse proxy that is located between the two split

content delivery path segments. This proxy, which has content

storage capability, is responsible for handling all incoming

video requests from receivers. More specifically, depending

on the type of the request it receives, it performs different

actions as follows.

At the beginning of each streaming session, the first request

that the ETHLE proxy receives from a receiver is always for

the stream’s manifest file. Upon receiving such a request, the

1If an SMSP uses a CDN, then the CDN operator can rent such virtual
resources at the mobile edge. Otherwise the SMSP can directly rent virtual
resources from the MNO without involving a CDN operator. In the rest of
the paper, we do not differentiate between these two cases.
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proxy always forwards it to the live video source. Afterwards,

when the proxy retrieves the file from the video source, it

collects information on the following context:

• Backhaul condition information between the source and

the proxy. The key metric here is RTT because it governs

the TCP slow-start performance and is used to model

the backhaul TCP throughput (denoted by thbh, whose

modeling details are further discussed in Section IV).

It is calculated at the beginning of each live streaming

session by analyzing the timestamps of corresponding

TCP SEQ and ACK packets, which is done through a

customized version of tcpdump at the proxy. Note that

since the backhaul latency is typically stable (as we will

show in Section V), such calculation only needs to be

performed once for each live video source with a fixed

network location.

• RAN condition information which includes each re-

ceiver’s signal strength (e.g., RSRP, RSRQ and RSSI

in LTE, and RSSI in WiFi) and mobility pattern (e.g.,

fast, slow, static). This knowledge is obtained from the

MNO’s RNIS and is used to estimate the RAN throughput

the receiver is expected to get (denoted by thran); this

estimation process is further explained in Section III-B.

• Video stream information which includes each stream’s

bitrate and segment length (in seconds) (denoted by

bseg and lseg respectively). This information is used to

determine the minimum requirement of backhaul and

RAN throughput in order for the receiver to receive a

video segment in time. Note that Constant Bit Rate (CBR)

encoding is commonly used in live streaming [26] [27]

[28], which results in similar sizes of all segments in a

stream.

Taking as input the three types of context knowledge above,

upon receiving an incoming request for a live streaming

session, the ETHLE edge makes a real-time decision on the

optimal (x, where x ≥ 0) number of video segments that need
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to be held back from the receiver to assure QoE. The rationale

behind transient segment holding is as follows. In HTTP

live streaming, a receiver periodically requests the manifest

because from its perspective, the manifest always contains

the most up-to-date information on segment availability at the

live video source. Recall that all requests for manifests and

video segments are handled by the ETHLE edge. Therefore,

if the ETHLE edge holds x segments back from the receiver

(as illustrated in Figure 2)2, the receiver will be given the

impression that those segments have not been produced at

the source yet, who will begin a session requesting segments

that were produced a little while ago (depending on x and

segment length). This creates an opportunity for the ETHLE

edge to open multiple (up to x) parallel (but transient) TCP

connections towards the live source and download the held

segments before they are requested by the receiver. Hence,

the ETHLE edge can ensure that the receiver has local access

to the subsequent video segments. Note that these multiple

TCP connections do not need to be maintained throughout

the streaming session, because as soon as the ETHLE edge’s

local content availability is x segments ahead of the receiver’s

request progress, the ETHLE edge can maintain the lead by

downloading one segment in advance at a time using one TCP

connection. This is because a receiver’s request pattern is very

regular in a live streaming session. Also note that the ETHLE

edge operates at application layer and is agnostic to underlying

transport layer techniques. For example, while it can benefit

from advanced techniques such as Multi-Path TCP, it does not

necessarily rely on them to achieve QoE assurance.

In Section III-B, we use a single-receiver unicast scenario

as a simple example to explain the ETHLE edge’s decision-

making flow when determining the optimal number of seg-

ments that need to be transiently held.

B. Single-Receiver Unicast Scenario

For each live streaming session, the ETHLE edge follows

a two-step sequential decision-making process as follows.

First, the ETHLE edge decides whether the performance

of hold-0 (i.e., x = 0 and no segment is held) is sufficient

to assure receiver’s QoE, which means guaranteed 4K quality

and no buffering during streaming. Note that hold-0 is still

different from the E2E content delivery mode, as it splits the

E2E content delivery path into two segments. In this case, each

video segment’s download time, which is the time duration

between when the receiver sends the request for a segment

and when the receiver fully receives that segment, needs to

meet the following inequality in order for hold-0 to satisfy

the QoE assurance criteria above:

sseg

thbh

+
sseg

thran

≤ lseg (1)

where sseg refers to a video segment’s size (in bytes), and

the left side represents the aggregated transmission time of the

2In practice, there can be different ways to remove a video segment from
a manifest depending on the streaming protocol. What is illustrated in Figure
2 shows how it is done in Apple HLS protocol. In MPEG-DASH, it can
be done by manipulating the availabilityStartTime attribute in the manifest.
Either way, the receiver will be given the false impression on the live source’s
production progress.

video segment over the backhaul and the RAN respectively.

In order to estimate thran of a user in an LTE network, our

approach is similar to the one in [29] which considers the

user’s RSRP, RSRQ and RSSI in a linear function. Further-

more, we also take into account the number of active users in

the cell. Due to the fluctuating nature of RAN, the ETHLE

edge estimates each user’s thran relatively frequently (e.g.,

upon receiving each request from a user).

If inequality (1) holds, no segment needs to be transiently

held to assure QoE because each segment’s download time is

shorter than its length and hence can be downloaded before

it is consumed by the receiver. Therefore, in this case, the

ETHLE edge simply needs to break the E2E content delivery

path and act as a standard HTTP reverse proxy.

If inequality (1) does not hold, transient segment holding

is necessary to assure QoE subject to the RAN throughput

meeting the 4K stream’s bitrate requirement. In this case, the

objective becomes identifying:

argmin
x

sseg

thbh · x
≤ lseg (x = 1, 2, . . . ) (2)

subject to:

thran > bseg (3)

As described in Section III-A, holding x segments means

the ETHLE edge “hides” their availability at the live video

source from the receiver, hence creating opportunity for itself

to download them utilizing parallel TCP connections from the

live source. This means the effective backhaul throughput is

thbh · x. In inequality (2), the minimal value of x is identified

such that the effective backhaul throughput is higher than

the video stream’s bitrate requirement. This is because when

holding x segments from the receiver, an additional live stream

latency of x · lseg is incurred, and such extra latency overhead

should be minimized to avoid QoE deterioration. It is worth

mentioning that the ETHLE edge’s operator may also impose

an upper limit on the value of x to prevent excessive number

of parallel TCP connections from being opened.

Note that constraint (3), which specifies that the RAN

throughput must be higher than the video stream’s bitrate,

also needs to be met in order for hold-x to work. Otherwise,

even if the ETHLE edge is able to download video segments

beforehand, the receiver still cannot download the video seg-

ments over the RAN in time. In other words, the usefulness

of the ETHLE scheme is to enable E2E QoE assurance in

4K live streaming subject to adequate RAN resources, and to

avoid the underlying transport-layer protocol from becoming

the bottleneck. Therefore, if constraint (3) cannot be met due

to low RAN throughput, the ETHLE scheme is not applicable

any more, and there are two possible actions that the ETHLE

proxy can take. First, the ETHLE proxy can send an HTTP

301 Redirect response to the receiver and instruct it to send

all further requests to the live video source. In this case, the

conventional E2E adaptation logic at the receiver will work

on its own. Second, the ETHLE proxy can still download

the originally-requested high-quality video segment from the

source, and perform local video transcoding to match different
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receivers’ RAN throughput. In either case, there are many

existing work in the literature (see Section II). In this section,

we assume that constraint (3) always holds.

After the optimal value of x is calculated in inequality (2),

the ETHLE proxy hides the last x segments’ availability by

manipulating the manifest and serves its modified version to

the receiver. After receiving the manifest, the receiver chooses

a segment to request based on the manifest’s content. For

example, if a manifest states that segments m to m + k are

available, the receiver will, by default, start by requesting

segment m + k − 3 as recommended in [5]. This creates

the opportunity for the ETHLE edge to perform two tasks

in parallel. First, it handles the request by acting as a reverse

proxy. If the segment is already available locally, it serves the

file immediately. Otherwise, it retrieves the file from the live

source over the backhaul and serves it afterwards. Second,

if x segments were held back earlier, it downloads those

segments by opening x parallel TCP connections towards

the video source. Note that the value of x is optimized to

ensure that the ETHLE edge can get ahead of the receiver’s

streaming progress just in time. In other words, through these

parallel TCP connections, the ETHLE edge is able to ensure

local availability of subsequent video segments before they are

requested by receivers.

The above process is illustrated in Figure 3, where the

ETHLE edge holds two segments from the receiver, which

means it is able to download segments 15 and 16 in addition to

the requested segment 14. This enables the edge’s local content

availability to stay ahead of the receiver’s streaming progress

by two segments, which makes sure the receiver has local

access to all subsequent segments. This would not have been

possible without the segment holding functionality, because

the ETHLE edge cannot download any segment (in addition

to the requested one) that has not yet been produced at the

video source. Note that the two parallel TCP connections that

are used to download segments 15 and 16 do not need to be

kept open, since starting from segment 17, only one connection

is needed for the ETHLE edge to maintain its lead over the

receiver’s progress.

C. Emulated Multicast in Multi-Receiver Scenarios

So far, we have described how the ETHLE edge responds

to a single receiver’s requests and performs transient segment

holding. We now explain how multiple receivers’ requests are

handled when they are consuming the same live stream under

the same ETHLE edge’s coverage. Note that the following

procedures are performed on a per-stream basis.

When multiple receivers watch the same live stream, their

watching progress are typically similar. However, when seg-

ment length is short (e.g., 2s or 4s), their progress may differ

by one to two segments due to e.g., minor clock drift on the

receivers’ devices etc. If the later-joined receiver’s progress is

behind the earlier one’s progress, the ETHLE edge can directly

serve video segments that have already been downloaded for

the earlier receiver. On the other hand, it is also possible that

the later receiver is ahead of the earlier one. Such a situation

is illustrated in Figure 4 where two segments are transiently

held. In the beginning, receiver 1 begins by requesting segment

12, and the ETHLE edge opens two extra TCP connections

and downloads segments 12 to 14 in parallel from the live

source. Afterwards, when the ETHLE edge is downloading

segment 15 to stay two segments ahead of receiver 1 (who

has just requested segment 13), receiver 2 joins the stream and

begins by requesting segment 15. While receiver 2 waits for

the ETHLE edge to finish downloading segment 15 from the

live source, the ETHLE edge immediately starts downloading

both segments 16 and 17 to stay two segments ahead of

receiver 2. Afterwards, both receivers have local content access

at the ETHLE edge. Therefore, the ETHLE edge always stays

x segments ahead of the receiver with the most advanced

watching progress of a live stream.

In a mobile network, receivers may experience dynamic

RAN signal strength, which means the values of thran for

receivers of a live stream can vary significantly. Recall from

inequality (1) that thran and thbh jointly determine whether

hold-0 is able to assure a receiver’s QoE. Also recall from

inequality (2) that if hold-0 is unable to assure a receiver’s

QoE, the optimal hold-x is determined by thbh only, which

applies on a per-stream basis and does not vary among

receivers with different RAN conditions. Therefore, for each

live stream, the ETHLE edge creates two policy groups where

one is for receivers whose thran and thbh are high enough to

make hold-0 the optimal scheme, and the other one is for other

receivers with lower thran who need hold-x to assure their
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QoE. When a new receiver joins a stream, the ETHLE edge

evaluates inequality (1) based on the receiver’s thran and the

stream’s thbh, and assigns it to one of the two groups. Cor-

respondingly, the ETHLE edge operates two coexisting sets

of transient segment holding policies (i.e., hold-0 and hold-

x), which means receivers in each group will receive slightly

different versions of the manifest and hence have different

watching progress. Note that such asynchronous progress

among receivers watching the same live stream is already

a common phenomenon when using E2E TCP connections.

Nevertheless, the receivers in the hold-x group will always

get local content access, since the segments they request will

have already been downloaded for any receiver in the hold-0

group earlier.

For mobile receivers, their RAN conditions often fluctuate

(sometimes significantly) due to e.g., mobility or building

obstacles between receivers and base station. Due to this

reason, for each live streaming session, the ETHLE edge

regularly evaluates inequality (1) either in a time-driven or

in a request-driven manner. If the RAN condition of a hold-0

group’s receiver worsens and inequality (1) no longer holds,

which means hold-0 is no longer able to assure its QoE, it

will be moved into the hold-x group to avoid buffering. On

the other hand, a hold-x group’s receiver cannot be moved

into the hold-0 group, because it would cause x segments to

be skipped during the streaming, which will be perceived as a

negative experience by the receiver. Also note that for receivers

whose thran does not meet constraint (3), as described in the

previous subsection, they will not be subject to any transient

segment holding and can use either video quality adaptation

or edge-based transcoding techniques.

With the operations described above, it can be inferred that

regardless of the number of receivers who are watching a live

stream through an ETHLE edge, it always creates only one

stream between itself and the live video source. Therefore,

it effectively achieves an emulated multicast between the

receivers and the source, which reduces the backhaul traffic

volume. Furthermore, as we will show in Section V, it sig-

nificantly improves the receiver-perceived segment download

time without incurring the expensive computational overhead

as split TCP proxies do.

IV. BACKHAUL THROUGHPUT MODELING

As presented in Section III-B, the backhaul throughput thbh

of a live stream is a crucial parameter for the ETHLE edge

to determine the optimal number of transiently held segments.

In this section, we discuss the estimation of thbh based on

backhaul RTT and video stream information. We focus on

using the recently-proposed BBR (Bottleneck-Bandwidth and

Round-trip latency) as the TCP congestion control mechanism

[30]. Due to its superior performance over long-distance public

Internet when compared to other TCP variants such as CUBIC,

as well as the fact that it has been deployed on all YouTube

servers and is well making its way into a standard [31], we

use BBR as an upper bound on TCP performance in video

streaming applications3.

BBR attempts to send data based on the bandwidth-delay

product (BDP) of the network path by estimating the bottle-

neck bandwidth, bwmax, and the RTT of the path, rttmin. We

denote the estimation via measurements of these parameters

as b̂wmax and r̂ttmin respectively.

Based on [30], we have the following:

b̂wmax = max(rate(t)); ∀t ∈ [T −WB , T ] (4)

where WB determines the measurement window size and is

typically set between 6s and 10s and rate(t) is the measured

delivery rate based on received acknowledgments and

r̂ttmin = min(rtt(t)); ∀t ∈ [T −WR, T ] (5)

where WR is the measurement window size of RTT and is

typically set to 10s. Note that

3Modeling the detailed behavior of BBR is of course not the focus of
this work, especially when the protocol itself is currently still under constant
update and patching. Our methodology here is modular however and can
benefit from more accurate models in the future when BBR specifications
have been fully standardized.
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r̂ttmin = rttprop +min(η(t)) (6)

where rttprop is the propagation delay and η(t) accounts for

additional delay caused by queues along the path and other

protocol induced latency such as delayed acknowledgement

strategy, acknowledgement aggregation, etc.

The BDP can then be estimated as follows:

b̂dp = b̂wmax × r̂ttmin (7)

A BBR connection goes through different states over its

lifetime.

• STARTUP: When a connection is first started, a BBR

connection is in the STARTUP state which roughly

corresponds to the slow-start phase of window-based

TCP implementations (e.g., CUBIC). In this state, BBR

probes for more bandwidth by increasing the sending rate

(controlled by pacing gain) with a factor of 2/ ln(2) for

an estimated r̂ttmin and exits this state when a “plateau”

is reached (e.g., no more additional bandwidth is found

after three RTTs). The exponential search of STARTUP

finds the BDP in log2(bdp) RTTs.

• DRAIN: Due to the fact that STARTUP leads to expo-

nential growth of in-flight packets, it also creates a queue

at its end. As such, the connection enters the DRAIN state

after STARTUP to reduce the queue (the current BBR

specification sets this at 2× bwmax × rttmin by setting the

sending rate to ln(2)/2).

• ProbeBW: At steady state, BBR enters the ProbeBW

state where it cycles its sending rate at eight phases using

pacing gain = {1.25, 0.75, 1, 1, 1, 1, 1, 1} where each

phase lasts for an r̂ttmin. As such, in the long run, at

steady state, the connection sends at pacing gain = 1.

• ProbeRTT: Periodically, BBR enters the ProbeRTT

state to estimate current RTT. This is done by limiting the

in-flight data to four packets for max(rtt, 200ms) before

returning to its previous state.

To estimate thbh, we first assume that the path conditions

remain stable over the entire segment delivery period since

(1) the individual video segment size is relatively small (a

video segment can usually be completely delivered within

10-20 RTTs based on our Internet-wide measurements with

a variety of scenarios) and (2) the backhaul RTT is highly

stable (see our real measurements in Figure 8). We further

assume there is no loss. Therefore, our modeled throughput

is an optimistic higher estimation. We also note that, unlike

current variants of loss-based congestion control mechanisms

that reduce drastically send rates when losses are detected,

BBR does not explicitly react directly to packet losses but

rather implicitly via measurement of the BDP.

Let mss be the maximum TCP segment size in bytes.

Then, we model the number of bytes that is transferred in

the STARTUP state for the delivery of a segment (denoted as

thstartup) using the geometric progression of the sending rate

and obtain:

thstartup ≈
mss(1− ( 2

ln(2) )
dstartup)

1− 2
ln(2)

(8)

where dstartup refers to the duration spent in the STARTUP

phase. Transforming Equation (8) and we get:

dstartup ≈ log 2
ln(2)

(
1−

thstartup(1−
2

ln(2) )

mss

)
(9)

Considering that BDP over the backhaul is generally stable,

we can then approximate the transmission duration of the

entire video segment dseg as follows:

dseg ≈ dstartup +
(sseg − thstartup)

bwmax

(10)

where sseg refers to the video segment’s size. Assuming that

the backhaul TCP connection maintains the transmission at the

bottleneck bandwidth rate, the overall backhaul throughput can

then be written as:

thbh =
sseg

dseg

. (11)

The outcome of Equation (11) is used as input when deter-

mining the optimal x as described in Section III. Specifically,

by combining Equations (2), (10) and (11), the objective in

(2) becomes:

argmin
x

x ≥
1

lseg

(
dstartup +

(sseg − thstartup)

bwmax

)
(12)

As we will show in Table III of Section V, our estimated

values of both thbh and the optimal number of held segments

x highly match the actual measured results.

V. PERFORMANCE EVALUATION

In this section, we systematically evaluate the performance

of the ETHLE scheme in a variety of real-world scenarios at

global scale.

A. Experiment Setup

A receiver with an HLS client is connected to the Internet

through an LTE-A (3GPP Rel.14) testbed network infrastruc-

ture that is hosted by 5GIC at University of Surrey, UK. We

use a Chromium browser (version 61) running on a Linux PC

with hls.js4 v0.8.5 as the HLS client, and the PC is connected

to the LTE-A network through USB tethering on a Google

Pixel phone. The RAN is operated by a Huawei lampsite

at LTE Band 41 (2545 - 2575MHz) and offers a maximum

downlink throughput of 112Mbps [32]. The ETHLE edge is

implemented by customizing and extending a Jetty5 web server

in Java. It realizes the context monitoring, request handling and

transient segment holding functions as presented in Sections

4https://github.com/video-dev/hls.js/
5http://eclipse.org/jetty/

TABLE I: Video Segment Size

Segment Length

Bitrate 2s 4s 10s

15Mbps 3.7MB 7.2MB 18.3MB

50Mbps 12.2MB 24.4MB 61.1MB
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III and IV. It is deployed as a VNF at the Packet Gateway

(P-GW) of the LTE core network.

In order to create scenarios where the live video source is

located at different locations, we adopt the following approach.

First, we create four virtual machines (VM) instances through

Google Compute Engine (part of Google Cloud Platform) at

four different location scenarios (US West, Japan, Australia

and India) with a variety of representative RTTs towards UK

(137ms, 224ms, 302ms and 334ms respectively). Each VM

runs Ubuntu 16.04 with kernel 4.10.0-38 and contains a single-

core CPU and 4GB RAM. Note that the backhaul between

the P-GW and these VMs are completely public with no

reserved network resource. BBR is used as the TCP congestion

control mechanism on all video sources. Then, to produce a

live video feed, we use a Nokia OZO+ camera which outputs

360◦ monoscopic 4K 30FPS video at about 3Gbps. The raw

video feed is then sent to a Matrox Maevex 6100 encoder

card via an SDI cable, where it is encoded into two RTSP

streams with bitrates of approximately 15Mbps and 50Mbps

respectively using CBR. For both streams, key frames are

inserted every two seconds. At a local video production server,

each RTSP stream is packaged into three HLS streams with

segment lengths of 2s, 4s and 10s respectively. Therefore, our

experiments are based on a total of 6 stream scenarios. For

each HLS stream, as soon as a new segment is generated,

it is uploaded (with the latest manifest file) to all VMs so

that they can act as live video sources. The size of each video

segment in these 6 streams is shown in Table I. For the sake of

consistency and fairness, all streaming sessions are cut off at

exactly five minutes after the first request is issued. Note that

for each location/stream scenario, we repeat the experiment

for 3 times during different time of the day at around 9AM,

2PM and 8PM (UK time). Since the observed results do not

vary significantly among different experiment time, we show

the results of experiments performed in the morning only in

this section.

B. Performance Metrics

We evaluate the performance of two types of schemes: end-

to-end (E2E) and hold-x. In the E2E scheme, the HLS is

unaware of the ETHLE edge’s presence and directly streams

video from the sources over the RAN+backhaul path. In the

hold-x schemes, the ETHLE edge manipulates the manifest by

holding back x segments from the receiver as presented earlier.

Furthermore, we derive the optimal x under each deployment

scenario as described in Section IV. Through the experiment

results, we evaluate the optimality of the derived x.

The following QoE metrics are evaluated. Note that we

do not evaluate video quality here, because guaranteeing

4K quality is a prerequisite in our case due to application

requirements (as explained in Section I), which means no

quality adaptation below 4K is allowed.

• Initial startup delay: how long does the receiver wait

before the video starts playing?

• Buffering: how long does the streaming stall due to low

buffer?

• Live stream latency: how far is the receiver behind

the video source’s production progress? In this work,

we evaluate this metric after the receiver streamed for

5 minutes.

A scheme produces the best QoE among the schemes if it

meets the following criteria:

1) It causes no buffering throughout the 5-minute period.

2) It produces the lowest live stream latency among all the

schemes after the 5-minute period.

3) It produces the lowest initial startup delay among all the

schemes.

If any criterion produces a tie between multiple schemes,

the next criterion in the list will serve as a tie-breaker.
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Fig. 8: Backhaul latency measurement results

Furthermore, we also evaluate the following QoS metrics:

• Receiver-perceived throughput: the receiver-

experienced download throughput on a per-segment

basis. This is measured at the receiver’s device.

• Backhaul throughput: the throughput that the ETHLE

edge experiences when downloading each video segment

from the video source. This is measured at the ETHLE

edge and applies to hold-x scenarios only.

C. QoS Performance of the E2E Scheme

We begin by examining the E2E scheme’s QoS perfor-

mance, i.e., receiver-perceived E2E throughput, whose CDF

is plotted in Figure 5. The E2E scheme does not involve the

ETHLE edge and hence, the content delivery path includes

both RAN and backhaul. It is shown that the E2E throughput

exhibits significant variation among all scenarios, which is

caused by the heavily fluctuating LTE air interface latency

under data traffic. Such a phenomenon is a well-known charac-

teristic of LTE RAN [33] and is validated by our experiments

as shown in Figure 6, which shows that when the small cell is

loaded by 50%6, the RAN latency fluctuates between 20ms

and 180ms. Such latency fluctuation, when combined with

a backhaul with high RTT, has a significant effect on TCP

slow-start performance by causing its congestion window to

increase at a slower and unpredictable pace. Note that even

6We use iPerf3 as the load generator in this case.

when a persistent HTTP connection is used and the TCP

connection is kept alive, the server always restarts the slow-

start phase upon sending each video segment to the receiver

due to the time interval between requests, which makes the

server consider the connection to be idle. Therefore, the RAN

latency fluctuation affects all video segment downloads and

causes their throughput to vary significantly.

It is also observed in Figure 5 that streams with longer

segment lengths experience less fluctuations in E2E through-

put. For example, under the Japan scenario, 50Mbps-2s and

50Mbps-10s streams experienced a standard deviation σ of

25.8Mbps and 6.7Mbps in their E2E throughput respectively.

This is because as segment size gets larger, their TCP perfor-

mance gets more resilient to the fluctuating latency since the

slow-start phase becomes less dominant of the throughput.

Another observation is that as the backhaul RTT gets higher,

the overall E2E throughput gets lower. Taking the 50Mbps-2s

stream as an example, it experienced mean E2E throughputs

of 71.2Mbps, 53.6Mbps, 44.8Mbps and 34.9Mbps at US West,

Japan, Australia and India respectively. This is because longer

RTT means it takes longer for the TCP congestion window

to grow in the slow-start phase, which results in lower overall

throughput.

D. QoS Performance of the Hold-0 Scheme

We now evaluate the QoS performance (i.e., backhaul

throughput) of the Hold-0 scheme, whose CDF is plotted in

Figure 7. Note that the backhaul throughput is very similar

among all hold-x schemes, so we only plot the results under

hold-0 here.

First, it is shown that all stream scenarios experience very

stable backhaul throughput among all locations. For example,

under the Australia scenario, 15Mbps-2s, 4s and 10s streams’

backhaul throughput had σ of 0.4, 0.7 and 7.7Mbps, and

50Mbps-2s, 4s and 10s streams experienced σ of 1.0, 2.9 and

6.8Mbps respectively. Such performance is due to the stable

backhaul latency, which is generally dominated by the network

path length and is validated through our measurement results

in Figure 8. Since the backhaul we used in our experiments

is completely public, there are occasionally mild fluctuations

in the TCP throughput. As a result, large file transfers (e.g.,

15Mbps-10s and 50Mbps-10s streams) are more likely to
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Fig. 9: Live stream latency results, where H0 means hold-0 etc.

experience such fluctuation, which explains the slightly higher

variation in their throughput. On the other hand, streams with

smaller segment sizes finish each segment download quicker

and hence experience less throughput fluctuation.

Furthermore, the negative correlation between the backhaul

RTT and throughput is also observed here. These results show

that the transfer of the video segments (with sizes of 3.7MB

to 61.1MB) are dominated by TCP slow-start performance,

which validates our model of TCP backhaul performance in

Section IV.

E. QoE Performance Evaluation

After examining the QoS performance patterns, we now

look into the QoE performance of E2E and hold-x schemes

where x is up to 4 (depending on specific scenarios). More

specifically, all schemes’ live stream latency after 5 minutes

of streaming are plotted in Figure 9, which uses stacked bar

charts because live stream latency consists of initial startup de-

lay, buffering duration and transient segment holding latency.

Note that the ranges of the subfigures’ y-axis are grouped on a

per-location, per-stream-scenario basis. Furthermore, in Table

II, we present the statistical results on the QoE metrics of E2E

and each scenario’s optimal hold-x schemes.

The first observation is that among all scenarios, the E2E

scheme’s initial startup delay is much higher than any hold-x
scheme’s. This is because TCP slow-start takes longer under

the E2E scheme due to the effect of RAN latency fluctuation,

long backhaul RTT and packet errors as discussed earlier. Note

that the initial startup delay is an important QoE metric as it

may cause a receiver to abandon the live stream before it starts.

For example, in a mobile network, an initial delay of 10s or

20s will cause around 15% or 35% of users to quit the stream

respectively [34]. It can be observed from Table II that each

scenario’s optimal hold-x scheme is mostly able to achieve

a sub-10s initial delay, while E2E scheme often incurs much

higher initial delay of up to 26.3s. Therefore, E2E scheme is

unable to assure QoE in any of the scenarios that we have

evaluated.

We now examine each of the four location scenarios’ QoE

results. Under the US West scenario, hold-0 scheme is able

to produce assured QoE for all three 15Mbps streams. No

segment needs to be held thanks to the relatively low backhaul

RTT, which means the backhaul throughput is much higher

than the required 15Mbps, even when considering the effect of

slow-start caused by small segment size. Meanwhile, although

holding more segments produces higher overall throughput, no

further QoE benefit can be introduced. Instead, it introduces
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Fig. 10: Per-location per-stream throughput performance: CDF results

additional live stream latency due to segment holding. This

means that under relatively low backhaul RTT and video

stream bitrate, simply breaking the E2E connection is already

able to significantly reduce initial startup delay without caus-

ing any buffering.

For the 50Mbps streams, hold-1 is the optimal scheme when

the segment length is 2s or 4s. Neither E2E nor hold-0 is

able to avoid buffering because the segment sizes are still

relatively small (12.2MB and 24.4MB), and their throughput

occasionally drops below 50Mbps due to slow-start. However,

when the segment length is 10s, the segment size (61.1MB)

becomes large enough to overcome slow-start and achieves a

mean backhaul throughput of 181Mbps. This makes hold-0

the optimal scheme in this case.

Under the Japan scenario, for the 15Mbps-2s stream, hold-0

is no longer able to avoid buffering because the small segment

size (3.7MB) causes the backhaul throughput to fall below

the required 15Mbps threshold (11.8Mbps on average). As a

result, hold-2 is the optimal scheme in this case. For 15Mbps-

4s and 10s streams, hold-0 is still the optimal scheme, because

their larger segment sizes lead to better slow-start performance

and achieve average backhaul throughput of 35.2Mbps and

75.4Mbps respectively. For the 50Mbps streams, hold-2, hold-

1 and hold-0 are required for optimal QoE under the 2s, 4s

and 10s scenarios respectively. Again, this is because as seg-

ment size gets larger (12.2MB, 24.4MB and 61.1MB), fewer

video segments need to be held back due to higher backhaul

throughput (33Mbps, 58.3Mbps and 111Mbps respectively).

The QoE results under the Australia and India scenarios

are similar as above. We summarize the optimal x number of

segments that need to be held in each scenario in Table III.

Furthermore, for each scenario, we plot its overall throughput

under the E2E scheme as well as its backhaul and overall

throughput under the optimal hold-x scheme in Figure 10. The

significance of Figure 10 is twofold. First, it shows that the op-

timal hold-x scheme’s overall throughput is not always higher

than the E2E scheme’s results. In fact, in many scenarios,

the hold-x scheme’s mean throughput is lower than the E2E

scheme’s. However, the hold-x scheme’s overall throughput is

always higher than the video stream’s required bitrate (except

for the first one to two segments as the ETHLE edge is gaining

its lead over the receiver’s progress). In contrast, a significant

portion of the E2E scheme’s throughput results are below the

required bitrates due to its fluctuation. Second, it shows that

even with stable backhaul throughput, the hold-x scheme’s

overall throughput still exhibits some variation, which can only

be caused by the RAN latency fluctuation. However, note that

its effect on the overall throughput is much weaker under the
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TABLE II: Statistics on key performance metrics’ results: E2E vs. optimal hold-x schemes

US West Japan Australia India

E2E Hold-x E2E Hold-x E2E Hold-x E2E Hold-x

15Mbps
2s

Overall Throughput (Mbps) 46.5 37.6 33.3 57.7 26.6 60.5 25.7 62.5

Initial Delay (s) 25.7 3.7 14.5 4.7 8.8 5.6 15.9 7.0

Buffering Duration (s) 0 0 3.5 0 39.5 0 35.7 0

Total Live Latency (s) 25.7 5.7 18.0 8.7 48.3 9.6 51.6 15.0

15Mbps
4s

Overall Throughput (Mbps) 39.2 23.9 36.5 16.5 33.0 67.7 31.8 15.8

Initial Delay (s) 7.9 4.1 20.5 5.3 8.5 6.2 23.0 7.3

Buffering Duration (s) 0 0 6.4 0 20.7 0 0.4 0

Total Live Latency (s) 7.9 4.1 26.9 5.3 29.2 10.2 23.4 17.3

15Mbps
10s

Overall Throughput (Mbps) 52.7 42.3 40.1 29.3 33.3 26.2 30.5 22.2

Initial Delay (s) 7.3 5.1 10.3 7.2 16.7 7.4 22.8 8.8

Buffering Duration (s) 0 0 0 0 0 0 1.5 0

Total Live Latency (s) 7.3 5.1 10.3 7.2 16.7 7.4 24.3 8.8

50Mbps
2s

Overall Throughput (Mbps) 71.2 71.6 53.6 81.2 44.9 81.9 34.9 79.3

Initial Delay (s) 8.4 4.5 16.0 6.1 16.3 6.6 19.9 8.5

Buffering Duration (s) 9.3 0 51.2 0 102.7 0 186.0 0

Total Live Latency (s) 17.7 6.5 67.2 10.1 119.0 10.6 205.9 14.5

50Mbps
4s

Overall Throughput (Mbps) 75.7 92.6 58.6 79.8 54.2 53.8 46.0 83.0

Initial Delay (s) 9.6 5.6 17.3 7.9 14.9 8.0 20.5 9.5

Buffering Duration (s) 10.3 0 83.0 0 70.1 0 97.7 0

Total Live Latency (s) 19.9 9.6 100.3 11.9 85.0 12.0 118.2 17.5

50Mbps
10s

Overall Throughput (Mbps) 84.3 65.7 70.3 50.6 59.7 88.9 54.6 87.5

Initial Delay (s) 6.8 4.3 21.7 13.7 22.9 13.2 26.3 16.2

Buffering Duration (s) 0 0 1.3 0 16.9 0 18.3 0

Total Live Latency (s) 6.8 4.3 23.0 13.7 39.8 23.2 44.6 26.2

hold-x scheme than under the E2E scheme, because the former

has isolated the RAN part from its E2E TCP path.

A number of key observations can be made from the

optimal number of held segments in Table III. First, under

each video stream scenario, more segments need to be held

when backhaul RTT gets higher. This is due to the negative

correlation between backhaul throughput and RTT.

Second, under the same video bitrate requirement, more

segments need to be held as video segment length gets shorter.

This is due to the positive correlation between segment size

and backhaul throughput.

Third, for video streams with the same segment length, more

segments may need to be held as video bitrate gets higher. This

is because although higher bitrate means better TCP slow-start

performance, in some cases such performance improvement is

not enough to match the higher bitrate requirement.

The three observations above provide general guidelines

on how the optimal number of held segments is affected by

different context, such as backhaul RTT, video bitrate and

segment length. However, to actually determine the value

of optimal x, we still need to use the modeled backhaul

throughput (as described in Section IV) and follow the strategy

as presented in Section III. In the next subsection, we validate

the accuracy of our modeled backhaul throughput as well as

the optimal x that is derived based on it.

F. Validating Modeled Backhaul Throughput and Derived x

In Table III, we present the modeled backhaul throughput.

Furthermore, we present the optimal x that is derived by

solving inequalities (1) and (2) in Section III-B alongside

their actual measured values in the experiments. Note that for

each scenario, the measured backhaul throughput results are

averaged over all video segment downloads. This does not

affect the results’ validity since CBR encoding is used, so all

video segments have very similar sizes.

It is shown in the table that among all stream scenarios

except the 50Mbps-10s one, the modeled and actual backhaul

throughput values are very close, where the differences be-

tween the two are in the range of 0Mbps to 6.8Mbps with

an average of 1.33Mbps. Furthermore, the optimal x that is

derived from the model always matches the actually-measured

result with only one exception. For the 15Mbps-2s stream

under the India scenario, since there were some fluctuations

in the backhaul throughput (that can be observed in Figure 7),

the model-derived optimal x is 3 while 4 segments needed to

be held to avoid buffering. However, this can be considered to

be an extreme case. Recall from Table I that the video segment

sizes range between 3.7MB and 24.4MB for the first 5 stream

scenarios. The fact that the modeled and actual backhaul TCP

performance matches well validates our modeling strategy in

Section IV. It also shows that the transfers of files with the

sizes above finish before the TCP slow-start phase ends.

On the other hand, for the 50Mbps-10s stream scenario

whose segment size is 61.1MB, we observe that there is

a relatively large gap (up to 22.3%) between the modeled

and actual backhaul throughput. This shows that for video

segments with larger sizes, their transfer goes beyond the TCP

slow-start phase and enters subsequent stages such as drain.

As explained in Section IV, we are currently not yet able to
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TABLE III: Statistics on optimal number of held segments and backhaul throughput: modeled vs. measurement results

US West Japan Australia India

Modeled Actual Modeled Actual Modeled Actual Modeled Actual

15Mbps
2s

Optimal x 1 1 2 2 2 2 3 4

Backhaul Throughput (Mbps) 20.0 19.6 11.7 11.9 9.6 9.9 7.4 7.6

15Mbps
4s

Optimal x 0 0 0 0 1 1 1 1

Backhaul Throughput (Mbps) 34.4 35.2 21.0 21.6 17.2 17.8 13.3 13.9

15Mbps
10s

Optimal x 0 0 0 0 0 0 0 0

Backhaul Throughput (Mbps) 78.7 75.4 48.1 47.6 39.3 35.6 30.5 30.5

50Mbps
2s

Optimal x 1 1 2 2 2 2 3 3

Backhaul Throughput (Mbps) 54.8 53.7 33.5 33.0 27.4 27.6 21.2 21.0

50Mbps
4s

Optimal x 1 1 1 1 1 1 2 2

Backhaul Throughput (Mbps) 101.8 95.0 62.3 58.3 50.9 47.0 39.4 38.5

50Mbps
10s

Optimal x - 0 - 0 - 1 - 1

Backhaul Throughput (Mbps) - 181.0 - 111.0 - 81.6 - 71.4

model TCP BBR performance for the phases beyond slow-start

due to its being a work-in-progress and lack of specification.

Therefore, we omit the relevant results in Table III. However,

should such a model become available in the future, it can

be easily embedded into our modeling strategy in Section IV

which is left as our future work.

VI. CONCLUSION

In this paper, we have proposed a scheme named Edge-

based Transient Holding of Live sEgment (ETHLE), which

is able to assure 4K live streaming receivers’ QoE at global

Internet scale. Specifically, it addresses the issue where TCP

experiences poor throughput when the E2E content delivery

path involves combined RAN and long-distance backhaul. The

ETHLE scheme can be flexibly deployed as a VNF (i.e.,

ETHLE edge) at the mobile network edge, which breaks

the E2E content delivery path into two segments containing

the RAN and the backhaul respectively at the application

layer. The benefits of such a strategy are threefold. First,

it boosts TCP performance on both path segments without

incurring the expensive computation overhead that a TCP

split proxy has. Second, it enables the ETHLE edge to

perform transient segment holding at the mobile edge. Third,

it preserves the E2E content privacy/security since the ETHLE

edge is owned and operated by the SMSP or CDN operator

who rents virtualized computing and storage resources from

MNOs. We have also developed a model-based approach to

derive the optimal number of video segments that need to be

transiently held to assure receivers’ QoE. Specifically, it is

derived through modeling the performance of TCP congestion

control mechanism’s slow-start phase over the backhaul link,

because video segments are relatively small in size, and in

most cases their transmission ends before the slow-start phase

finishes.

The accuracy of the modeled TCP backhaul performance

and the derived optimal x, as well as the ETHLE scheme’s

QoE assurance performance are comprehensively evaluated

through real-world experiments, which involve an LTE-A

testbed infrastructure and live video sources that are deployed

at US West, Japan, Australia and India respectively. Experi-

ment results show that the proposed ETHLE scheme is capable

of assuring live receivers’ QoE by eliminating buffering and

significantly reducing initial startup delay and live stream

latency when compared with the conventional E2E scheme.

Furthermore, the accuracy of the modeled TCP backhaul

throughput and derived optimal x are also validated as they

highly match the actual measured results.
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