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ABSTRACT 

HAOUARI, FATIMA, Masters : June : [2019:], Masters of Science in Computing 

Title: QoE-Aware Resource Allocation For Crowdsourced Live Streaming: A Machine 

Learning Approach. 

Supervisor of Thesis: Aiman, Mahmood, Erbad.  

In the last decade, empowered by the technological advancements of mobile devices 

and the revolution of wireless mobile network access, the world has witnessed an 

explosion in crowdsourced live streaming. Ensuring a stable high-quality playback 

experience is compulsory to maximize the viewers’ Quality of Experience and the 

content providers’ profits. This can be achieved by advocating a geo-distributed cloud 

infrastructure to allocate the multimedia resources as close as possible to viewers, in 

order to minimize the access delay and video stalls. 

Additionally, because of the instability of network condition and the heterogeneity of 

the end-users capabilities, transcoding the original video into multiple bitrates is 

required. Video transcoding is a computationally expensive process, where generally a 

single cloud instance needs to be reserved to produce one single video bitrate 

representation. On demand renting of resources or inadequate resources reservation 

may cause delay of the video playback or serving the viewers with a lower quality. On 

the other  hand,  if resources  provisioning  is  much  higher than  the  required,  the  

extra  resources  will  be  wasted.  

In this thesis, we introduce a prediction-driven resource allocation framework, to 

maximize the QoE of viewers and minimize the resources allocation cost. First, by 

exploiting the viewers’ locations available in our unique dataset, we implement a 
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machine learning model to predict the viewers’ number near each geo-distributed cloud 

site. Second, based on the predicted results that showed to be close to the actual values, 

we formulate an optimization problem to proactively allocate resources at the viewers’ 

proximity. Additionally, we will present a trade-off between the video access delay and 

the cost of resource allocation.    

Considering the complexity and infeasibility of our offline optimization to respond to 

the volume of viewing requests in real-time, we further extend our work, by introducing 

a resources forecasting and reservation framework for geo-distributed cloud sites. First, 

we formulate an offline optimization problem to allocate transcoding resources at the 

viewers’ proximity, while creating a tradeoff between the network cost and viewers 

QoE. Second, based on the optimizer resource allocation decisions on historical live 

videos, we create our time series datasets containing historical records of the optimal 

resources needed at each geo-distributed cloud site. Finally, we adopt machine  learning  

to  build  our distributed time series forecasting models to proactively forecast the  exact  

needed  transcoding  resources  ahead  of  time  at  each geo-distributed  cloud  site. 

The results showed that the predicted number of transcoding resources needed in each 

cloud site is close to the optimal number of transcoding resources.   
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CHAPTER 1: INTRODUCTION 

1.1 Overview and Motivation 

Crowdsourced live video streaming where users broadcast their captured live videos 

is on the rise, and it continues to grow every single day. As per Cisco mobile video 

traffic statistics, mobile video content is predicted to present 82% of the global 

Internet traffic in 2021 compared to 73% in 20161. The rise in popularity of 

crowdsourced live streaming can be attributed to technological advancement, 

proliferation of smartphones and wireless network availability, which have led 

crowdsourcers to broadcast their live videos to various content providers. 

One of the most popular video live streaming platform is Facebook, which had 2.19 

billion active users per month in the first quarter of 20182. 78% of Facebook online 

users are watching live videos, and 1 out of 5 videos on Facebook is live3. 

The industry and academia have shown an overwhelming interest in crowdsourced 

streaming recently in terms of achieving the best Quality of Experience (QoE) as it is 

the key to increase the audiences’ number and the content providers' revenues. A 

series of recent studies have been conducted to determine the main factors that affect 

the viewers' QoE [1] [2]. These studies revealed that viewers QoE is primarily 

dependent on two factors: first, the video startup delay and playback buffering stalls, 

and second, the video quality which depends on the viewers' internet connectivity 

quality and available video representations. They also showed that viewers who 

experienced low QoE are less likely to revisit the content provider's application within 

                                                

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualnetworking-index-
vni/mobile-white-paper-c11-520862.html 
2 https://www.statista.com/statistics/264810/number-of-monthly-active-facebook 
3 https://www.wordstream.com/blog/ws/2017/11/07/facebook-statistics 
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a specific period of time. Therefore, video startup, rebuffering delays and low video 

quality have high impact on viewers' QoE. However, the challenge is to serve the 

viewers with the best QoE possible, while minimizing the cost of the resources 

allocated. 

Cloud computing is a powerful technology in terms of offering elastic and cost-

effective computing resources [3] for live streaming applications. In fact, geo-

distributed cloud live video applications can benefit from on demand resource renting, 

where cloud instances can be paid on hourly basis without upfront payment or any 

long term commitment [4]. The challenge is that live streaming applications have 

strict video startup delay requirement, including transcoding and streaming delay, 

while in fact it takes time for a cloud instance to be activated. As per He et al. [4] 

experiments, it takes two minutes for an Amazon EC2 cloud instance to boot up and 

function. Therefore, to minimize the initialization delay, a certain amount of cloud 

instances should be pre-rented for the upcoming time frame, where upfront payment 

can be made for a long-term reservation [4]. Moreover, various cloud providers offer 

up to 75% discount for reserving cloud instances proactively as opposed to on demand 

cloud instances pricing4. The challenge of cloud instances pre-renting is that resources 

can be insufficient to transcode all the videos into viewers matching video quality 

requests, or over-provisioned, which may lead to significant additional costs to the 

service providers. 

Many pioneer works have been done on optimizing crowdsourced live videos on 

resource allocation for geo-distributed clouds to maximize the QoE. He et al. [4] 

introduced a dynamic programming approach for transcoding resources scheduling to 

                                                

4 https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/ 
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minimize the cost and maximize the QoE. K. Bilal et al. [5] proposed a QoE-aware 

resource allocation framework for multiview crowdsourced live streaming to choose 

the optimal cloud site locations for transcoding. Wu et al. [6] formulated an optimal 

viewing request distribution in the geo-distributed clouds; they predicted users future 

demands based on their social influences using an epidemic model. The drawback of 

these traditional algorithms is the near optimal solutions they provide. First, they 

assume that the popularity of the videos is known at the start of the video streaming 

based on the number of views which is not the case as the number of views can be 

determined at the end of streaming only. Second, they assume that the viewers are in 

one region near the broadcaster’ region, however the videos’ viewers are usually 

geographically distributed. So they lack the ability to allocate the needed resources 

beforehand.  This may either lead to over-provisioning of resources that may incur 

significant costs to the service providers, or under-provisioning of resources that may 

cause delays to the viewers. Therefore, addressing such a trade-off proactively is a 

real challenge that requires some accurate prediction techniques. Moreover, these 

works considered on demand renting of cloud instances, which is not always adequate 

for live streaming systems due to the startup time needed to boot servers. 

To the best of our knowledge, there is no research work that applied machine learning 

techniques for resource allocation or reservation to maximize QoE and minimize the 

cost. Only a few studies adopted machine learning to improve the viewers QoE, with 

their focus varies from dealing with the buffering and the bitrate selection [7] to 

determining Adaptive Bitrate (ABR) best parameters in order to improve adaptive 

video streaming [8]. Petrangeli et al [7] proposed a video freeze predictive model to 

detect possible factors that lead to video stalling at the viewers’ side. A recent study 

by Le et al. [8] proposed using decision trees to choose the best ABR parameters to 
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improve the adaptive video streaming. 

Moreover, few recent studies have used machine learning for predicting the viewers' 

QoE. Zhu et al. [9] predicted the users’ engagement score, by considering users 

engagement as a function of Quality of Service (QoS) factors and viewers preferences. 

Balachandran et al. [1] proposed a classification model for users’ engagement, where 

users’ engagement was quantified in terms of users’ number of visits and video 

watching time. 

1.2 Thesis objectives and contributions 

The aim of this research is to first, tackle the problem of predictive-driven resource 

allocation to maximize the content providers profit and the viewers QoE. Specifically, 

we aim to predict the video popularity of each live video at the start of the live 

streaming, in order to allocate the live videos replicas at the proximity of the viewers 

to minimize the access delay. 

Second, we study the problem of proactive transcoding resources reservation to 

minimize the network system cost and maximize the QoE. Specifically, we aim to 

predict the number of computational cloud instances needed for transcoding at each 

geo-distributed cloud site, in order to reserve them in advance, and consequently 

minimize the access delay and maximize the content providers’ profit. 

The research questions we aim to study in this thesis are the following:  

1. How to decide the popularity of the videos at the start of live streaming?  

2. How to minimize the system cost while guaranteeing serving distributed 

viewers from their proximity around the world? 

3. How to reserve the exact number of transcoding resources in advance to 

minimize the cost and delay without over or under provisioning of resources? 
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The contributions of this thesis are as follows: 

 We address the problem of predicting the live videos popularity at the start of 

live streaming. In particular, we consider predicting the number of viewers near 

each geo-distributed cloud site for each incoming live video, in order to 

proactively allocate resources at the proximity of the viewers. 

1. Using Facebook 2018 live videos dataset5 containing records of viewers' 

locations for each video, we develop a regression model using machine 

learning techniques that predicts the number of viewers near different 

geo-distributed cloud sites for each incoming live video. 

2. To serve the predicted viewers such that they experience the minimum 

startup delay with a minimal cost to the content provider, we formulate 

an optimization problem for allocating resources as close as possible to 

the viewers. 

 We present a proactive distributed transcoding resource reservation framework. 

First, we consider an offline resource allocation optimization that uses past 

incoming videos to decide the optimal number of transcoding cloud instances 

at each cloud site, while respecting the latency and requested video bitrates 

constraints. Second, based on the optimization decisions on past data, we adopt 

machine learning to proactively forecast the needed computational resources at 

each cloud site for the next time frame. 

1. We preprocess Facebook 2018 live videos dataset [10] containing 

records of viewers' locations to calculate the number of viewers for each 

video bitrate representation near different geo-distributed cloud sites. 

                                                

5 https://sites.google.com/view/facebookvideoslive18/home 
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2. We develop an offline resource allocation optimization for allocating 

transcoding resources, and serving the viewers from their nearest cloud 

site, with the objective to minimize the overall system cost while 

maximizing the viewers' QoE. 

3. Based on the optimizer resource allocation decisions on historical live 

videos, we create our time series datasets containing historical records 

of the rented resources at each geo-distributed cloud site. 

4. To proactively reserve the exact transcoding resources for incoming live 

videos, we adopt machine learning to build our distributed time series 

resources forecasting models. 

1.3 Thesis overview 

This chapter provided an overview of the research problem, and presented the thesis 

objectives and contributions. We organize the remainder of the thesis as follows. We 

introduce the main concepts used in our work, and we review the related works in 

chapter 2. Our prediction-driven resource allocation framework system model and 

evaluation results are presented in chapter 3. We present our resources forecasting and 

reservation framework system model and evaluation results in chapter 4. Finally we 

conclude and present possible future work in chapter 5. 
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CHAPTER 2: BACKGROUND/RELATED WORK 

In this chapter, we will review some of the related works on resource allocation for 

crowdsourced live streaming along with some background on the concepts related to 

this thesis. 

2.1 Background 

2.1.1. Crowdsourced Live Streaming 

In 2005, crowdsourcing was introduced by Meriam-Webster [4], where content 

providers’ resources are collected from crowds of users instead of suppliers or 

employees. Over the past six years, crowdsourced live streaming have emerged, with 

various content providers, such as Facebook, YouTube, Periscope and Twitch, to 

name a few. In such applications, users broadcast their captured live videos, e.g., 

online game scenes or live events, to the data center. The received live videos will be 

encoded in the data center, and optionally transcoded into various bitrate 

representations [11]. In fact, every live video may have multiple versions with various 

resolutions and bitrates [4] in order to maximize the viewers’ satisfaction. 

2.1.2. Quality Of Experience (QoE) 

The industry and academia have shown an overwhelming interest in crowdsourced 

streaming recently in terms of achieving the best QoE as it is the key to increase the 

audiences’ number and the content providers' revenues. A series of recent studies have 

been conducted to determine the main factors that affect the viewers' QoE [1] [2]. 

These studies revealed that viewers’ QoE is primarily dependent on two factors: first, 

the video startup delay and playback buffering stalls, and second, the video quality 

which depends on the viewers' internet connectivity quality and available video bitrate 

representations. Krishnan et al. [2] highlighted that the higher the startup delay is, the 

more the viewers’ abandonment increases. 
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They also showed that viewers who experienced high startup delay are less likely to 

revisit the content provider's application within a specific period of time. Therefore, 

video startup and rebuffering delays have high impact on viewers' QoE. Moreover,  

Viewers’ devices heterogeneity on their screen resolutions, computational and 

bandwidth capacity demands transcoding the original live video into multiple bitrates 

such as 240p, 360p, 480p and 720p. To handle this heterogeneity, most video service 

providers deployed Adaptive Bitrate (ABR) and lately dynamic adaptive streaming 

over HTTP (Dash) [12]. Video transcoding is a computationally expensive process 

where generally a single cloud instance needs to be reserved to produce one single 

video bitrate representation [4]. The higher the number of viewers’ demands, the more 

cloud instances will be used. Therefore, not all live videos are transcoded into all video 

bitrate representations, leading to lower QoE.   

2.1.3. Elastic cloud computing 

Cloud computing is a powerful technology in terms of offering elastic and cost-

effective computing resources [3] for live streaming applications. In fact geo-

distributed cloud live video applications can benefit from on demand resource renting, 

where cloud instances can be paid on hourly basis without upfront payment or any 

long term commitment [13]. The challenge is that live streaming applications have 

strict video startup delay requirement, including transcoding and streaming delay, 

while in fact it takes time for a cloud instance to be activated. As per He et al. [4] 

experiments, it takes two minutes for an Amazon EC2 cloud instance to boot up and 

function. Therefore, to minimize the initialization delay, a certain number of cloud 

instances should be pre-rented for the upcoming time frame, where upfront payment 

can be made for a long-term reservation [13]. Moreover, various cloud providers offer 

up to 75% discount for reserving cloud instances proactively as opposed to on demand 



  

9 

 

cloud instances pricing [14]. 

The challenge of cloud instances pre-renting is that resources can be insufficient to 

transcode all the videos into viewers matching video quality requests, or over-

provisioning, which may lead to significant additional costs to the service providers. 

2.1.4. Time series forecasting 

A time series is a set of observations o1, o2, o3,…., oN , each one being recorded at a 

specific time t [15]. Time series forecasting is predicting future values oN+h at time N 

for h steps, Given that h is the lag time or forecasting horizon. Both the time the 

forecasting is made and the forecasting horizon should be specified before forecasting 

[16].  

2.1.5. Machine learning algorithms 

2.1.5.1 Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP), is a feed forward multilayer artificial neural network 

which is based upon the Back Propagation rule [17] . This learning rule applies the 

extended gradient-descent technique. A neural Network traverses through two phases. 

Firstly, the forward pass phase, where outputs are computed and their error from the 

expected output is measured. Secondly, it goes through the backward pass, where the 

error calculated in the previous phase is used to adjust the associated weights. This is 

achieved by implementing the backpropagation algorithm and helps in minimizing the 

error. This two-step process undergoes repeated iterations during the training process 

until an acceptable error rate is reached. The multilayer perceptron is a set of of simple 

interconnected neurons as illustrated in Fig. 1. 
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2.1.5.2 Decision Trees (DT) 

Decision trees are a well-established machine learning technique. It is a tree-like 

model for classification or regression problems. Each node in the tree splits a data set 

into subsets while the decision tree is incrementally developed. In fact, the resulting 

tree will contain decision nodes and leaf nodes. A decision node has two or more 

edges. A Leaf node represents a decision or classification.  

2.1.5.3 Random Forest (RF) 

RF is an efficient machine learning algorithms, which has been successfully used, and 

proved to produce great results for many classification and regressions tasks. RF is 

an ensemble of DTs. In fact, RF builds various DT models then merges them to 

produce more accurate predictions [18].  

2.1.5.4 XGboost 

XGboost, extreme gradient boosting is a distributed implementation of the gradient 

boosting decision tress [19]. Boosting is an ensemble method where new models are 

added sequentially to predict the residuals or errors of existing models and then added 

Figure 1. MLP architecture [17]. 
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together to make the final prediction. The process of adding models will continue 

until no extra improvement can be achieved. XGboost is widely used by data 

scientists and provides state-of-the-art results on many classification and regression 

problems [19]. 

2.1.5.5 Long Short Term Memory (LSTM) 

LSTM is a deep learning algorithm that has time-varying inputs and outputs. The core 

idea of an LSTM network is that the hidden neuron is treated as a memory unit [20] 

that can maintain the temporal state. The LSTM memory unit is comprised of three 

gates namely, input gate i, forget gate f, and output gate o as illustrated in Fig. 2. In 

fact, the LSTM basic process can be expressed as follows [21]: First, the new input 

information will be stored to the memory unit if the input gate is activated. Second, 

if the forget gate is activated, it will forget the past unit status. Finally, once the output 

gate is activated, it will propagate the final state. 

 

 

 

 

 

 

 

 

 

2.1.5.6 Gated Recurrent Unit (GRU) 

Like LSTM, GRU has a memory unit. However, it has only two gates namely, the 

reset and update gate illustrated as r and z respectively in Fig. 3. Its memory content 

Figure 2. LSTM memory unit [22]. 



  

12 

 

is fully exposed at each time step. Moreover, the previous and the current memory 

content are balanced using leaky integration [22]. 

 

 

 

 

 

 

 

 

2.1.5.7 Convolutional Neural Network (CNN) 

Convolutional neural networks (CNN) are a special case of the neural network. It is 

a non-fully-connected neural network that consists of multi convolutional layers, 

RELU layer, pooling layers, which are followed by multi connected layers as in a 

regular neural network [23].  

2.2 Related works 

2.2.1 Geo-distributed clouds to maximize QoE 

Live streaming applications are highly dynamic applications that demand strict video 

startup delay requirements. Therefore, it is challenging to design a cost-effective live 

streaming application.  Geo-distributed clouds are proposed to support large-scale live 

streaming applications to minimize the overall system cost and to enhance the QoE 

[4] [5] [6] [24]. As they provide a cost-effective solution by offering on-demand cloud 

resources that meets the ever-increasing demands of bandwidth and storage, and by 

serving on the fly frequent viewer's requests.  

2.2.2 Resource allocation to maximize QoE 

Many pioneer works have been done on optimizing crowdsourced live streaming on 

Figure 3. GRU memort unit [22]. 
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resource allocation for geo-distributed clouds to maximize the QoE. He et al. [4] 

presented a resource allocation framework to allocate geo-distributed cloud service to 

crowdsourcers for transcoding and serving viewers, by proposing a cloud rental 

strategy. They proposed a cloud rental approach based on dynamic programming, 

where they took into consideration the limitation of elastic cloud supply in each geo-

distributed cloud. They further extended their experiments by proposing a heuristic 

that pre-rank the cloud instances in advance, in order to achieve faster running time. 

K. Bilal et al. [5] presented a QoE-aware resource allocation framework for 

crowdsourced multiview live streaming to choose the optimal transcoding cloud site 

location, and the optimal set of video representations.  They first formulated the 

resource allocation as an optimization problem. However, because of the size and 

complexity of the problem, they introduced a greedy heuristic that proved to achieve 

a near optimal solution.  Chen et al. [24] introduced a cost-effective framework for 

cloud resources provisioning to cope with geo-distributed video broadcasters. They 

built a prototype for crowdsources live streaming using Amazon Cloud and Microsoft 

Azure to evaluate their system, which proved to be effective in terms of cost and 

streaming quality. However, the mentioned studies assumed that the popularity of the 

videos based on the number of views is known at the start of the video live streaming, 

which is not the case in reality. Moreover, they assume that the viewers are in one 

region near the broadcaster’ region, but the video’ viewers are usually geo-distributed. 

In our work, we exploit the viewers’ locations in our dataset to map the viewers of 

each video into Amazon geo-distributed cloud sites.  Then, we predict the popularity 

of each video at the start of streaming by predicting the number of viewers near each 

geo-distributed cloud site.  

 Wu et al. [6] formulated an optimal viewing request distribution in the geo-distributed 



  

14 

 

clouds, they predicted users future demands based on their social influences using an 

epidemic model. They then served the predicted viewers by introducing one-shot 

optimization. They evaluated their system performance using Amazon Elastic cloud 

computing (EC2). The results proved that their method outperforms some heuristics 

algorithms. 

2.2.3 Machine learning to maximize QoE 

Only a few studies adopted machine learning to improve the viewers QoE, with their 

focus varies from dealing with the buffering and the bitrate selection [7], to 

determining Adaptive Bitrate (ABR) best parameters in order to improve adaptive 

video streaming [8]. Petrangli et al. [7] proposed machine learning based framework 

to prevent video stalling to maximize the viewers QoE. As part of their framework, 

they introduced a video freeze predictive model to detect possible factors that lead to 

video stalling at the viewers’ side. A recent study by Le et al. [8] proposed adaptation 

of existing decision trees algorithms to choose the best ABR parameters, in order to 

improve the adaptive video streaming. The authors showed that the performance of 

an ABR algorithm can be improved by 8.59% by applying their approach. 

Moreover, few recent studies have used machine learning for predicting the viewers' 

QoE. Zhu et al. [9] predicted the users’ engagement score, by considering users 

engagement as a function of Quality of Service (QoS) factors and viewers preferences. 

They then formulated an optimization problem to map the users to content delivery 

networks (CDN) in order to maximize the QoE. 

Balachandran et al. [1] proposed a classification model for users’ engagement, where 

users’ engagement was quantified in terms of users’ number of visits and video 

watching time. Their predictive model is useful to handle the video delivery 

mechanisms for the content providers and the video player designers. To our 
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knowledge, no prior studies examined machine learning for resource allocation to 

maximize QoE for crowdsourced live streaming. Our contribution in this context is to 

first, predict the popularity of the videos at the start of the live streaming in order to 

allocate videos replicas at the proximity of the viewers to maximize their QoE. 

Second, forecasting the transcoding resources ahead of time at each geo-distributed 

cloud site to minimize the system cost and delay without over or under provisioning 

of resources. 
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CHAPTER 3: QOE-AWARE RESOURCE ALLOCATION FOR 

CROWDSOURCED LIVE STREAMING: A MACHINE LEARNING 

APPROACH  

In this chapter, we address the problem of predicting the live videos popularity at the 

start of live streaming. In particular, we consider predicting the number of viewers 

near each geo-distributed cloud site for each incoming live video, in order to 

proactively allocate resources at the proximity of the viewers. 

3.1 Contributions 

1. Using Facebook 2018 live videos dataset [10] containing records of viewers' 

locations for each video, we develop a regression model using machine 

learning techniques that predicts the number of viewers near different geo-

distributed cloud sites for each incoming live video. 

2. To serve the predicted viewers such that they experience the minimum startup 

delay with a minimal cost to the content provider, we formulate an 

optimization problem for allocating resources as close as possible to the 

viewers. 

3.2 System model 

In our system, we adopt a geo-distributed cloud infrastructure as shown in Fig. 4 that 

consists of multiple geographically distributed cloud sites. Our predictive model and 

resource allocation optimizer are deployed in a centralized master server. A set of geo-

distributed crowdsourcers broadcast their videos in real time, which will be allocated 

by default in their nearest cloud site. Each broadcaster cloud site will report the master 

server with the incoming live videos information. The predictive model will predict 

the number of viewers expected near each cloud site. Based on the predicted results, 

the optimizer will allocate live videos replicas across the geo-distributed cloud sites 
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near the viewers’ proximity to minimize the delay and video stalls with the minimum 

possible cost. Moreover, the optimizer determines from which cloud site the viewers 

should be served.  

In our work, we consider only the storage resources, while the computation resources 

for video transcoding are not considered in this framework. 

 

 

Figure 4. Proactive resource allocation system model. 

 

3.2.1 Predicting live videos viewers 

3.2.1.1 Dataset 

In our work, we are using the Facebook 2018 live videos dataset [10], containing more 

than two million Facebook live video streams. The active video streams metadata are 
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fetched every 3 minutes in different periods on January, February, March, May, June 

and July 2018. As a result, we obtained a list of fetches related to each video and 

containing the number of viewers at the recording time. The live videos are collected 

with many features such as creation time and date, broadcaster location, number of 

likes and most importantly the viewers' locations. In this work, we selected six 

features for each video namely, the broadcaster name, content category, created time, 

created day, broadcaster location and the viewers' locations as illustrated in Fig. 5. 

The viewers' locations were selected from the video fetch with maximum number of 

viewers. 

 

 

 

 

 

 

 

 

 

Figure 5. A live video stream metadata/features 
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Figure 6. Viewers predictive model. 

 

3.2.1.2 Preprocessing 

As our objective is to predict the viewers’ number near various geo-distributed cloud 

sites, there was a need to preprocess our raw data. First, as illustrated in Figure 7, we 

mapped the viewers’ locations into 10 Amazon Web Services (AWS) cloud sites 

locations6 namely, Asia-Mumbai, Asia-Seoul, Asia-Singapore, China-Ninxgia, 

Europe-Frankfurt, Europe-Paris, South America-Sao paulo, US East-Ohio, US East-

Virginia and US West-California. This was done by calculating the shortest distance 

between the viewer’s locations and the 10 AWS cloud sites location7. Furthermore, 

we calculated the number of viewers near each cloud site for each video. We did the 

same to the broadcaster location, where we mapped his location into the nearest AWS 

cloud site. 

Moreover, we clustered the created time into 6 time periods. Finally, we applied the 

categorical one-hot encoding to the time period, created day and broadcaster location 

features, while we used feature hashing introduced by [25] to transform the high-

cardinality features namely broadcaster name and content category into hashed feature 

                                                

6 https://aws.amazon.com/about-aws/global-infrastructure/ 
7 https://github.com/turnkeylinux/aws-datacenters/blob/master/input/datacenters 
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vectors. An overview of how we processed our features is presented in Table 1. 

 

Table 1. Overview Of Features For Predicting Number Of Viewers. 

Feature Feature representation 
Broadcaster Name Feature hashing: a vector of 6 bits 

Content Category Feature hashing: a vector of 6 bits 

Created day One hot encoding of 7 days 

Created time One hot encoding of 6 time periods 

Broadcaster Location One hot encoding of 10 locations 

 

3.2.1.3 Predictive models 

The dataset used to train our models included 224,839 live video records collected in 

March, May and June 2018. 80% of the records were randomly selected for training 

and 20% were used for validation. 

We trained our regression models to produce 10 outputs as illustrated in Fig. 5, each 

represents the number of viewers near the 10 AWS cloud sites mentioned previously. 

We adopted three different ML algorithms namely, Multilayer-perceptron (MLP), 

Figure 7. Mapping viewers to AWS datacenters. 
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Decision trees (DT) and Random Forest (RF).  

We used Scikit-learn python library8 to build several models using each ML 

algorithm, as there is no method to predetermine the best combination of 

hyperparameters, such as the number of hidden layers and neurons for MLP models, 

number of forests for RF models and the max depth for DT models. Finally, the best 

models were selected by a grid search approach considering the best determination 

coefficient �� values, which is used to assess the goodness of fit of our regression 

models. �� values approaching 1 indicate that the model provides accurate 

predictions, and it is calculated according to Eq.1 : ��=1-∑ (�� � ��)�����∑ (��  ��̅)�����          Eq. 1 

Where m is the number of videos, �� is the actual number of viewers for video i, ��  is 
the predicted number of viewers for video i, and �̅ is the mean of the actual number 

of viewers of all videos. In Table 2, we present our best models hyperparameters 

configurations. In our MLP models we adopted the dropout proposed by [26], where 

some neurons are disabled during the training process to avoid overfitting.  

 

Table 2. Best Predictive Models Configurations. 

                                                

8 https://scikit-learn.org/stable/ 

Model Configurations 

MLP /3 layers  Neurons: 500,1000,500  
Optimizer: Adagrad,  Dropout: 0.4 
Loss function: Mean Square Error (MSE) 
Activation function: Rectified Linear Units (ReLU) 

MLP/5 layers Neurons: 500, 1000, 2000, 1000, 500 
Optimizer: Adagrad,  Dropout: 0.4 
Loss function: MSE 
Activation function: ReLU  
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3.2.1.4 Predictive models results 

After training the models, the validation results, depicted in Fig. 6, showed that RF 

outperforms the other ML algorithms by achieving for example an �� of 0.91 for 

Seoul, 0.89 for Sao Paulo, 0.85 for Ohio, 0.86 for California and 0.74 for China. The 

DT model achieved the lowest �� as opposed to MLP and RF. The results showed 

that increasing the number of layers for the MLP models improves the results. 

However, due to the complexity of the models, and because we noticed that there is a 

slight difference between the performance of the 5 layers model and the 7 layers 

model, we did not increase the layers above 7. 

The results also showed that for all ML models, the predicted number of viewers near 

some regions achieved a higher �� compared to other regions, China achieved the 

lowest, while Seoul and Sao paulo achieved the best ��. This could be attributed to 

the fact that some regions have a higher number of videos broadcasted near to them. 

We further tested our models on unseen data of live videos collected from July 1 to 

July 6, 2018. The models performed the same as with validation data in some regions, 

slightly less or higher in other regions as shown in Fig. 7. We then extended our 

experiments by performing the predictions on hourly basis for 24 hours using the live 

Model Configurations 
MLP/7 layers Neurons: 500, 1000, 1500, 2000, 1500, 1000, 500 

Optimizer: Adagrad 
Dropout: 0.4 
Loss function: MSE 
Activation function: ReLU 

Random Forest Loss function: MSE 
Number of estimators: 50 

Decision trees Loss function: MSE 
Max_depth: None 
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videos of July 3, 2018. The RF and MLP 7 layers models were used for prediction, 

since they performed better than other models. The predicted number of viewers for 

the hourly incoming live videos versus the actual number of viewers for all cloud sites 

are presented in Fig. 8 to Fig. 17. Since our results demonstrate that the RF predictions 

are the closest to the actual values, we will adopt this model in our system. 

 

 

 

 

 

 
Figure 9. Predictive models �� testing comparisons. 

Figure 8. Predictive models ��  validation comparisons. 
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Figure 10. Asia Mumbai predicted vs actual number of viewers. 

Figure 11. Asia Seoul predicted vs actual number of viewers. 
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Figure 12. Asia Singapore predicted vs actual viewers number. 

Figure 13. China Ningxia predicted vs actual viewers number. 



  

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Europe Frankfurt predicted vs actual viewers number. 

Figure 15. Europe Paris predicted vs actual viewers number. 
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Figure 17. US East Ohio predicted vs actual viewers number. 

Figure 16. South America Sao Paulo predicted vs actual viewers number. 
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       Figure 18. US East Virginia predicted vs actual viewers number. 

Figure 19. US West California predicted vs actual viewers number.
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3.2.2 Proactive live video allocation and viewers serving 

In this section, we formulate the problem of proactive resource allocation, to derive 

the optimal number of video allocation cloud sites and the nearest cloud site to serve 

the viewers, with an objective of minimizing the cost constrained by the access delay. 

We then, present our proactive resource allocation algorithm. 

3.2.2.1 Problem formulation 

The set of incoming videos at period t is denoted by V (t) = {��, ��, ��, ….��}. The 

set of regions is represented by R ={��, ��, ��, … , ��}. Let ��, �� and �� denote the 

broadcasting region, video allocation region and video serving region respectively. 

The round trip delay from �� to �� is represented by ����� .  

Let P(t) = {��� , ��� , ��� , … … , ���} represent the set of predicted viewers for the 

incoming videos at period t . As each video has predicted viewers in different regions,  

let ��={��, ��, ��, … . . ��} denote the set of the number of predicted viewers at 

different regions for each video v. The broadcasters' regions for the incoming videos 

at period t is denoted by B(t)= {��� , ���, ��� … . ���}. 

Due to the fact that some videos do not have any viewers near some cloud sites, let  

E(v,��) present a binary variable equal to 1, if video v has predicted viewers near the 

region ��, and 0 otherwise. 

The decision variable A(v, ��) is equal to 1, if video v is allocated in region  ��, and 

0 otherwise. While the decision variable W(v, ��, ��) is equal to 1, if viewers at 

region ��  are served from region  �� and 0 otherwise. The problem formulation 

notations are presented in Table. 3. 

We consider renting S3 storage9 servers at each cloud site. Three types of costs are 

                                                

9 https://aws.amazon.com/s3/pricing/ 
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taken into account: (1) the storage cost at each cloud site; (2) the migration cost of a 

video replica from one cloud site to another and (3) the cost of serving viewers. We 

assume that the storage capacity can be provisioned based on the application demand. 

On allocation cloud site at region  ��, let ���   be the storage cost per GB, which varies 

based on site location and the storage thresholds fixed by Amazon S3. For example, 

Amazon charges 0.023$ per GB for the first 50TB, while it charges 0.021$ when 

exceeding 500TB in the case of US East Virginia region9. 

Given that Κ is the video size, the total storage cost S can be calculated as presented 

in Eq. 2. 

S= ∑ ∑ �����∈�� ∈ �(�) *Κ*A(v,��)      Eq. 2 

Given that ���  is the cost to migrate a copy of a video from the broadcaster region �� 

to allocation region ��, which is the data transfer cost from one cloud site to another 

per GB, the total migration cost M is calculated as presented in Eq. 3.  

M=∑ ∑ �����∈��∈�(�) ∗ � ∗ �(�, ��)    Eq. 3 

Given that ���  is the serving request cost from region ��, which is the data transfer 

cost from that region to the internet per GB, the total serving request cost R is 

calculated as presented in Eq. 4. The overall cost C to serve viewers is shown in Eq. 

5. 

R=∑ ∑ ∑ ����� ,∈���∈��∈�(�) ∗ � ∗ ��� ∗ �(�, �� , ��)     Eq. 4 

C=S+M+R   Eq. 5 

Our objective is to minimize the cost for period t as shown in Eq. 6: ����(�,�� ) �(�,�� ,��)C                Eq. 6 

Subject to the following constraints: 

Every video is allocated by default in the broadcaster nearest cloud site. 
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A(v, ��)=1   Ɐ v ∈ V(t), Ɐ �� ∈ B(t)           Eq. 6a 

A video v can be served from region  �� to viewers at region  ��, only if it is allocated 

at region  ��  . �(�, ��, ��)  ≤ A(v, ��)    Ɐ v ∈ V(t), Ɐ �� ∈ R, Ɐ �� ∈ R       Eq. 6b 

 

A video v can be served from region �� to �� only if there exists viewers at  ��. 

W(v, ��, ��) ≤ E(v, ��)    Ɐ v ∈ V(t), Ɐ �� ∈ R, Ɐ �� ∈ R    Eq. 6c 

If there exists viewers for video v at region ��, they can only be served from one region.   ∑ �(�, ��, ��)�� ∈� =E(v,��)  )    Ɐ v ∈ V(t), Ɐ �� ∈ R     Eq. 6d 

The average serving request delay to serve a video v should not exceed a threshold D. 

 

∑ ∑ ���∗ �����∗�(�,��,��)��∈���∈� ∑ �����∈�   ≤  �  Ɐ� ∈ �(�)    Eq. 6e 

Binary decision variables that can be set to 0 or 1. 

A(v, ��), W(v, ��, ��) ∈ {0,1}        Eq. 6f 

 

Table 3. Notations For The Formalized Problem. 

Notation Description 

V(t) Set of incoming live videos at period t 

R Set of regions   

B(t) Set of broadcasters regions for videos at period t ��, ��, �� Region of video allocation, Region of serving and Region of 

broadcasting 

P(t) Set of predicted viewers for live videos at period t �� Set of predicted viewers at different R for video v 
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Notation Description 

SU Set of storage used at each region 

W(v, ��, ��) Binary decision variable that indicates the serving site 

A(v, ��) Binary decision variable that indicates the allocation site 

E(v,��) Binary variable that indicates viewers existence �����  Round trip delay between �� and  �� 

RTT Matrix for round trip delay between the different R 

D Delay threshold 

Κ Video size ���    Storage cost per GB at region  ���  Migration cost per GB from broadcaster region �� ���  Serving request cost per GB from �� 

S Total storage cost 

M Total migration cost 

R Total serving request cost 

C Overall cost 

 

 

3.2.2.1 Proactive resource allocation 

The proposed proactive resource allocation algorithm is presented in Algorithm. 1. In 

fact, at each period t, the system receives a set of incoming videos, which will be an 

input to the viewers’ predictive model. Based on the predicted viewers, the optimal 

number of allocation cloud sites and the nearest cloud site to serve the viewers will be 

decided by the optimizer presented in 3.2.2. The storage resources at each cloud site 
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is reserved based on the allocation decisions, and released for ended live videos from 

the previous periods. Moreover, the viewers are served from their closest cloud site 

based on the serving decisions. 

  Algorithm 1. Proactive resources allocation. 

 

 

3.1 Performance evaluation 

3.3.1 Simulation settings 

In this section, we evaluate the performance of our system using the RF hourly 

predicted viewers of July 3, 2018 to get the hourly optimal resource allocation for 

T=24(hours) and t=1(hour). We implemented the optimization problem using Matlab 

in CVX solver. The number of hourly incoming videos, and the hourly predicted 

viewers used in our simulation are presented in Fig. 18. In our system, we assume that 

the video duration is 4 hours, which is the maximum video duration for a Facebook 

live video. We assume that if a video is allocated in a set of cloud sites at period t, it 

will be allocated in the same cloud sites for the remaining time periods of streaming. 

Moreover, because video quality is out of the scope of this thesis we assume that the 

viewers are served with the best video quality, where we set the video size Κ to 0.738 

Gbit. We constructed our round trip time (RTT) matrix  �����  by calculating the 
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average RTT from the different cloud sites using10 accessed on September 19, 2018. 

The storage and data transfer prices of Amazon S39 are considered in our simulation 

to model α, ω and η. We varied the latency thresholds constraints D for serving a video 

to 8.8ms, 60ms, 120ms, 171ms, 220ms and 371ms. 8.8ms is the latency needed to 

serve a viewer from its closest cloud region [5]. 

3.3.2 Simulation results 

Fig. 19 shows that we can establish a trade-off between the video access delay and the 

resource allocation cost. Indeed, the hourly optimal cost is high when the system is 

forced to serve the viewers from their region by setting the latency threshold to 8.8ms. 

Relaxing the threshold leads to minimizing the cost. Therefore, the content provider 

can sacrifice in terms of cost to enhance the QoE or the opposite based on her 

requirements. It is worth mentioning that the optimal cost is higher in some periods 

as opposed to others, because, as illustrated in Fig. 18, the number of incoming videos 

and predicted viewers varies from period to another. 

In order to evaluate the total system cost over the 24 hours with various latency 

thresholds, we calculated the hourly total cost, as presented in Fig. 20. The hourly 

total cost is defined as the sum of the network cost at period t and the cost of storage 

of still running videos, which is presented in Eq. 7, given that ��� is the storage usage 

at region n until period t. 

Hourly total cost (t)=C(t)+  ∑ �����∈� *����            Eq. 7 

The system total cost is calculated as shown in Eq. 8: 

System total cost= ∑ ������ ����� ����(�)����        Eq. 8 

Furthermore, we calculated the hits percentages, which represents the percentage of 

                                                

10 https://wondernetwork.com/pings 
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videos served from the same region of viewers as shown in Fig. 21. Setting the latency 

to 8.8ms resulted in hits percentage of 100% in every hour, as all viewers will be 

served from their region. While it is in the range of 20% to 30% with 60ms latency 

threshold. Moreover, when the latency threshold was set to 120ms, 171ms, 220ms and 

371ms, less than 20% of videos were served from the same region of viewers. The 

hits percentage was very low with high latency thresholds, as the system is not forced 

to serve the viewers from their closest region.  

Finally, to evaluate the accuracy of our resource allocation framework, we calculated 

the hourly average latency using the proactive serving decisions with variant latency 

thresholds D. In fact, we calculated the latency of serving the actual number of viewers 

based on our proactive video allocation and we compared it to the latency derived 

from the predictive model. The results as shown in Fig. 22 proved that the average 

latency to serve the actual viewers is very close to the average latency serving the 

predicted viewers. Moreover, the average latency to serve the actual viewers did not 

exceed the latency thresholds D. 

 

  

 

 

 

 

 

 

Figure 20. Hourly incoming videos/ Hourly predicted viewers. 
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Figure 22. Total system cost vs latency threshold. 

Figure 21. Hourly optimal cost. 
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Figure 24. Predicted vs actual hourly average latency. 

Figure 23. Serving hits percentages. 
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CHAPTER 4: TRANSCODING RESOURCES FORECASTING AND 

RESERVATION FOR CROWDSOURCED LIVE STREAMING 

 

In this chapter, we present a proactive distributed transcoding resource reservation 

framework. First, we consider an offline resource allocation optimization that uses 

past incoming videos to decide the optimal number of transcoding cloud instances at 

each cloud site, while respecting the latency and requested video bitrates constraints. 

Second, we adopt machine learning to proactively forecast the needed computational 

resources at each cloud site for the next time frame. 

4.1 Motivation 

 The complexity and infeasibility of the optimal solution, in our proposed 

framework presented in Chapter 3, to respond to the volume of viewing 

requests in real-time.  

 The centralization of our predictive model in the master server, in our 

proposed framework presented in Chapter 3, which makes it less fault tolerant. 

 Assuming that all the viewers will receive the highest quality is not a realistic 

scenario, because viewers’ devices are usually heterogeneous, and the original 

broadcasted video quality is not always high. 

 In our previous framework, resources are allocated on the fly after predicting 

the potential number of viewers in each site. However, we aim to reserve the 

computational resources beforehand to minimize the access delay, and 

minimize the system cost. 

 Transcoding the original video into multiple video qualities 240p, 360p, 480p 

and 720p is computationally intensive. 
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4.2 Contributions 

1. We develop an offline resource allocation optimization for allocating 

transcoding resources, and serving the viewers from their nearest cloud site, 

with the objective of minimizing the overall system cost while maximizing the 

viewers' QoE. 

2. To proactively reserve the exact transcoding resources for incoming live 

videos, we adopt machine learning to build our distributed time series 

resources forecasting models. 

4.3 System model 

In our work, we adopt a geo-distributed cloud infrastructure as shown in Fig. 23 that 

consists of multiple geographically distributed data centers. Our offline resource 

allocation optimizer is deployed in a centralized master server. A set of geo-

distributed broadcasters broadcast their live videos, which will be allocated by default 

with their original bitrate representations in their nearest cloud sites. The incoming 

live videos information including, viewers’ locations and original broadcasted video 

quality will be collected in each broadcaster data center. In fact, our system is two-

phase. 

 In the first phase, a collection of live videos is performed for a period T. This 

collection of historical videos information will be sent to our optimizer, deployed in 

a master server, in order to decide the optimal number of computational cloud 

instances rented across the geo-distributed data centers. The optimizer decisions 

guarantee that the viewers are served their requested video quality with minimum 

delay and the minimum system cost. Moreover, the optimizer determines from which 

cloud site the viewers should be served. Decisions are then used to create our time 

series datasets containing records of the number of cloud instances rented for each 

past time interval t in T. Such that, each cloud site has its own independent dataset. 
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Then, a predictive model is trained and deployed at each cloud site, in order to predict 

the number of cloud instances to be reserved for the upcoming time interval. 

Phase two is executed in real-time. In fact, at the beginning of period t, the optimizer, 

will receive historical incoming videos from period t-1 to decide the optimal 

computational resources at each cloud site cloud site for t+1, as illustrated in Fig. 23. 

Specifically, the optimizer decisions will be sent to the distributed predictive models 

in each cloud site, in order to forecast and reserve the required cloud instances for the 

future period t+1.   

 

 

 

 

Figure 25. Resources forecasting and reservation system model. 
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4.3.1 Optimal transcoding resources for historical videos 

In this section, we formulate the problem of offline resource allocation, to derive the 

optimal number of video transcoding instances and the nearest cloud site to serve the 

viewers with their requested bitrate representation, with an objective of minimizing 

the system cost constrained by the startup delay. 

4.3.1.1 Dataset 

In our work, we are using the Facebook 2018 live videos dataset collected by our team 

[10], containing more than two million Facebook live video streams. The active video 

streams metadata are fetched every 3 minutes in different periods on January, 

February, March, May, June, July, September and October 2018. As a result, we 

obtained a list of fetches related to each video and containing the number of viewers 

at the recording time. The live videos are collected with many features such as creation 

time and day, broadcaster location, number of likes and most importantly the viewers' 

locations. In this work, we selected four features for each video namely, the 

broadcaster location, viewers’ locations, width and height of the video. The viewers' 

locations were selected from the video fetch with maximum number of views. 

4.3.1.2 Preprocessing 

As we adopted a geo-distributed cloud infrastructure to build a distributed offline 

transcoding resource preparation framework, there was a need to preprocess our raw 

data. First, we mapped the viewers’ locations into 10 Amazon Web Services (AWS) 

cloud sites locations [27] namely, Asia-Mumbai, Asia-Seoul, Asia-Singapore, China-

Ninxgia, Europe-Frankfurt, Europe-Paris, South America-Sao paulo, US East-Ohio, 

US East-Virginia and US West-California. This was done by calculating the shortest 

distance between the viewer’s locations and the 10 AWS cloud sites locations. We 

also mapped the broadcaster location to his nearest AWS cloud site. Furthermore, we 
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extracted the bitrate representation for each video according to its width and height11, 

assuming that the frame rate is 30fps and the amount of the motion in the image is 

medium for all videos. Finally, since requested qualities for each stream are missing 

from our dataset, and based on bandwidth and screen resolutions statistics12 in each 

continent, we classified the requested qualities of each video into four bitrate 

representation classes: 240p, 360p, 480p and 720p. Note that the highest bitrate 

representation allowed by Facebook to broadcast live videos is 720p. Finally, for each 

video, we calculated the number of viewers for each bitrate representation, where we 

took into consideration that a video cannot have viewers for a video quality higher 

than the original broadcasted quality. 

4.3.1.3 Problem formulation 

The set of incoming live videos at period t is denoted by V(t)={��, ��, ��,...��}. The 

set of video bitrate representations is represented by Q={��, ��, ��, ��}. 240p, 360p, 

480p and 720p are the bitrate representations in Q. Let ��, ��� and ��� denote the 

original broadcasted, requested and transcoded video quality respectively. Let QT=1 

if ���≤�� and 0 otherwise. Let QB(t)={���, ���, ���,..., ��� } denote the broadcasted 

video bitrate representations for the set of incoming videos at period t. The set of 

regions is denoted by R={��, ��, ��,....��}. Let ��, ��� and �� denote the broadcasting 

region, video transcoding region and video serving region respectively. The round trip 

delay from ���  to �� is represented by  ������.  

Let P={���, ���,..... ���} represent the set of viewers for the incoming videos at period 

t. As each video has viewers in different regions, let ��={��,��, ��,.... ��} denote the 

number of viewers at different regions for a video v. At each region, the number of 

                                                

11 Rhiannon https://vzaar.com/wp-content/uploads/2018/05/logo-padded-1-300x138.png 
12  http://gs.statcounter.com/screen-resolution-stats 
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viewers requesting different bitrate representations is represented by ��(�)={��(��), ��(��), ��(��), ��(��)}. The broadcasters' regions set for the incoming videos at 

period t is denoted by B(t)={ ���, ���, ���,..., ���}. 

Due to the fact that some videos do not have any viewer for a specific bitrate 

representation near some cloud sites, let E(v, q, ��) present a binary variable, equal 

to 1, if video v has viewers for bitrate representation q near the region ��, and 0 

otherwise.  

Video transcoding is a computationally expensive process that requires renting a 

single elastic cloud instance to transcode a video to a single bitrate representation. In 

our work, we consider renting an Amazon EC2 c5.large compute instance13 for 

transcoding a higher video bitrate to a lower one. 

The decision variable I(v, q, r) is equal to 1, if video v is allocated and transcoded to 

quality q in region r, and 0 otherwise. While the decision variable W(v, ���, ���, ��) 

is equal to 1, if viewers at region �� are served a video with the requested quality ���  

from region ��� and 0 otherwise.  

Three types of costs are taken into account: (1) the computational cost for renting a 

number of cloud instances at each cloud site; (2) the migration cost of the original 

video replica from one cloud site to another and (3) the cost of serving viewers. On 

transcoding cloud site at region ���, let ��� the cost of renting a cloud instance per 

hour, which varies based on site location. For example, Amazon charges for c5.large 

0.085$ at Ohio region, while it charges 0.131$ at Sao Paulo [28]. The total transcoding 

cost T can be calculated as presented in Eq. 9. 

 

                                                

13 https://aws.amazon.com/ec2/pricing/on-demand/ 
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T= ∑ ∑ ∑ ���� ∗ Κ ∗ I(v, ��� , ���)      ���∈�   ���∈�� ∈ �(�) Eq. 9 

Given that ���  is the cost to migrate a copy of a video from the broadcaster region �� 

to transcoding region ���, which is the data transfer cost from one cloud site to another 

per GB, and Κ(���) is the size of a video with bitrate representation ���, the total 

migration cost M is calculated as presented in Eq. 10. 

M=∑ ∑ ∑ ��� ∗ Κ(��) ∗ I(v, ��� , ���)      ���∈�   ���∈�� ∈ �(�)    Eq. 10 

Given that ����  is the serving request cost from region ���, the total serving request 

cost R is calculated as presented in Eq. 11.  

R=∑ ∑ ∑ ∑ �����∈����∈����∈��∈�(�) ∗ Κ(���) ∗ ��� (���) ∗ �(�, ���, ���, ��)   Eq. 11 

The serving cost is defined as the data transfer cost from that region to the internet per 

GB, that varies based on cloud region and data transfer thresholds fixed by Amazon 

EC2, for example, Amazon EC2 charges 0.09$ for the first 9.99TB of data transferred, 

0.085$ for the next 40TB, while it charges 0.05$ when exceeding 150TB of data 

transfer for Ohio cloud data center13. In this thesis, we suppose that the data is 

transferred in chunks having the same length and different sizes that depend on the 

bitrate version. The overall cost C to serve viewers is shown in Eq. 12. 

C=T+M+R   Eq. 12 

Our objective is to minimize the cost for period t as shown in Eq. 13: ����(�,�,�) ���,���,��� ,���C     Eq. 13 

Subject to the following constraints: 

Every video is allocated with its original quality by default in the broadcaster closest 

cloud site. 

I(v,��, ��)=1   Ɐ v ∈ V(t), Ɐ �� ∈ QB(t), Ɐ �� ∈ B(t)           Eq. 13a 

A video v can be served with quality ��� from region  ��� to viewers at region ��, only 
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if it is allocated and transcoded at region  ��� to quality ���     �(�, ���, ��� , ��)  ≤ I(v, ���, ��� ) 
Ɐ v ∈ V(t), Ɐ ��� ∈ Q, Ɐ ��� ∈ R, Ɐ �� ∈ R   Eq. 13b 

A video v can be served from region ��� from region ���  from region �� only if there 

exist viewers for quality ��� at ��. �(�, ���, ��� , ��)  ≤ E(v, ��� , ��)    

 Ɐ v ∈ V(t), Ɐ ��� ∈ Q , Ɐ ��� ∈ R, Ɐ �� ∈ R    Eq. 13c 

If there exist viewers for video v with quality ���  at region �� , they can only be served 

with one quality from one region.   ∑ �(�, ���, ��� , ��)���∈� = E(v, ��� , ��)      

 Ɐ v ∈ V(t), Ɐ ��� ∈ Q , Ɐ �� ∈ R     Eq. 13d 

A video can not be transcoded to a quality higher than the broadcasted quality. 

I(v, ��� , ��� ) ≤ QT  Ɐ v ∈ V(t), Ɐ ��� ∈ Q, Ɐ ��� ∈ R    Eq. 13e 

The average serving request delay to serve a video v should not exceed a threshold D. 

∑ ∑ ∑ ���(���)∗������ ��∈� ∗���,���,���,������∈����∈� ∑ �����∈�   ≤  �  Ɐ� ∈ �(�)    Eq. 13f 

Binary decision variables that can be set to 0 or 1. 

I(v, ���, ��� ), W(v, ���, ���, ��) ∈ {0,1}        Eq. 13g 

 

Table 4. Notations For The Formalized Problem. 

Notation Description 

V(t) Set of incoming live videos at period t 

R Set of regions   

B(t) Set of broadcasters regions for videos at period t 



  

46 

 

Notation Description 

QB(t) Set of broadcasted bitrates for videos at period t ���, ��, �� Region of video transcoding, Region of serving and Region of 

broadcasting 

P(t) Set of viewers for live videos at period t �� Set of viewers at different R for video v ��(�) Set of viewers for different representations for video v at region 

r 

SU Set of storage used at each region 

W(v, ���, ��� , ��) Binary decision variable that indicates the serving site and 

quality 

I(v, ���, ���) Binary decision variable that indicates the allocation, 

transcoding site and quality 

E(v, ��� , ���) Binary variable that indicates viewers existence for a video 

quality ������  Round trip delay between ��� and  �� 

RTT Matrix for round trip delay between the different 

D Delay threshold 

Κ Video size ����    Cloud instance cost at region  ���  Migration cost per GB from broadcaster region �� ����  Serving request cost per GB from ��� 

T Total transcoding cost 
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Notation Description 

M Total migration cost 

R Total serving request cost 

C Overall cost 

 

4.3.1.4 Historical rented resources datasets 

We used our offline optimizer decisions to calculate the number of rented 

computational cloud instances at each past time frame t in a past period T. We then 

constructed new datasets for each cloud site containing records of the number of 

historical rented resources for each t in T. Finally, we restructured the time series data 

into a supervised learning using the sliding window technique, where a sequence of 

previous Ɛ time steps will be used as an input to our models in order to predict 

resources for a time step ahead, as illustrated in Fig. 24. 

 

Figure 26. System model timeline at the start of t. 

 

4.3.2 Time series resources forecasting 

In our work, we adopted five different machine learning algorithms namely, Long 

Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural 
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Network (CNN), MultiLayer Perceptron (MLP) and XGboost to train our models for 

each cloud site. We set the mean absolute error (MAE) as a loss function to train our 

models.  We built several models using each ML algorithm, as there is no method to 

predetermine the best combination of hyperparameters, such as the number of hidden 

layers and neurons for LSTM, GRU, CNN and MLP models, number of estimators 

for XGboost models. Finally, the best models as shown in Table. 5 were selected 

considering the best determination coefficient �� values, which is used to assess the 

goodness of fit of our regression models. �� values approaching 1 indicate that the 

model provides accurate predictions, and it is calculated according to Eq. 14: 

��=1-
∑ (�� � ��)�����∑ (����̅)�����      Eq. 14 

Where T is the number of time steps, �� is the actual number of resources at time step 

t, ��  is the predicted number of resources for time step t, and �̅ is the mean of the 

actual number of resources of all time steps.  

 

Table 5. Best Resources Predictive Models Configurations.  

Model Configurations 

GRU  Layers=1/Neurons: 100  
Optimizer: Adagrad 
Dropout: 0.4 
Loss function: Mean Absolute Error (MAE) 

LSTM Layers=1/Neurons: 100 
Optimizer: Adagrad 
Dropout: 0.4 
Loss function: MAE 

CNN Conv1D with 64 filters and kernel_size=2 
Layers=1/Neurons: 100 
Optimizer: Adagrad 
Dropout: 0.4 
Loss function: MAE 
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Model  Configurations 

MLP Layers=1/Neurons: 100 
Optimizer: Adagrad 
Dropout: 0.4 
Loss function: MAE 

XGboost Loss function: MAE 
Estimators No: 1000 

 

 

4.3.3 Proactive resources reservation 

The proposed proactive resource reservation algorithm is presented in Algorithm. 2. 

In fact, in real-time at the start of each period t, the offline resource allocation 

optimizer will receive the set of the collected videos information of period t-1, as 

illustrated in Fig. 24, in order to decide the optimal number of transcoding cloud sites 

and the nearest cloud site to serve the viewers. Based on the optimizer decisions, the 

number of optimal cloud instances at t-1 is calculated for each geo-distributed cloud 

site and sent to the corresponding forecasting model. The distributed forecasting 

models at each cloud site will predict the number of cloud instances needed for the 

incoming videos for time frame t+1. 

Algorithm 2. Proactive resources reservation. 
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4.4 Performance Evaluation 

In this section we evaluate the performance of our system. We first present our 

simulation settings, and then we discuss the results of our simulation.  

4.4.1 Simulation settings 

To evaluate the performance of our system we used 23rd June 2018 live videos to get 

the hourly optimal resource allocation for T=24(hours) and t=1(hour). We 

implemented the optimization problem using Matlab in CVX solver. In our system, 

we assume that the video duration is 1 hour. Moreover, we assume that the viewers 

are served with their requested video quality, where we set the video size for each 

bitrate representation as follows: Κ(��), Κ(��), Κ(��) and Κ(��)  to 0.405, 0.495, 

0.603 and 0.738 Gbit respectively. 

We constructed our round trip time (RTT) matrix ������  by calculating the average 

RTT from different cloud sites using10 accessed on September 19, 2018. The 

computational cloud instances and data transfer prices of Amazon EC2 c5 large13 are 

Algorithm 3. Proactive resources reservation. 
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considered in our simulation to model α, ω and η.  

We varied the latency thresholds constraints D for serving a video to 8.8ms, 120ms 

and 180ms. 8.8ms is the latency needed to serve a viewer from its nearest cloud site 

[5].  

To construct our time series datasets, we used our offline resources allocation 

optimizer decisions on 3rd to 30th June 2018 live videos using variant latency 

thresholds namely, 8.8ms, 120ms and 180ms. First, we calculated the optimal number 

of hourly used computational cloud instances at each cloud site. Second, we 

constructed three time series datasets for each cloud site containing the hourly rented 

resources using the three variant latency thresholds. Finally, we restructured the time 

series data into a supervised learning by setting the window size Ɛ=24, which means 

that at the start of period t, our models will use the previous 24 hours rented cloud 

instances number in order to predict the resources needed for time step t+1 as shown 

in Fig. 24. It is worth mentioning that because we are constrained by the size of our 

live videos dataset, we considered the hourly time series forecasting. However, for a 

larger dataset, we can decompose the time series into t equal to days, weeks and even 

months. In this way, the resources prediction and renting can be done before a longer 

period of time. We splitted our data into training and testing where we trained our 

models with data of 3rd to 24th June and tested with 25th to 30th June data. 
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4.4.2 Simulation results 

Fig. 25 and 26 represent the results of the optimization to create the optimal set of 

resources. Fig. 25 illustrates that a trade-off between the video serving delay and the 

resource allocation cost can be established. In fact, the hourly optimal cost is high 

when the system is forced to serve the viewers from their nearest cloud site by setting 

Figure 27. Hourly optimal cost. 

Figure 28. Hourly average latency. 
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the latency threshold to 8.8ms, because the system is obliged to allocate and transcode 

multiple copies of the videos. Reducing the threshold leads to minimizing the cost. 

Therefore, the content provider can sacrifice in terms of cost to enhance the QoE or 

vice versa based on his system requirements. It is worth mentioning that the 

fluctuation in the hourly optimal cost is due to the fact that some hours have a higher 

number of incoming videos compared to others. Fig. 26 presents the hourly average 

latency achieved to serve a video. We notice that setting the latency threshold to 

120ms and 180ms always achieves a much lower hourly average latency that does not 

even exceed 100ms and 170ms for 120ms and 180ms thresholds respectively. 

Moreover, setting the latency threshold to 8.8ms achieves an average latency of 8.8ms 

all the time, because it is the lowest latency performed when the system by serving 

the viewers from their regions. 

After creating our time series datasets from the optimization results and training our 

forecasting models, we compared the performance of different techniques. The testing 

results, depicted in Table 6, 7 and 8 showed that in general GRU, LSTM and MLP 

achieved the best for most of the models, we noticed that XGboost achieved the best 

for some models, and CNN was the least in performance all the time. Moreover, there 

is no single ML algorithm that worked the best for all, but as we are adopting a 

distributed system, where we have a different dataset and a different forecasting model 

for each cloud site, different ML algorithms can be adopted. We noticed that our 

models performed differently on datasets having different thresholds because varying 

the latency thresholds causes the system to rent a different amount of cloud instances 

hourly at each cloud site which will affect the shape of the data. The predicted number 

versus the actual number of cloud instances for the live videos of 25th to 30th June 

2018 (144hrs) at Singapore, Frankfurt and Virginia data centers are presented in Fig. 
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27 to Fig. 35. The results proved that the predicted number of resources is close to the 

optimal resources. 

 

Table 6. ��  Testing Results For 8.8ms Latency Threshold Dataset. 

 GRU LSTM MLP CNN XGboost 

Mumbai 0.76 0.77 0.81 0.66    0.76 

Seoul 0.92 0.92 0.93 0.86 0.92 

Singapore 0.92 0.93 0.92 0.88 0.93 

China 0.94 0.93 0.93 0.91 0.93 

Frankfurt 0.85 0.83 0.82 0.74 0.76 

Paris 0.78 0.81 0.80 0.71 0.65 

Sao Paulo 0.81 0.82 0.80 0.72 0.82 

Ohio 0.78 0.78 0.77 0.54 0.68 

Virginia 0.78 0.79 0.77 0.71 0.75 

California 0.68 0.73 0.66 0.62 0.60 

 

 

Table 7.  ��  Testing Results For 120ms Latency Threshold Dataset. 

 GRU LSTM  MLP  CNN XGboost 

Mumbai 0.79 0.71 0.70 0.67   0.58 

Seoul 0.94 0.94 0.92 0.89 0.93 

Singapore 0.95 0.94 0.94 0.92 0.92 

China 0.94 0.94 0.94 0.89 0.92 

Frankfurt 0.83 0.80 0.83 0.81 0.67 
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 GRU LSTM MLP CNN XGboost 

Paris 0.73 0.72 0.73 0.61 0.72 

Sao Paulo 0.78 0.79 0.75 0.63 0.78 

Ohio 0.77 0.77 0.71 0.62 0.73 

Virginia 0.77 0.76 0.80 0.58 0.78 

California 0.73 0.73 0.78 0.69 0.64 

 

 

Table 8. ��  Testing Results For 180ms Latency Threshold Dataset. 

 GRU LSTM MLP CNN XGboost 

Mumbai 0.71 0.70 0.69 0.67 0.68 

Seoul 0.89 0.90 0.90 0.87 0.90 

Singapore 0.94 0.93 0.93 0.93 0.91 

China 0.93 0.94 0.94 0.92 0.93 

Frankfurt 0.78 0.79 0.77 0.68 0.62 

Paris 0.76 0.74 0.76 0.75 0.75 

Sao Paulo 0.78 0.78 0.78 0.73 0.81 

Ohio 0.71 0.70 0.67 0.51 0.64 

Virginia 0.71 0.61 0.55 0.47 0.52 

California 0.81 0.80 0.77 0.62 0.70 
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Figure 29. Actual vs predicted cloud instances at Singapore/8.8ms latency threshold dataset. 

Figure 30. Actual vs predicted cloud instances at Singapore/120ms latency threshold dataset. 

Figure 31. Actual vs predicted cloud instances at Singapore/180ms latency threshold dataset. 
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Figure 32. Actual vs predicted cloud instances at Frankfurt/8.8ms latency threshold dataset. 

Figure 33. Actual vs predicted cloud instances at Frankfurt/120ms latency threshold dataset. 

Figure 34. Actual vs predicted cloud instances at Frankfurt/180ms latency threshold dataset. 
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Figure 35. Actual vs predicted cloud instances at Virginia/8.8ms latency threshold dataset. 

Figure 36. Actual vs predicted cloud instances at Virginia/120ms latency threshold dataset. 

Figure 37. Actual vs predicted cloud instances at Virginia/180ms latency threshold dataset. 
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CHAPTER 5: CONCLUSION 

In this thesis, we proposed a proactive resource allocation framework.  First, we 

adopted machine learning to build a predictive model that captures the viewers’ 

number near each geo-distributed cloud site.  Then, based on the predicted results that 

are shown to be close to the actual values, we formulated our resource allocation 

model as an optimization problem to optimally allocate resources across the geo-

distributed cloud sites. Additionally, we presented a trade-off between the video 

access delay and the cost of resource allocation. Moreover, we proved that the average 

latency to serve the actual viewers is very close to the average latency serving the 

predicted viewers. Our presented framework is a solution to overcome the drawback 

of the near optimal resource allocation algorithms, that lack the ability to allocate the 

exact resources needed beforehand. Near optimal solutions may either lead to over-

provisioning of resources that may incur significant costs to the service providers, or 

under-provisioning of resources that may cause delays to the viewers. 

We further proposed a novel geo-distributed proactive transcoding resources 

reservation framework. First, we formulated our offline resources allocation model as 

an optimization problem to optimally allocate transcoding resources across the geo-

distributed cloud sites. Then, based on the optimizer resources allocation decisions on 

historical live videos, we constructed our time series reserved resources datasets for 

each geo-distributed cloud site. Finally, we adopted machine learning to build a 

forecasting model for each cloud site to predict the number of resources needed for 

the upcoming time frame. The novelty of our framework is attributed to the ability to 

rent the exact computational cloud instances beforehand as opposed to on demand 

renting of cloud instances, which is not always adequate for live streaming systems 

due to the startup time needed to boot servers. Moreover, reserving an arbitrary 
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number of cloud instances can be insufficient to transcode all the videos into viewers 

matching video quality requests, or over-provisioned, which may lead to significant 

additional costs to the service providers. Additionally, various cloud providers offer 

up to 75% discount for reserving cloud instances proactively as opposed to on demand 

cloud instances pricing.  

 

5.1 Limitations and Future Work 

There are still many directions of research to extend this work that remain to future. 

We list some limitations and our future work briefly in the following: 

 Considering the complexity and infeasibility of the optimal solution to respond 

to the volume of viewing requests in real-time. We plan to improve our 

proactive resource allocation framework, by designing a heuristic to solve the 

resource allocation problem in real-time with near-optimal solution. 

 The centralization of our predictive model in our proposed framework 

presented in Chapter 3, makes it less fault tolerant.  

 Assuming that all the viewers will receive the highest, in our proposed 

framework presented in Chapter 3, is not a realistic scenario because viewers’ 

devices are usually heterogeneous, and the original broadcasted video quality 

is not always high. In addition, serving the viewers with their requested quality 

will maximize the QoE. 

 As a future work, we plan to design a heuristic to allocate the real time 

incoming live videos on the reserved resources predicted by our resources 

forecasting models presented in Chapter 4. 

 We will evaluate the performance of our proactive resources reservation 

framework, presented in Chapter 4, against on demand resources renting 
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frameworks proposed by other works [4] [5]. 

 Last but not least, we are also interested in implementing predictive  models  

for  the  number  of  incoming  live  videos, the  live  video  duration, and the  

live  videos  viewing  time.  
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