
❚❡❧❡❝�✁✁✂♥✄❝☎t✄�♥

◆❡t✆�♦✝✞ ✟♦�✂✉

Technische Universität Berlin

Telecommunication Networks Group

QoE-Based Low-Delay Live Streaming

Using Throughput Predictions*

Konstantin Miller, Abdel-Karim Al-Tamimi,

and Adam Wolisz

{miller,wolisz}@tkn.tu-berlin.de, altamimi@yu.edu.jo

Berlin, March 2016

TKN Technical Report TKN-16-001

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

* This technical report updates TR TKN-15-001.

Abstract

Recently, HTTP-based adaptive streaming has become the de facto standard for video stream-
ing over the Internet. It allows clients to dynamically adapt media characteristics to varying
network conditions in order to ensure a high quality of experience, that is, minimize play-
back interruptions, while maximizing video quality at a reasonable level of quality changes.
In the case of live streaming, this task becomes particularly challenging due to the latency
constraints. The challenge further increases if a client uses a wireless access network, where
the throughput is subject to considerable fluctuations. Consequently, live streams often ex-
hibit latencies of up to 20 to 30 seconds. In the present work, we introduce an adaptation
algorithm for HTTP-based live streaming called LOLYPOP (Low-Latency Prediction-Based
Adaptation) that is designed to operate with a transport latency of few seconds. To reach
this goal, LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1
to 10 seconds, along with an estimate of the relative prediction error distribution. In addi-
tion to satisfying the latency constraint, the algorithm heuristically maximizes the quality of
experience by maximizing the average video quality as a function of the number of skipped
segments and quality transitions. In order to select an efficient prediction method, we stud-
ied the performance of several time series prediction methods in IEEE 802.11 wireless access
networks. We evaluated LOLYPOP under a large set of experimental conditions, limiting
the transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the
literature, called FESTIVE. We observed that the average video quality is by up to a factor
of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to reach a broader
region in the quality of experience space, and thus it is better adjustable to the user profile
or service provider requirements.

TU Berlin

Contents

1. Introduction 4

2. Related Work 7

3. Considered System and its Model 11

4. LOLYPOP — Adaptation Algorithm for Low-Delay Live Streaming 14

4.1. Algorithm description . 14
4.2. Tuning into the stream . 15

5. TCP Throughput Traces 16

6. Short-Term TCP Throughput Prediction 18

6.1. Methodology . 18
6.2. Prediction methods . 19
6.3. Evaluation of the prediction accuracy . 20
6.4. Estimating the relative prediction error . 21
6.5. Estimating download success probabilities . 22

7. Evaluation 23

7.1. Evaluation setting . 23
7.2. Evaluation results . 24

8. Conclusion 29

A. Information Contained in the Traces 36

B. Prediction Methods 37

B.1. Simple moving average . 37
B.2. Linear extrapolation . 37
B.3. Double exponential smoothing . 37

C. Correlation of Underestimations and Overestimations 39

D. Fitting Prediction Error Distributions 40

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 3

TU Berlin

Chapter 1.

Introduction

Over the last few years, we have been observing a dramatic change in video consumption pat-
terns. The era of passive consumption of non-interactive “linear” content on a single device,
the TV set, appears to be coming to an end, and a new mindset is being established: watch
what I want, when I want, and where I want [13, 15]. This transformation is accompanied
by a significant increase in wireless and mobile network usage. In 2013, wired devices still
accounted for the majority of Internet traffic at 56%. However, wireless and mobile device
traffic is predicted to exceed traffic from wired devices by 2018, accounting for 61% of the
total Internet traffic. The largest part of it will be video content [11].
Although the majority of streamed content is Video on Demand (VoD), the amount of live

streaming is growing rapidly [58]. While current live streaming services can exhibit a latency
of several tens of seconds, low-delay streaming refers to live streaming with a particularly
low upper bound on the latency: a few seconds or less. Such a requirement is desirable
for scenarios such as transmissions of sports events. Moreover, a low latency is absolutely
necessary in the case of video conferencing and online gaming, where active participants have
latency requirements on the order of hundreds of milliseconds [23], while permanently or
temporarily passive participants may be served with a delay of few seconds.

Streaming video over the Internet has always been a challenging task because the Inter-
net was not designed to support applications that require guaranteed end-to-end Quality of
Service (QoS) [21]. Even though considerable effort has been put into developing networking
architectures addressing this shortcoming [2, 7], none of the approaches have achieved a sig-
nificant pervasiveness. As a result, in 2013 around 26.9% of streaming sessions on the Internet
experienced playback interruption, 43.3% were impacted by low resolution, and 4.8% failed
to even start altogether [14]. Especially on wireless links, users are exposed to interference,
cross-traffic, and fading effects, leading to continuously fluctuating QoS characteristics.
As a consequence, we lately have been observing a period of high interest in adaptive

streaming technologies that are able to dynamically adjust the characteristics of the streamed
media to varying network conditions, leading to a smoother viewing experience with less
playback interruptions and a more efficient utilization of the available network resources. In
particular, one technology has become the de facto standard for Internet streaming: HTTP-
Based Adaptive Streaming (HAS) [55]. One of the enablers of its success was the open
standard MPEG-DASH (Dynamic Adaptive Streaming over HTTP) [44, 53]. The advantage
of HAS comes from its usage of Hypertext Transfer Protocol (HTTP) leveraging an ubiquitous
and highly optimized delivery infrastructure, including Content Delivery Networks (CDN’s),
caches, and proxies, reducing the operating costs due to the lack of necessity to maintain
specialized video servers and pay for their licenses. In addition, HTTP is typically allowed

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 4

TU Berlin

to traverse middleboxes, such as Network Address Translation (NAT) devices and firewalls.
Finally, HAS has good scalability properties due to the stateless nature of HTTP, and since
the control logic resides at the client.
HAS, however, was primarily developed to replace the progressive download of VoD content

and therefore its usage for low-delay streaming has received little attention in the research
community. Typical buffer sizes used in studies for evaluation and deployment of HAS-based
clients are on the order of tens of seconds. The capability of the HAS approach to efficiently
stream low-delay content, especially in wireless networks, is still an open question.
One of the main goals of a streaming client’s adaptation logic is to maximize Quality of

Experience (QoE). The notion of QoE has been introduced in an effort to make the various
phenomena affecting human perception of multimedia content accessible to an objective eval-
uation process [22]. Among the QoE influencing factors that are controlled by the adaptation
logic are the number of playback interruptions, the number of quality transitions, and the
video quality. It is worth noting that these three factors cannot be considered separately.
For example, always selecting the lowest video quality minimizes playback interruptions and
quality transitions and allows for the lowest playback latency. On the other hand, always se-
lecting the highest video quality typically results in an unacceptably high number of playback
interruptions.
In this study, we demonstrate that efficient HAS-based low-delay live streaming is possible

by leveraging short-term Transmission Control Protocol (TCP) throughput predictions over
multiple time scales, from 1 to 10 seconds, along with estimations of the relative predic-
tion error distribution. We design a novel prediction-based algorithm called Low-Latency
Prediction-Based Adaptation (LOLYPOP) that supports quality-based adaptation with a
transport latency on the order of a few seconds. The approach introduced in LOLYPOP
jointly considers three QoE components: the number of playback interruptions, the number
of quality transitions, and the average video quality. Its goal is to maximize the average
video quality as a function of the operating point defined by the other two components. The
operating point is controlled by two input parameters: an upper bound on the number of
quality transitions and a parameter controlling the number of playback interruptions. Thus,
LOLYPOP provides configurable QoE that can be adjusted to the nature of the video, the
user context and preferences, or the service provider’s business model.
At the core of LOLYPOP is an estimation of download success probabilities for individual

segments. To obtain these estimations, LOLYPOP leverages predictions of throughput distri-
butions, computed from a time series prediction and an error estimation. We evaluate several
time series prediction methods using TCP throughput traces collected in IEEE 802.11 Wire-
less Local Area Networks (WLAN’s), including public hotspots (indoor and outdoor), campus
hotspots, and access points in residential environments. We observe, somewhat surprisingly,
that taking the average over the previous T seconds as a prediction for the next T seconds
provides the best prediction accuracy among the considered methods for all considered time
scales. That is, taking into account the trend does not help to reduce the prediction error.
We implement a prototype of the algorithm and evaluate it against FESTIVE [25], a well-

known adaptation algorithm from the literature. We limit the transport latency to 3 seconds
using a segment duration of 2 seconds. We observe that LOLYPOP is able to reach a broad
range of operating points and thus can be flexibly adapted to the user profile or service
provider requirements. Furthermore, we observe that at the individual operating points,

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 5

TU Berlin

LOLYPOP provides an average video quality which is by up to a factor of 3 higher than the
quality achieved by the baseline approach.
The rest of the paper is structured as follows. After reviewing the related work in Chapter 2,

we introduce the proposed system’s model and used notation in Chapter 3. Afterwards, we
introduce the design of the proposed adaptation algorithm in Chapter 4. After describing our
collected set of throughput traces in Chapter 5, we use them to compare the performance of
several prediction methods in Chapter 6, where we also present our approach to computing
download success probabilities. We evaluate the performance of LOLYPOP in Chapter 7,
and present our conclusions in Chapter 8.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 6

TU Berlin

Chapter 2.

Related Work

In the last few years, adaptive streaming has been a very active research area. Even though
the idea is not new [10, 27], it has recently moved into focus as the number of streaming video
services has increased as well as the number of content providers using adaptive streaming
on a large scale. HTTP was considered as a candidate application-layer streaming protocol
as early as 2002 [8] but, it was not until recently that it became the technology of choice for
delivering video over the Internet [57, 32]. The adoption of the open standard MPEG-DASH
(Dynamic Adaptive Streaming over HTTP) [44, 53] in 2011 has significantly contributed to
the popularity of HAS.
There is a large number of recent studies focusing on adaptation algorithms for HAS that

do not address the low-delay requirement. They typically consider playback buffer sizes of
10 to 30 seconds or more. Various approaches have been proposed that are based on con-
trol theory [66, 67, 65, 63, 40], Markov decision processes [24, 6], machine learning [12],
data mining [4], dynamic programming [33], data-driven techniques [36, 50, 17], and other
heuristics selecting video quality based on the client’s playback buffer level and average
throughput [35, 43, 41, 34, 25]. Several studies use cross-layer information to improve client’s
performance [1], or jointly consider the problem of video quality selection and resource al-
location on the lower layers of the Open Systems Interconnection (OSI) model [40, 28, 5].
Further studies propose to coordinate the quality selection process among the clients sharing
a bottleneck link to allow for a more fair and efficient resource usage [16]. Finally, many
popular streaming platforms such as YouTube1 or Netflix2, are using HAS for their VoD
services, often deploying proprietary adaptation algorithms. Unfortunately, due to the lack
of a standard evaluation methodology and performance metrics for HAS systems, the results
of individual studies are hard to compare with each other.
In contrast, the number of studies that specifically target live or low-delay HAS is signif-

icantly smaller. A potential reason is the significantly smaller market size for Over-the-Top
(OTT) live streaming services [58] and a popular opinion that streaming over HTTP/TCP is
less suitable for applications requiring a low delay. In [38], the authors compare the delay and
communication overhead in HTTP-based live streaming with the one in Real-Time Trans-
port Protocol (RTP)-based systems. They observe that the transport delay is by one segment
duration larger with HTTP and that the communication overhead becomes substantial for
sub-second segment durations (approx. 31 kbps for one second segments). In [59], several
adaptation algorithms are evaluated using buffer sizes from 6 to 20 seconds. The authors
observe that the used set of representations can significantly affect the performance of indi-

1http://www.youtube.com
2http://www.netflix.com

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 7

TU Berlin

vidual methods, resulting in by up to a factor of 2.8 higher average video quality. They also
observe that none of the selected five methods performs best in all cases but that the ranking
depends on the throughput variability. However, the study was performed using only one
throughput trace. In [61], the authors demonstrate that the server push feature introduced in
HTTP/2 can be used to support low-delay streaming by allowing a reduction in the segment
duration, and thus the lower bound on the achievable delay, without suffering from the super-
linear increase in the number of requests observed with HTTP/1.1. However, the study does
not analyze the protocol overhead caused by response headers and the reduction in video
compression rate due to the decreased Group of Pictures (GOP) size. In [30], an adaptation
algorithm for live streaming is proposed that compares potential adaptation trajectories for
the next few segments and heuristically maximizes the video quality represented by the Just
Noticeable Difference (JND) metric. The algorithm is evaluated using a maximum buffer
size of 10 seconds and compared against two baseline approaches. The evaluation shows that
the algorithm exhibits lower average video quality than the maximum of the two baseline
methods. However, it is able to reduce the average step size of a quality transition by 32%
w.r.t. the minimum of the two baseline methods. The performed evaluation used only one
throughput trace.
Several studies assume perfect information about future throughput to compute optimal

adaptation trajectories that can be used to benchmark existing algorithms and evaluate the
potential for performance increase [39, 68]. The evaluation in [39] reveals that the tested
streaming clients can achieve a performance that is close to optimum w.r.t. the average
media bit rate and number of playback interruptions, however, with an average number of
quality transitions that is at least several times as high as the optimum. The evaluated buffer
sizes vary between 10 and 40 seconds.
There exist other studies that explicitly use throughput predictions in the context of video

quality adaptation. In [43], the authors consider path probing techniques to obtain through-
put estimations that, however, typically requires support from the network infrastructure,
server instrumentation, and/or modifying lower protocol layers. The proposed adaptation
algorithm is not evaluated. Similar in spirit to our work is the study in [37], which uses
predictions to match a target number of skipped segments and a minimum delay between
quality transitions to control the transitions frequency. The algorithm is evaluated in a mo-
bile network and compared against two baseline approaches. The evaluation reveals that the
baseline approaches, using default configurations, require up to an order of magnitude more
quality transitions in order to achieve a similar media bit rate and a similar number of skipped
segments as the proposed algorithm. Unfortunately, only one network environment is used for
the evaluation, and the characteristics of the observed throughput dynamics are not disclosed
in the study. Also, the maximum buffer size used in the evaluation is not specified. In [63],
the authors study the effect of prediction errors on the performance of two adaptation ap-
proaches, rate based and Model Predictive Control (MPC), compared against a buffer based
approach using synthetic throughput traces. The authors conclude that when the prediction
error exceeds 25%, prediction-based approaches might exhibit worse performance than the
buffer based algorithm. The used MPC algorithm is not described in the publication. The
study in [60] proposes a prediction-based adaptation algorithm, where the media bit rate is
selected to equal the predicted throughput times a dynamically varying adjustment factor.
The proposed approach is, however, not designed to support QoE-based performance targets

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 8

TU Berlin

and has a set of configuration parameters that does not allow for a straightforward tuning
of the algorithm for particular network environments. In [33], the authors use dynamic pro-
gramming to solve a Network Utility Maximization (NUM) problem for a finite time horizon,
for which a bandwidth estimation is computed based on an Exponentially Weighted Moving
Average (EWMA) of the recent segment downloads. The proposed adaptation algorithm is
evaluated using buffer size limits between 30 and 50 seconds. A heuristic adaptation algo-
rithm is proposed in [29] that tries to satisfy constraints on future buffer levels over a finite
time horizon using throughput predictions obtained using a modified EWMA model where
the weights are dynamically adjusted based on the most recent relative prediction error. The
algorithm is evaluated against two baseline approaches using a single throughput trace and
a buffer size of 20 seconds. The evaluation reveals that the average video quality offered by
the proposed algorithm is by 3% (17%) higher, the average quality transition magnitude is
by 27% (9%) lower, and the number of quality transitions by 80% higher (46% lower) as
compared to the two baseline approaches.
Since having accurate throughput predictions is beneficial for a number of applications,

there are dedicated studies that address this subject, see [18] for an overview. Since, however,
the main application of TCP was for a long time bulk data transfer, many of those studies
predict throughput averaged over much longer time intervals than required for low-delay
streaming [45, 18]. The authors in [18] observed that time series prediction methods perform
quite well on the time scale of 50 seconds (Root Mean Square Relative Error (RMSRE)
is less than 0.4 for about 90% of studied traces), but the accuracy strongly varies across
studied network paths. Evaluations are often limited to wired networks which, however,
are not subject to channel state dynamics and effects caused by the data link layer to the
extent seen with wireless technologies [45, 18, 42]. Some of the developed approaches use
information available only at the sender, or they require cross-layer information, or additional
path measurements that need to be supported by the other end-point [45, 42]. In addition,
some analytical models target specific TCP flavors making their performance uncertain given
recently developed variants [45].
Identifying performance goals for adaptive video streaming and expressing them in a way

that facilitates objective measurements is an extremely challenging task. It must take into
account human perception and cognitive processing — phenomena influenced by a hard to
measure factors. The notion of Quality of Experience (QoE) was introduced in an effort to
assess these phenomena and to help make them accessible to an objective evaluation pro-
cess [22]. The number of factors influencing QoE is immense, and many of them have a high
level of subjectivity that results in extremely complex modeling [49]. QoE for adaptive video
streaming is an important and a fast developing research area [3, 51, 49, 54]. Rebuffering,
initial delay, and quality fluctuations are factors that have not been part of traditional QoE
metrics for video, but that have a tremendous impact on user’s perception of adaptive video
streamed over a best-effort network such as the Internet. In particular, many studies suggest
that the number and duration of playback interruptions have the most severe impact on
QoE [14]. Users are willing to accept a higher initial delay and higher video distortion, if it
helps minimize playback interruptions [51, 20, 47, 52]. On the other hand, it was observed
that video quality fluctuations resulting from dynamically changing the representation can
have a negative impact on QoE [31, 64]. In particular, some studies conclude that a lower
average video quality might be tolerated if it helps reduce the amount of representation tran-

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 9

TU Berlin

sitions [46]. User engagement is another important metric, which is especially of interest for
content providers because it directly relates to advertising-based revenue schemes [4, 14].

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 10

TU Berlin

Chapter 3.

Considered System and its Model

In a live streaming system, the video content is recorded and published while streaming, in
contrast to being prerecorded and stored at the server as in the case of VoD. The differ-
ence between the time when the content is recorded and the time when it is rendered on
the user’s device is often termed live latency. In order to provide the “live” experience, it
is typically constrained by an upper bound. This severely limits the capability of the client
to prefetch content to alleviate transport latency variations caused by varying network con-
ditions, thus making the design of the system more challenging. The live latency consists of
several components: sever-side processing (cutting, encoding, etc.), publishing (making avail-
able for download, distributing among CDN nodes, etc.), transport latency (downloading the
content), and client-side processing (demultiplexing, decoding, rendering).
In an HAS system, the video content is encoded in several representations varying w.r.t.

their media characteristics such as spatial resolution, frame rate, compression rate, etc. They
are configured by the service provider during the planning phase [51]. Each representation
is split into segments, typically containing several seconds of video data, such that switching
the representation is feasible on each segment boundary. The client issues HTTP requests
to download the segments in chronological order, selecting the representation for each of
them. After the segment is downloaded, it is stored in the playback buffer until its playback
deadline is reached. With live streaming, a segment becomes available for download during
the course of the streaming session. If the download is not completed before the playback
deadline, the playback is skipped. Since different representations typically have different
media bit rates, the client is able to satisfy the latency constraint by dynamically selecting
an appropriate representation for each segment. Note that the segment duration affects the
client’s responsiveness to throughput changes and thus facilitates achieving low latencies. At
the same time, however, small segments increase the overhead due to the higher number of
HTTP requests as well as reduce the video compression efficiency due to the decreased GOP
size. Typical segment durations lie between 2 and 15 seconds.
Since HTTP offers no means to cancel an ongoing request, the only way to prevent wast-

ing bandwidth by downloading the remaining bytes of a segment whose playback has to be
skipped is to shutdown the TCP connection. Since opening a new TCP connection is as-
sociated with communication overhead, we assume that the client maintains multiple TCP
connections, using them in a Round Robin manner in order to keep their internal state such
as congestion window size and Round-Trip Time (RTT) estimation up-to-date. Whenever a
TCP connection is closed, other connections are used, while the closed connection is replaced
by a new one.
In addition to satisfying latency requirements, one of the main adaptation goals is to

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 11

TU Berlin

Figure 3.1.: Illustration of the used notation

maximize QoE. In the following, we define QoE as the triplet (number of skipped segments,
number of quality transitions, average video quality). We use the term video quality to refer
to the video distortion, which is typically a concave function of the video bit rate [56]. As
stated previously, it is necessary to consider these factors jointly since optimizing any one
parameter individually leads to poor QoE. Our approach is to heuristically maximize the
average video quality as a function of the pair: number of skipped segments and number of
quality transitions, which we define as an operating point. Since the duration of the streaming
session is not known in advance (the user might quit the session prematurely), both values
are expressed in relative terms: fraction of skipped segments and fraction of segments that
result in a transition. The operating point may be defined by the user, the operating system,
the client software, or the content provider. It might depend on various factors, such as the
nature of the video, the user context, the provider’s business model, etc.
In the following, we will introduce the notation used throughout the paper. All time-related

variables are real-valued and represent continuous time. The start time of the recorded
content is t = 0. The duration of video content contained in one segment is constant and
denoted by τ . We use index i ∈ {0, 1, . . . , n − 1} to indicate a particular segment in a
stream. Segment i contains video material covering the time period [iτ, (i+ 1)τ] and becomes
available for download at time (i+ 1)τ .

We denote the set of available video representations byR, indexed by j ∈ {0, 1, . . . , |R| − 1}.
We denote the size of a segment in bits by sij , and by r̄ij = sij/τ , the Mean Media Bit
Rate (MMBR) of segment i from representation j. We denote by r̄j = 1/n

∑n
i=1 r̄ij the

MMBR of representation j. We denote the size of a downloaded segment i by si, from the
representation that was used to download it. Consequently, r̄i = si/τ denotes the MMBR of
a downloaded segment i.
The time when the request to download segment i is sent by the user is denoted by tri . Note

that it arises from the maximum of two values: the time when the client finished downloading
segment i− 1, and the time when segment i becomes available at the server. tci denotes the
time when the last bit of segment i is received by the user. We denote the upper bound on
the live latency by ∆p. Consequently, the playback deadline of segment i is tpi = iτ + ∆p.
The value of ∆p bounds the maximum transport latency, which is given by ∆p − τ if other
latency components are neglected. Note that the maximum transport latency for individual
segments can be smaller since it depends on the playback buffer level at the time of the

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 12

TU Berlin

request. The playback buffer level at time t is the time until the playback deadline of the
next segment whose download is not completed yet: β(t) = max {tpi | t

c
i ≤ t} + τ − t. The

maximum transport latency for segment i is thus given by 0 < β (tri) ≤ ∆p−τ . See Figure 3.1
for an illustration.
We denote the fraction of segments skipped until time t by Σ(t) ∈ [0, 1]. When segment i is

downloaded and played in representation j different from the representation of the previous
successfully downloaded segment, a quality transition occurs. The fraction of segments that
were successfully downloaded in a different quality than their predecessors until time t is
denoted by Ω(t) ∈ [0, 1].
Note that the traffic generated by a live streaming client might contain inter-request periods

during which the client is waiting for the next segment to become available. When computing
average application layer throughput, we exclude the inter-request periods in order to obtain
an estimate of the throughput that was actually achieved during data transmission. We
first compute the segment throughput for each downloaded segment i as ρi = si/ (t

c
i − tri).

Note that this computation accounts for the round-trip delay. We then compute the average
application layer throughput for the time interval [t1, t2] as

ρ (t1, t2) =

∑l2
i=l1

si · |[t
r
i , t

c
i] ∩ [t1, t2]|

∑l2
i=l1

|[tri , t
c
i] ∩ [t1, t2]|

, (3.1)

where l1 corresponds to the last segment requested before t1, l2 is the first segment whose
download was completed after t2, and |[a, b]| = b− a. For incomplete downloads, tci must be
replaced by the time when the download was interrupted, while si must be replaced by the
number of actually downloaded bytes. For time intervals, for which the denominator equals
0, ρ (t1, t2) is not defined.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 13

TU Berlin

Chapter 4.

LOLYPOP — Adaptation Algorithm for

Low-Delay Live Streaming

In this chapter, we present our design of LOLYPOP, a novel prediction-based adaptation
algorithm for low-delay streaming over HTTP.

4.1. Algorithm description

As described in Chapter 3, the goal of LOLYPOP is to maximize the average video quality as
a function of the operating point, defined by the pair (Σ,Ω). The input parameters controlling
the reached operating point are Σ∗ ∈ [0, 1], which controls the fraction of skipped segments
(we will describe it in more details in the following), and Ω∗ ∈ [0, 1], which is an upper
bound on the (relative) number of quality transitions. The output of the algorithm is the
representation for the next segment to be downloaded. The approach leverages throughput
predictions and prediction error estimations to compute the probability P p

ij that the download
of segment i in quality j will be completed before its playback deadline. Computation of P p

ij

is described in detail in Section 6.5. For now, we assume that P p
ij is given.

Let us consider the decision about downloading the segment i. First, LOLYPOP identifies
the highest representation j′ such that the probability for missing the playback deadline is
bounded by Σ∗, i.e. 1−P p

ij′ ≤ Σ∗. If no representation satisfies this condition or the download
success probabilities cannot be computed (e.g., because the streaming session has just started
or after a period of zero throughput), j′ is set to 0.

In the second step, LOLYPOP computes Ω(t), the fraction of segments that were played
in a different quality than their predecessor. If Ω(t) > Ω∗, and j′ > j←, where j← is
the representation of the last successfully downloaded segment i← < i, representation j← is
selected in order to prevent Ω(t) from further exceeding the upper bound Ω∗. The pseudocode
for the described algorithm is presented in Figure 4.1.
The intuition for letting LOLYPOP switch to a lower representation, even if the upper

bound on the quality transitions is exceeded, is that preventing a quality decrease can sig-
nificantly increase the number of skipped segments. According to a large-scale study of user
engagement (time before the user quits a streaming session), it is always better to drop video
quality than to let the streaming stall [14].

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 14

TU Berlin

Input: tri , t
p
i , Σ

∗, Ω∗ ⊲ Invocation time, playback deadline, config. parameters

Input: Ω (tri) ⊲ Current value for the relative number of quality transitions

Input:
(

P p
ij , j ∈ {0, . . . , |R| − 1}

)

⊲ Estimated download success probabilities, or -1

Input: j← ∈ {0, . . . , |R| − 1} ⊲ Repr. of the last successfully downloaded segment

Output: j∗ ⊲ Selected representation

Require: (i+ 1)τ ≤ tri < tpi ≤ tri + Tmax ⊲ Segment i available, playback deadline
not passed and within prediction horizon

1: if P p
ij = −1, ∀j ∈ {0, . . . , |R| − 1} then ⊲ No estimation available

2: j∗ = 0 ⊲ Select lowest representation

3: else ⊲ An estimation of download success probabilities is available

4: j′ = max
(

{0} ∪
{

j ∈ {0, . . . , |R| − 1} | 1− P p
ij ≤ Σ∗

})

⊲ Max. representation satis-
fying Σ∗, 0 if none

5: if Ω (tri) ≤ Ω∗ then ⊲ Transition to a higher representation is possible

6: j∗ = j′

7: else ⊲ Transition to a higher representation is not possible

8: j∗ = min (j′, j←)

Figure 4.1.: Pseudocode of LOLYPOP

4.2. Tuning into the stream

When the client is about to start a new streaming session, it has to decide which segment to
download first and in which representation. The client might start with the newest segment
among those available for download, maximizing the probability that the first segment will be
downloaded before its playback deadline but increasing the initial delay. In contrast, taking
the oldest segment whose playback deadline is sufficiently far into the future minimizes the
initial delay, given that the download can be completed in time. LOLYPOP adopts the latter
approach and selects the first segment i0 as the oldest segment whose playback deadline is at
least τ seconds into the future: i0 = min {i ≥ 0 | (i+ 1)τ ≤ t ∧ tpi ≥ t+ τ}, where t is the time
when a user tunes into the stream. Furthermore, it downloads the first segment in the lowest
quality in order to minimize the risk of missing its playback deadline and thus unnecessarily
increasing the initial delay. Due to the small segment duration, the low quality of the first
segment has negligible impact on the average video quality of the streaming session. The
intuition is that the available network resources should at least support the download of a
segment in its lowest quality in less time than the segment duration. If the first segment
can be downloaded before its playback deadline, as expected, the start-up delay will thus
lie in the interval [τ, ∆p − τ], which can be seen by transforming the equation for i0, using
tpi = iτ +∆p. LOLYPOP applies the same decision process when the client skips a segment
and has to select a segment to proceed with.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 15

TU Berlin

Chapter 5.

TCP Throughput Traces

As previously stated, LOLYPOP leverages estimations of probabilities P p
ij that segment i

can be downloaded in representation j before its playback deadline. In order to develop
an efficient estimator, it requires a data set, that is, a collection of TCP throughput traces
from IEEE 802.11 WLAN’s, to evaluate the accuracy and error distributions of different
time-series prediction methods. In addition, such a data set is required to evaluate the
proposed adaptation algorithm under different network conditions. Due to the targeted
transport latency of a few seconds, the required data set must contain throughput averages
computed over relatively small time intervals: 1 second or less. To the best of our knowledge,
there exists no such publicly available data set. Therefore, we collected a representative
set of TCP throughput traces in IEEE 802.11 networks in different environments at various
locations throughout Berlin, Germany and Irbid, Jordan. Our selected locations include
public hotspots (indoor and outdoor), campus hotspots, and access points in residential
environments. The traces were collected using laptops running Ubuntu 13.04 and Ubuntu
14.04 operating systems with default Media Access Control (MAC) and TCP configurations.
We collected 127 traces of continuous downstream TCP flows, lasting between 600 and

3600 seconds each. In order to focus on the more challenging scenarios, we removed traces
with a Coefficient of Variation (CV) of less than 0.1 resulting in 92 traces with a total length
of 45 hours. As a sender, we used either a server located at the TU Berlin campus (running
Ubuntu 12.04) or an Amazon EC2 micro instance located in Ireland (running Ubuntu 14.04).
More information about the traces, as well as an example figure depicting the throughput of
one complete trace, are provided in Appendix A. All traces are available upon request.
Figure 5.1 provides an illustration of throughput variability and temporal correlation that

are among the main factors affecting predictability. The figure shows boxplots for selected
sampling intervals of the mean throughput, Coefficient of Variation (CV), auto-correlation
at lag 1, and auto-correlation after differencing at lag 1. The CV is defined as the standard
deviation divided by the mean. Auto-correlation at lag 1 shows how probable it is that a
large throughput value is followed by another large value (auto-correlation close to 1) or a
small value (auto-correlation close to -1). A value close to 0 indicates no temporal correlation
between subsequent values. Auto-correlation after differencing quantifies the correlation of
throughput changes. The computed statistics confirm that our traces cover a broad range
of network conditions. 50% of the traces have a mean throughput between 4 and 11 Mbps,
while for 90% of traces the mean lies between approximately 1 and 13 Mbps. The range
of throughput fluctuations, represented by the CV, varies approximately from 0.1 to 1.3.
An interesting observation is that 75% of traces show auto-correlation values of over 0.6 at a
sampling interval of 2 seconds, while 95% still have auto-correlation values over 0.3, indicating

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 16

TU Berlin

1

Sampling interval [s]

0

5

10

15

20
M

ea
n
 t

h
ro

u
g
h
p
u
t

[M
b
p
s]

1 2 5 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o
ef

fi
ci

en
t

o
f
v
a
ri

a
ti

o
n

1 2 5 10
0.0

0.2

0.4

0.6

0.8

1.0

A
u
to

-c
o
rr

el
a
ti

o
n
 a

t
la

g
 1

1 2 5 10
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

A
u
to

-c
o
rr

el
a
ti

o
n
 a

ft
er

d
if
fe

re
n
ci

n
g
,
a
t

la
g
 1

Figure 5.1.: Trace statistics: mean throughput (equal for all sampling intervals), Coefficient of
Variation (CV), auto-correlation at lag 1, and auto-correlation, after differencing,
at lag 1. Horizontal line: median, box: quartiles, whiskers: 0.5 and 0.95 quantiles,
flier points: outliers.

significant temporal correlation between subsequent measurements. At the same time, the
time series of throughput changes exhibits a strong negative auto-correlation, indicating that
a throughput increase is likely to be followed by a throughput decrease.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 17

TU Berlin

Chapter 6.

Short-Term TCP Throughput Prediction

In this chapter, we present our approach to estimating download success probabilities re-
quired by LOLYPOP. It is based on predicting TCP throughput and estimating the relative
prediction error distribution.

6.1. Methodology

Our goal is to estimate the probabilities P p
ij that the download of sij bytes, requested at

time tri , will be completed by the time tpi . We achieve this by using a time series predic-
tion complemented by estimating the relative prediction error distribution. A time series
prediction method uses several past values to compute one or several future values. Thus,
from ρ (t− iT, t− (i− 1)T), i ∈ {1, . . . , n}, it computes predictions ρ̂ (t+ (i− 1)T, t+ iT),
i ∈ {1, . . . , k}, where T is the averaging interval.
As described in Chapter 3, the upper bound on the download duration tpi − tri for segment

i takes values from the range (0,∆p − τ], depending on the completion time of the preceding
download. We, therefore, have the following two options to compute predictions. We can
fix T and whenever tpi − tri > T , compute a prediction for multiple steps into the future
or, we compute predictions using multiple values for T and then use the smallest one such
that T ≥ tpi − tri . In the course of the study, we observed that the latter approach performs
significantly better. Consequently, we focus on predictions on multiple time scales, always
for one step into the future. We focus on time scales from 1 to 10 seconds because of their
relevance to low-delay streaming.
Given a prediction ρ̂ (t1, t2) and the corresponding measured throughput ρ (t1, t2), we

compute the relative prediction error as

ǫ (t1, t2) =
|max (ρ̂ (t1, t2) , ρmin)−max (ρ (t1, t2) , ρmin)|

max (ρ (t1, t2) , ρmin)
. (6.1)

Here, the maximum operator prevents a distortion of results whenever ρ ≈ 0 or ρ̂ ≤ 0. In
the following, we set ρmin = 10 kbps. We separately evaluate the overestimation and the
underestimation errors, due to their different error ranges ((0,∞) and (0, 1] respectively) and
due to their different impacts on the adaptation. An overestimation increases the risk of
skipping a segment, which has the strongest impact on QoE. An underestimation decreases
the risk of interruptions but reduces the video quality.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 18

TU Berlin

0.00
0.01
0.02
0.03
0.04
0.05
0.06

0
.2

-q
u
a
n
ti

le
Underestimation error Overestimation error

0.00
0.05
0.10
0.15
0.20
0.25

0
.5

-q
u
a
n
ti

le

S
M

A
:1

:a
r

S
M

A
:2

:a
r

S
M

A
:5

:a
r

S
M

A
:1

0
:a

r

L
in

E
x
t:

2

L
in

E
x
t:

5

L
in

E
x
t:

1
0

H
W

:3
:m

se

H
W

:5
:m

se

H
W

:1
0
:m

se

0.0

0.4

0.8

1.2

1.6

0
.9

-q
u
a
n
ti

le

S
M

A
:1

:a
r

S
M

A
:2

:a
r

S
M

A
:5

:a
r

S
M

A
:1

0
:a

r

L
in

E
x
t:

2

L
in

E
x
t:

5

L
in

E
x
t:

1
0

H
W

:3
:m

se

H
W

:5
:m

se

H
W

:1
0
:m

se

Figure 6.1.: Relative prediction error quantiles for the complete data set, on the time scale
of 5 seconds. Left column shows the underestimation error, right column the
overestimation error. The error bars show confidence intervals for the confidence
level of 0.95. See Section 6.3 for details.

6.2. Prediction methods

We evaluated a number of time series prediction methods, including Simple Moving Average
(SMA), linear extrapolation, Cubic Smoothing Splines (CSS), several flavors of exponential
and double exponential smoothing, Autoregressive Integrated Moving Average (ARIMA), and
several machine learning based methods [9]. Our throughput prediction results will focus on
three simple methods: SMA, linear extrapolation, and double exponential smoothing (Holt-
Winters). A brief description of these methods is provided in Appendix B. We abbreviate
the methods by 〈type〉:〈n〉:〈parameters〉, where 〈type〉 is the name of the method, n is the
number of past throughput values used as input, and 〈parameters〉 include further optional
configuration parameters. For example, SMA:n:ar denotes SMA with arithmetic mean, and
HW:n:mse denotes Holt-Winters with Mean Squared Error (MSE) used for parameter tuning.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 19

TU Berlin

6.3. Evaluation of the prediction accuracy

We evaluate the prediction methods in two steps. First, we compare the relative prediction
errors over the joint data set from all of the traces to identify the method that performs
best over a broad range of network environments. In the second step, we evaluate how the
prediction accuracy varies over individual traces.
To compare the prediction accuracy over the complete data set, we computed the 0.2-

quantiles, 0.5-quantiles, and 0.9-quantiles of the prediction error. For example, a 0.2-quantile
of 0.3 means that in 20% of all collected data points, the relative prediction error is below
0.3. Another example: a 0.9-quantile of 0.8 means that less than 10% of data points have
an error over 0.8. The results for the sampling interval of 5 seconds are shown in Figure 6.1.
We observe that SMA:1:ar has the best performance except for the 0.9-quantile of the un-
derestimation error, where SMA:10:ar is the best performing method. For 50% of the data
points, SMA:1:ar results in an overestimation error that does not exceed 10%, while only less
than 10% of data points have an overestimation error of 80% and larger. This is somewhat
surprising since SMA:1:ar is the most näıve method that uses only the most recent measure-
ment as prediction. It also has a much lower computational complexity than methods such as
Holt-Winters due to the optimizations involved in tuning the configuration parameters of the
latter for every new prediction. It seems that taking into account the trend in the past mea-
surements does not improve the prediction quality. This is consistent with the observation
that in many traces the differences in subsequent throughput measurements show a negative
correlation, as depicted in Figure 5.1. Also, methods using a small number of history points
implicitly detect level shifts and do not propagate outliers. These two issues were reported
to be known challenges in TCP throughput prediction [18].
In the second step, we evaluate how the prediction accuracy varies over the individual

traces. For each trace and method, we compute the fractions of predictions with a relative
error less than 0.2, 0.5, and 1.0. The Empirical Cumulative Distribution Functions (ECDF’s)
of these fractions over individual traces for the sampling interval of 5 seconds, is shown in
Figure 6.2. The first/second/third column shows for each trace the fraction of measurements
with a relative error below 0.2/0.3/0.5 respectively. For example, the point (0.8, 0.3) on the
solid line in the middle column, bottom row, represents a trace, where 80% of the overesti-
mations have a relative error of 0.5 or less. Points below (y-value less than 0.3) correspond
to traces that have worse performance, while points above (y-value over 0.3) correspond to
traces with better performance. The fact that the graph passes through point (0.8, 0.3) means
that in 70% of traces (sampled at 5 s), less than 20% of the overestimations have a relative
error of 0.5 or more.
From Figure 6.2, we observe that the prediction strongly varies across traces. There are

traces, where 90% of overestimations have an error less than 20%, while 100% of predictions
have an error less than 50%. A video client might account for a relative error of this magnitude
by using a fixed safety margin, that is, by always selecting a media bit rate which is 20%
smaller than the predicted throughput. There are, however, traces where almost 60% of
the overestimations have a relative error of greater than 50%, while more than 40% of the
overestimations still have an error greater than 100%. Setting a high fixed safety margin to
account for such “bad” traces would result in significant underutilization of network resources,
lower media bit rate and thus lower QoE in the “well-behaving” traces. On the other hand,

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 20

TU Berlin

0

0.2

0.4

0.6

0.8
E

C
D

F
o
v
er

 t
ra

ce
s SMA:1:ar

SMA:10:ar

0 0.2 0.4 0.6 0.8 1

Fraction of predictions
with rel. error below 0.2

0

0.2

0.4

0.6

0.8

E
C

D
F

o
v
er

 t
ra

ce
s

underestimation

0 0.2 0.4 0.6 0.8 1

Fraction of predictions
with rel. error below 0.5

0 0.2 0.4 0.6 0.8 1

Fraction of predictions
with rel. error below 1.0

sampling: 5 s

overestimation

Figure 6.2.: Performance of SMA:1:ar and SMA:10:ar for individual traces. See Section 6.3
for details.

selecting a low fixed safety margin would increase the total number of skipped segments in
the “bad” traces. Consequently, we have to complement a time series prediction with an
estimation of the prediction error distribution.
Finally, in all of the studied traces, we observed that the probability for occurrences of

underestimations and overestimations are well balanced on all time scales. Both occur in
approximately 50% ± 5% of cases. At the same time, they exhibit a significant temporal
correlation: the probability that an underestimation is followed by an overestimation and
vice versa is significantly over 50% for most traces for all time scales, exceeding 80% or even
90% in some cases. This observation is directly related to the negative correlation of the
throughput after differencing, depicted in Figure 5.1. The distribution of per-trace values is
depicted in Appendix C.

6.4. Estimating the relative prediction error

In order to estimate the download success probability, it is not sufficient to perform a time se-
ries prediction because the uncertainty of such a prediction can be quite high (as shown previ-
ously) and because it can vary across different network environments. Although there are ap-
proaches that allow to explicitly predict a distribution such as Gaussian process method [48],
approaches such as SMA do not have this capability. Therefore, we complement the pre-
dicted value by an estimate of the relative prediction error distribution. A straightforward
approach is to use the ECDF of past prediction errors, and to account for the long-term non-
stationarities by discarding values whose age exceeds a certain threshold. Another approach
is to select a distribution type and to fit its parameters dynamically from the data. In our
evaluation, we will use the former method, since it results in good performance and since
with the latter method the computation of the model parameters involves an optimization

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 21

TU Berlin

step, which is resource-consuming. In Appendix D we present our results on fitting several
well-known distribution types to relative prediction errors: exponential, normal, logistic, and
Lomax (shifted Pareto) [26]. We observe that the Lomax distribution provides the best fit.
We therefore recommend to use the Lomax distribution to model prediction errors when
evaluating adaptation approaches with synthetic data, as done in [63], for example.

6.5. Estimating download success probabilities

In this section, we describe our approach to estimating download success probabilities
(

P p
ij , j ∈

{0, . . . , |R| − 1}
)

that at time tri sij bytes can be downloaded in representation j before its
playback deadline tpi . We denote by Tmax ∈ N the maximum prediction horizon in seconds.
Consequently, at time t ∈ N, the client computes the average application layer throughput
(defined in (3.1)) for time intervals [t− T, t] for T ∈ {1, . . . , Tmax}, followed by computing
throughput predictions for time intervals [t, t+ T]. If the throughput cannot be computed,
no prediction is provided either. Finally, the client computes the relative prediction error for
the interval [t− T, t] as

ǫ̃ (t− T, t) =
max (ρ̂ (t− T, t) , ρmin)−max (ρ (t− T, t) , ρmin)

max (ρ (t− T, t) , ρmin)
. (6.2)

In contrast to the definition in (6.1), ǫ̃ (t− T, t) ∈ (−1,∞) is defined without taking the
absolute value for the purposes of presentation.
We assume that predictions are computed every second, so that at time tri , the most

recent predictions were computed at time ⌊tri ⌋. In order to calculate the download success
probabilities, the client determines the smallest time interval containing [tri , t

p
i] for which a

prediction is available. Note that it is not necessarily [⌊tri ⌋, ⌈t
p
i ⌉] since, due to the distribution

of inter-request delays or due to a throughput outage, a prediction for this time interval might
not be available. Let tπi , T

∗ ∈ N be determined such that [tπi , t
π
i + T ∗] is the shortest time

interval containing [tri , t
p
i] for which a prediction is available, and let ρ̂i = ρ̂ (tπi , t

π
i + T) be the

corresponding throughput prediction. ǫi = ǫ (tπi , t
π
i + T) and ǫ̃i = ǫ̃ (tπi , t

π
i + T) shall denote

the relative prediction errors, as defined in (6.1) and (6.2). Further, we denote by Φu
i (ǫi) and

Φo
i (ǫi) the estimated Cumulative Distribution Function (CDF) of the underestimation and

overestimation errors for ρ̂i, computed at tπi . Finally, P u
i ∈ [0, 1] shall denote the relative

frequency of underestimations. With the introduced notation, the ECDF for ǫ̃i is given by

Φi (ǫ̃i) =

{

P u
i · Φu

i (ǫi) for ǫ̃i < 0

P u
i + (1− P u

i) · Φ
o
i (ǫi) otherwise .

(6.3)

Consequently, the download success probability P p
ij can be estimated as

P p
ij = P

[

sij
tpi − tri

≤
ρ̂i

1 + ǫ̃i

]

= Φi

(

ρ̂i (t
p
i − tri)

sij
− 1

)

. (6.4)

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 22

TU Berlin

Chapter 7.

Evaluation

We evaluated the performance of LOLYPOP using our collected throughput traces and com-
paring it against the state-of-the-art algorithm FESTIVE [25] as a baseline. The setting and
results are presented in the following.

7.1. Evaluation setting

We implemented both LOLYPOP and FESTIVE in a streaming client prototype written in
Python1. We equipped the developed prototype with a feature that allowed it to be executed
in virtual time using a throughput trace file as input, thus allowing for a simulative evaluation
using collected traces.
We used Big Buck Bunny2 as video content, which is an animated movie of approximately

10 minutes duration. This video was selected due to the availability of raw video data, al-
lowing us to generate representations with high MMBR’s. We encoded 9 representations
with MMBR’s distributed between 100 and 20000 kbps with exponentially increasing inter-
vals: 101, 194, 377, 730, 1415, 2743, 5319, 10314, and 20000 kbps, using the H.264/MPEG-4
AVC [62] compression format. The chosen intervals correspond to a roughly linear increase
of the video quality in terms of Peak Signal-to-Noise Ratio (PSNR) [56]. The encoding was
performed using the avconv3 utility using two passes, with a configuration targeting at low
MMBR variations among individual segments.
The evaluation was performed using an upper bound on the transport latency of 3 seconds,

corresponding to 1.5 times the segment duration. Neglecting segmentation overhead at the
server and decoding overhead at the client, this corresponds to an overall live latency of 5
seconds. Each streaming session lasted for 5 minutes.
We evaluated LOLYPOP with different values for the configuration parameters Σ∗ and Ω∗.

The goal was to explore the range of operating points with Σ ∈ [0, 0.1] and Ω ∈ [0, 0.5]. We
used Σ∗ ∈ {0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and Ω∗ ∈ {0.001, 0.005, 0.008, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.5}. In total, we evaluated
442 configurations. Note that we used Σ∗ values that are much higher than the values for
Σ we want to achieve. This is due to the observation that tight restrictions on the number
of quality transitions Ω∗ results in much lower numbers of skipped segments than the value
used for Σ∗.

1http://www.python.org
2http://www.bigbuckbunny.org
3http://libav.org/avconv.html

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 23

TU Berlin

0.01 0.05 0.10 0.15 0.20 0.30

 ¤

0.01

0.05

0.10

0.15

0.20

0.30

§ ¤: 0:1

0.1 0.3 0.5 0.7 0.9

§ ¤

0.00

0.05

0.10

0.15

0.20

0.25

0.30

§

 ¤: 0:05

 ¤: 0:10

Figure 7.1.: Ω as function of Ω∗ (left), and Σ as function of Σ∗ (right), for LOLYPOP. The
distributions over the traces are shown as boxplots, where the horizontal line rep-
resents the median, the box represents the quartiles, and the whiskers represent
the 0.05 and 0.95 quantiles.

The FESTIVE adaptation algorithm was evaluated with a broad range of values around
the default configuration in [25]. We vary the values for α (controlling the trade-off between
the average quality and the quality fluctuations), p (safety margin between the estimated
bandwidth and the selected MMBR), and k (controlling the amount of quality fluctuations
by enforcing a minimum distance between quality transitions). We used α ∈ {5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, p ∈ {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.8, 0.85, 0.9, 0.95}, and k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}. In total,
we evaluated 2880 configurations. We disabled the randomizer feature of FESTIVE since it
requires delaying requests. With low-delay streaming, the randomizer feature can lead to an
increased number of skipped segments. We did not relax the restriction of FESTIVE that it
switches the representation at most one step at a time since we considered it as one of its
core features. Finally, we would like to point out that FESTIVE bases its decisions upon the
knowledge of the MMBR of a representation, while LOLYPOP uses the segment size of the
next segment.

7.2. Evaluation results

The evaluation goals are to understand the dependency of the reached operating point on the
algorithm configuration, to explore the region of reachable operating points, and to evaluate
the average video quality as a function of the operating point.
First, we study the dependency of the reached operating point (Σ,Ω) on the input pa-

rameters Σ∗ and Ω∗. Figure 7.1 (left) illustrates the ability of LOLYPOP to satisfy the
upper bound on the number of quality transitions Ω∗, by depicting Ω as a function of Ω∗

exemplarily for Σ∗ = 0.1. The graphs for other values of Σ∗ are almost identical and are
omitted. We observe that LOLYPOP is able to enforce the upper bound on the number of
quality transitions quite accurately. One reason for the slight overshoot is that we always
allow downward quality transitions. Also note that a value of Ω = 0.01 means that during
the whole streaming session, there are only 3 quality transition, which, in a wireless network,
is an extremely low value. Figure 7.1 (right) illustrates the dependency of Σ on Σ∗ for two
values of Ω∗: 0.05 and 0.1. We observe that Σ is significantly lower than Σ∗ and that a

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 24

TU Berlin

0.00 0.02 0.04 0.06 0.08 0.10

§

0.0

0.1

0.2

0.3

0.4

0.5

LOLYPOP

0.00 0.02 0.04 0.06 0.08 0.10

§

0.0

0.1

0.2

0.3

0.4

0.5

FESTIVE

Figure 7.2.: Scatter plots of covered (Σ, Ω) regions for LOLYPOP (left), and FESTIVE
(right).

lower value for Ω∗ decreases Σ even further. The intuition behind that is that whenever Ω∗

is exceeded during the course of a streaming session, only downward quality transitions are
permitted.
Next, we evaluate the region of reachable operating points. The broader this region the

more flexible the algorithm can be tuned to the QoE requirements defined for a streaming
session. Figure 7.2 shows scatter plots of achieved (Σ, Ω) values for LOLYPOP (left) and
FESTIVE (right). We observe that the studied LOLYPOP configurations cover a broader
range of (Σ, Ω) values and thus enable a more flexible adjustment to user and/or application
profiles. Note that a low value of Σ and/or Ω alone is not an indicator of high QoE since it
might be achieved by selecting an unnecessary low video quality.
The fact that Σ values below 0.01 were not achieved by either algorithms is in part explained

by the throughput outages of several seconds durations contained in several traces. In order to
quantify these “unavoidable” fractions of skipped segments, we simulate streaming sessions
using an adaptation algorithm that always selects the lowest quality. We observed that
out of 92 used traces, 66 support streaming at lowest quality without skipped segments.
Furthermore, 7 traces have a Σ below 0.01, further 10 below 0.05, further 7 below 0.1, one
had 0.12 and one has the highest Σ of 0.15.
As the main result of our evaluation, we would like to characterize the average video

quality as a function of the operating point. Figure 7.3 visualizes the average video quality
as a function of quality transitions for different numbers of skipped segments. For different
values of Σ (on the x-axis), we first determine the configuration that (i) achieves the highest
average video quality over all traces, (ii) whose average fraction of skipped segments is less
or equal to Σ, and (iii) whose average (relative) number of quality transitions is less then or
equal to Ω, where Ω ∈ {0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The convex hulls of the
resulting curves are depicted in Figure 7.3.
We observe that LOLYPOP achieves a higher average quality at all operating points.

The difference is particularly pronounced for small numbers of quality transitions, where
LOLYPOP achieves an up to 3 times higher average quality. For high numbers of quality
transitions, the difference slightly increases with the number of skipped segments. An inter-
esting observation is that all plots have a more or less pronounced “knee”, after which the
curve goes into saturation and the quality does not increase significantly. In contrast, before
the knee, a small increase in the number of skipped segments can bring a huge increase in

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 25

TU Berlin

0

1

2

3

4

5

6
M

ea
n
 r

ep
re

se
n
t.

∙0:02

LOLYPOP

FESTIVE

∙0:03 ∙0:04

0

1

2

3

4

5

6

M
ea

n
 r

ep
re

se
n
t.

∙0:05 ∙0:10 ∙0:20

0 0.02 0.04 0.06 0.08 0.1

§

0

1

2

3

4

5

6

M
ea

n
 r

ep
re

se
n
t.

∙0:30

0 0.02 0.04 0.06 0.08 0.1

§

∙0:40

0 0.02 0.04 0.06 0.08 0.1

§

∙0:50

Figure 7.3.: Average video quality (representation) as a function of the number of skipped
segments Σ for different numbers of quality transitions Ω.

video quality. In the evaluated network environments, the “knee” is typically slightly below
Σ = 0.02. In other words, accepting 0.5 to 1 percent more skipped segments, which corre-
sponds to one to two more skipped segments every 400 seconds, can result in an up to twofold
improvement in video quality (e.g., for Ω ≤ 0.2).
While Figure 7.3 shows mean values over all 92 traces, we generated similar plots for

each trace individually. In 31 traces, all 9 considered Ω thresholds resulted in both curves
having the same ranges and could thus be compared pointwise. In 21 out of the 31 traces,
all 9 curves for LOLYPOP were pointwise strictly greater than the corresponding curves
for FESTIVE, while there existed no trace where all 9 curves were pointwise greater for
FESTIVE. Furthermore, in order to perform a trace-by-trace comparison across all traces,
including those in which some curves had different ranges or were intersecting, we compared
the integrals of the curves. This comparison revealed that for Ω = 0.2, in 53% of traces,
LOLYPOP had a higher integral than FESTIVE; in 38% of traces, FESTIVE had a higher
integral; and in the remaining traces, the values were equal. The corresponding values for
Ω ∈ {0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} are (76%, 22%), (82%, 16%), (76%, 22%),
(78%, 20%), (86%, 12%), (87%, 11%), (87%, 11%), (89%, 9%). We thus observe that for all
considered Ω thresholds, in the majority of traces, the performance of LOLYPOP averaged
over the considered range of Σ values is higher than the performance of FESTIVE.
Similarly to Figure 7.3, Figure 7.4 presents plots of quality vs. quality transitions for

different levels of skipped segments. Here, we observe a similar situtation, albeit the “knee”
effect is less pronounced in the case of LOLYPOP due to the relatively high achieved video
quality for low values of Ω.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 26

TU Berlin

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6
M

ea
n
 r

ep
re

se
n
t.

§∙0:02

LOLYPOP

FESTIVE

0 0.1 0.2 0.3 0.4 0.5

§∙0:05

0 0.1 0.2 0.3 0.4 0.5

§∙0:10

Figure 7.4.: Average video quality (representation) as a function of the number of quality
transitions Ω for different numbers of skipped segments Σ.

Finally, Figure 7.5 depicts four example runs illustrating the behavior of the proposed
algorithm with different configurations. For each run, three plots are shown. The top one
depicts network throughput and segment MMBR. The middle one depicts the representations
selected for individual segments and the mean value. The bottom one depicts the buffer level
at playback deadlines (a value of 0 results in a skipped segment). In the three upper left
subplots, we see a run with low values for both Σ∗ and Ω∗. Setting Ω∗ to 0.001, we effectively
restrict the number of upward transitions to 1, since the whole streaming session has less than
1000 segments. We observe that the algorithm reacts not only to decreased throughput, as
seen between seconds 30 and 50, but also to increased uncertainty in throughput dynamics as
seen after the strong downward fluctuation at second 170. A higher Σ∗, as seen in the top right
subplots, results in a more aggressive behavior accepting a higher probability for skipping a
segment and a higher average quality. The two sets of subplots at the bottom depict runs
with Ω∗ = 0.1. The algorithm is allowed to have more quality transitions, resulting in a
further improvement of the average video quality.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 27

TU Berlin

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

0

1

2

3

4

5

R
ep

re
se

n
ta

ti
o
n

0

1

2

3

4

B
u
ff
er

 l
ev

el
 [
s]

(§ ¤ ; ¤)=(0:01; 0:001) (§ ¤ ; ¤)=(0:5; 0:001)

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

0

1

2

3

4

5

R
ep

re
se

n
ta

ti
o
n

0 50 100 150 200 250 300

Time [s]

0

1

2

3

4

B
u
ff
er

 l
ev

el
 [
s]

(§ ¤ ; ¤)=(0:01; 0:1)

0 50 100 150 200 250 300

Time [s]

(§ ¤ ; ¤)=(0:5; 0:1)

Figure 7.5.: Four example runs with different algorithm configurations. See Section 7.2 for
details.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 28

TU Berlin

Chapter 8.

Conclusion

In the presented study, we addressed the problem of maximizing QoE for HTTP-based adap-
tive low-delay live video streaming. We proposed LOLYPOP, an adaptation algorithm
designed to operate with a transport latency of a few seconds over wireless access links.
LOLYPOP leverages predictions of TCP throughput distributions on time scales from 1 to
10 seconds. We studied the performance of several time series prediction methods using IEEE
802.11 traces from various network environments. We observed that the most näıve approach,
using the last sample as prediction for the future, has the highest accuracy on all considered
time scales. We also observed that the quantiles of the prediction error distribution strongly
vary among considered traces requiring a dynamic estimation of the error distribution for each
streaming session individually. We integrated LOLYPOP and a state-of-the-art adaptation
algorithm FESTIVE with a streaming client prototype and evaluated them using collected
throughput traces. We observed that LOLYPOP is able to reach a broad range of operating
points, and to outperform the baseline approach w.r.t. the mean video quality at each of
these operating points by up to a factor of 3.
Our ongoing and future work includes studying the benefits of using cross-layer and context

information (i) to adjust the configuration parameters, in particular Σ∗, in order to achieve a
target level of skipped segments, and (ii) to further improve prediction accuracy. Furthermore,
we evaluate how ∆p can be dynamically tuned in order to achieve minimum latency without
dropping the QoE. Finally, we plan to evaluate the potential to further reduce latency by
reducing the video segment duration.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 29

TU Berlin

Bibliography

[1] Abdallah S Abdallah and Allen B Mackenzie. A Cross-Layer Controller for Adaptive
Video Streaming over IEEE 802.11 Networks. In Proc. of IEEE International Conference
on Communications (ICC), pages 6797–6802, London, UK, 2015.

[2] Cristina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A Survey of QoS Archi-
tectures. Multimedia Systems, 6(3):138–151, 1998.

[3] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and
Hui Zhang. A Quest for an Internet Video Quality-of-Experience Metric. In Proc. of
ACM Workshop on Hot Topics in Networks (HotNets), pages 97–102, Redmond, WA,
2012.

[4] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and
Hui Zhang. Developing a Predictive Model of Quality of Experience for Internet Video.
In Proc. of ACM SIGCOMM, pages 339–350, Hong Kong, 2013.

[5] Dilip Bethanabhotla, Giuseppe Caire, and Michael J Neely. Adaptive Video Streaming
for Wireless Networks With Multiple Users and Helpers. IEEE Trans. on Communica-
tions, 63(1):268–285, 2015.

[6] Ayub Bokani, Mahbub Hassan, and Salil Kanhere. HTTP-Based Adaptive Streaming
for Mobile Clients using Markov Decision Process. In In Proc. of Intl. Packet Video
Workshop (PV), San Jose, CA, 2013.

[7] Jorge Carapinha, Roland Bless, Christoph Werle, Konstantin Miller, Virgil Dobrota,
Andrei Bogdan Rus, Heidrun Grob-Lipski, and Horst Roessler. Quality of Service in the
Future Internet. In Proc. of ITU-T Kaleidoscope, Pune, India, 2010.

[8] Sharon Carmel, Tzur Daboosh, Eli Reifman, Naftali Shani, Ziv Eliraz, Dror Ginsberg,
Edan Ayal, and Kfar Saba. Network Media Streaming, 2002. Patent No. US 6389473,
Filed March 24, 1999, Issued May 14, 2002.

[9] Christopher Chatfield. The Analysis of Time Series: an Introduction. Taylor & Francis,
Abingdon, UK, 6th. edition, 2003.

[10] Zhigang Chen, See-Mong Tan, Roy H. Campbell, and Yongcheng Li. Real Time Video
and Audio in the World Wide Web. In In Proc. of International World Wide Web
Conference, Boston, MA, USA, 1995.

[11] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2013 - 2018. White
Paper, Cisco Systems, Inc., San Jose, CA, 2014.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 30

TU Berlin

[12] Maxim Claeys, Steven Latre, Jeroen Famaey, and Filip De Turck. Design and evaluation
of a self-learning HTTP adaptive video streaming client. IEEE Communications Letters,
18(4):716–719, 2014.

[13] ComScore. U.S. Digital Future in Focus. White Paper, comScore, Inc., Reston, VA,
2014.

[14] Conviva. Viewer Experience Report. White Paper, Conviva, Foster City, CA, 2014.

[15] Conviva. Internet TV: Bringing Control to Chaos. White Paper, Conviva, Foster City,
CA, 2015.

[16] A El Essaili, D Schroeder, D Staehle, M Shehada, W Kellerer, and E Steinbach. Quality-
of-Experience driven Adaptive HTTP Media Delivery. In Proc. IEEE International
Conference on Communications (ICC), pages 2480–2485, Budapest, Hungary, 2013.

[17] Jia Hao, Roger Zimmermann, and Haiyang Ma. GTube: Geo-Predictive Video Streaming
over HTTP in Mobile Environments. In Proc. of ACM Multimedia Systems Conference
(MMSys), pages 259–270, Singapore, 2014.

[18] Qi He, Constantinos Dovrolis, and Mostafa Ammar. On the predictability of large
transfer TCP throughput. Computer Networks, 51(14):3959–3977, 2007.

[19] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric Statistical Meth-
ods. Wiley, New York, NY, 3rd. edition, 2014.

[20] T. Hossfeld, Sebastian Egger, Raimund Schatz, Markus Fiedler, Kathrin Masuch, and
C. Lorentzen. Initial Delay vs. Interruptions: Between the Devil and the Deep Blue Sea.
In Proc. of Workshop on Quality of Multimedia Experience (QoMEX), Yarra Valley,
Australia, 2012.

[21] ITU-T. Definition of Terms Related to Quality of Service (ITU-T E.800). Recommen-
dation, ITU-T, 2008.

[22] ITU-T. Vocabulary for Performance and Quality of Service, Amendment 2: New Defi-
nitions for Inclusion in Recommendation ITU-T P.10/G.100. Recommendation, ITU-T,
2008.

[23] ITU-T. Requirements for low-latency interactive multimedia streaming (ITU-T F.746.1).
Recommendation, ITU-T, 2014.

[24] Dmitri Jarnikov and Tanr Özçelebi. Client Intelligence for Adaptive Streaming Solutions.
Signal Processing: Image Communication, 26(7):378–389, 2011.

[25] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-Based Adaptive Video Streaming With FESTIVE. IEEE/ACM Trans. on
Networking, 22(1):326–340, 2014.

[26] Norman Lloyd Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous
Univariate Distributions. Wiley, New York, NY, 2nd. edition, 1994.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 31

TU Berlin

[27] Hemant Kanakia, Partho P. Mishra, and Amy R. Reibman. An Adaptive Congestion
Control Scheme for Real Time Packet Video Transport. IEEE/ACM Transactions on
Networking, 3(6):671–682, 1995.

[28] Hieu Le, Arash Behboodi, and Adam Wolisz. Quality Driven Resource Allocation for
Adaptive Video Streaming in OFDMA Uplink. In Proc. IEEE 26th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pages
1277–1282, Hong Kong, 2015.

[29] Hung T. Le, Duc V. Nguyen, Nam Pham Ngoc, Anh T. Pham, and Truong Cong Thang.
Buffer-Based Bitrate Adaptation for Adaptive HTTP Streaming. In Proc. International
Conference on Advanced Technologies for Communications (ATC), pages 33–38, Ho Chi
Minh City, Vietnam, 2013.

[30] Hung T Le, Hai N Nguyen, Nam Pham Ngoc, Anh T Pham, Hoa Le Minh, and
Truong Cong Thang. Quality-Driven Bitrate Adaptation Method for HTTP Live-
Streaming. In Proc. IEEE International Conference on Communication Workshop
(ICCW), pages 1771–1776, London, UK, 2015.

[31] Blazej Lewcio, Benjamin Belmudez, Theresa Enghardt, and Sebastian Möller. On the
Way to High-Quality Video Calls in Future Mobile Networks. In Proc. of International
Workshop on Quality of Multimedia Experience (QoMEX), pages 43–48, Mechelen, Bel-
gium, 2011.

[32] Baochun Li, Zhi Wang, Jiangchuan Liu, and Wenwu Zhu. Two Decades of Internet
Video Streaming: A Retrospective View. ACM Transactions on Multimedia Computing,
Communications, and Applications, 9(1s):1–20, 2013.

[33] Zhi Li, Ali C. Begen, Joshua Gahm, Yufeng Shan, Bruce Osler, and David Oran. Stream-
ing Video over HTTP with Consistent Quality. In Proc. of the 5th ACM Multimedia
Systems Conference (MMSys), pages 248–258, New York, NY, 2014.

[34] Zhi Li, Xiaoqing Zhu, Josh Gahm, Rong Pan, Hao Hu, Ali C Begen, and Dave Oran.
Probe and Adapt: Rate Adaptation for HTTP Video Streaming At Scale. IEEE Journal
on Selected Areas in Communications, 32(4):719–733, 2014.

[35] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. Rate Adaptation for Adaptive
HTTP Streaming. In Proc. of ACM Multimedia Systems Conference (MMSys), pages
169–174, San Jose, CA, USA, 2011.

[36] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui
Zhang. A Case for a Coordinated Internet Video Control Plane. In Proc. of ACM
SIGCOMM, pages 359–370, Helsinki, Finland, 2012.

[37] Yan Liu and Jack Y. B. Lee. On Adaptive Video Streaming with Predictable Streaming
Performance. In Proc. of IEEE Global Communications Conference (GLOBECOM),
pages 1164–1169, Austin, TX, 2014.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 32

TU Berlin

[38] Thorsten Lohmar, Torbjörn Einarsson, Per Fröjdh, Frédéric Gabin, and Markus Kamp-
mann. Dynamic Adaptive HTTP Streaming of Live Content. In Proc. of 2011 IEEE In-
ternational Symposium on a World of Wireless Mobile and Multimedia Networks (WoW-
MoM), pages 1–8, Lucca, Italy, 2011.

[39] Konstantin Miller, Savvas Argyropoulos, Nicola Corda, Alexander Raake, and Adam
Wolisz. Optimal Adaptation Trajectories for Block-Request Adaptive Video Streaming.
In Proc. of the Packet Video Workshop, pages 1–8, San Jose, CA, 2013.

[40] Konstantin Miller, Dilip Bethanabhotla, Giuseppe Caire, and Adam Wolisz. A Control-
Theoretic Approach to Adaptive Video Streaming in Dense Wireless Networks. IEEE
Transactions on Multimedia, 17(8):1309 – 1322, 2015.

[41] Konstantin Miller, Emanuele Quacchio, Gianluca Gennari, and Adam Wolisz. Adap-
tation Algorithm for Adaptive Streaming over HTTP. In Proc. of the Packet Video
Workshop, pages 173–178, Munich, Germany, 2012.

[42] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. A Machine Learning
Approach to TCP Throughput Prediction. IEEE/ACM Transactions on Networking,
18(4):1026–1039, 2010.

[43] Ricky K. P. Mok, Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang. QDASH: A
QoE-Aware DASH System. In Proc. of ACM Multimedia Systems Conference (MMSyS),
pages 11–22, Chapel Hill, NC, 2012.

[44] MPEG. MPEG-DASH (ISO/IEC 23009-1). Moving Picture Experts Group, 2012.

[45] Jitendra Padhye, V. Firoiu, D.F. Towsley, and J.F. Kurose. Modeling TCP Reno per-
formance: a simple model and its empirical validation. IEEE/ACM Transactions on
Networking, 8(2):133–145, 2000.

[46] Toon De Pessemier, Katrien De Moor, Wout Joseph, Lieven De Marez, and Luc Martens.
Quantifying the Influence of Rebuffering Interruptions on the Users Quality of Experi-
ence During Mobile Video Watching. IEEE Transactions on Broadcasting, 59(1):47–61,
2013.

[47] Huynh-Thu Quan and Mohammed Ghanbari. Temporal Aspect of Perceived Quality in
Mobile Video Broadcasting. IEEE Transactions on Broadcasting, 54(3):641–651, 2008.

[48] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. The
MIT Press, 1st. edition, 2006.

[49] Ulrich Reiter, Kjell Brunnström, Katrien De Moor, Mohamed-Chaker Larabi, Manuela
Pereira, Antonio Pinheiro, Junyong You, and Andrej Zgank. Factors Influencing Quality
of Experience. In Quality of Experience, pages 55–74. Springer International Publishing,
2014.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 33

TU Berlin

[50] Haakon Riiser, Tore Endestad, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen.
Video Streaming Using a Location-Based Bandwidth-Lookup Service for Bitrate Plan-
ning. ACM Transactions on Multimedia Computing, Communications, and Applications,
8(3):1–19, 2012.

[51] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hossfeld, and
Phuoc Tran-Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys & Tutorials, 17(1):469–492, 2014.

[52] Kamal Deep Singh, Yassine Hadjadj-Aoul, and Gerardo Rubino. Quality of Experience
Estimation for Adaptive HTTP/TCP Video Streaming Using H.264/AVC. In Proc. of
IEEE Consumer Communications and Networking Conference (CCNC), pages 127–131,
Las Vegas, NV, USA, 2012.

[53] Iraj Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the Internet.
IEEE Multimedia, 18(4):62–67, 2011.

[54] Wei Song and Dian W. Tjondronegoro. Acceptability-Based QoE Models for Mobile
Video. IEEE Transactions on Multimedia, 16(3):738–750, 2014.

[55] Thomas Stockhammer. Dynamic Adaptive Streaming over HTTP – Standards and De-
sign Principles. In Proc. of ACM Multimedia Systems Conference (MMSys), pages 133–
144, San Jose, CA, USA, 2011.

[56] Gary J. Sullivan and Thomas Wiegand. Rate-Distortion Optimization for Video Com-
pression. IEEE Signal Processing Magazine, 15(6):74–90, 1998.

[57] Viswanathan Swaminathan. Are We in the Middle of a Video Streaming Revolu-
tion? ACM Transactions on Multimedia Computing, Communications, and Applica-
tions, 9(1):1–6, 2013.

[58] Paul Sweeting. Video in 2014: Going Live and Over the Top. Research Report, GigaOM
Media, San Francisco, CA, 2014.

[59] Truong Cong Thang, Hung T. Le, Anh T. Pham, and Yong Man Ro. An Evaluation of
Bitrate Adaptation Methods for HTTP Live Streaming. IEEE J. on Selected Areas in
Communications, 32(4):693–705, 2014.

[60] Guibin Tian and Yong Liu. Towards Agile and Smooth Video Adaptation in Dynamic
HTTP Streaming. In Proc. of ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT), pages 109–120, Nice, France, 2012.

[61] Sheng Wei and Viswanathan Swaminathan. Low Latency Live Video Streaming over
HTTP 2.0. In Proc. of Network and Operating System Support on Digital Audio and
Video Workshop (NOSSDAV), pages 1–6, New York, NY, USA, 2014.

[62] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of
the H. 264/AVC Video Coding Standard. IEEE Trans. Circuits and Systems for Video
Technology, 13(7):560–576, 2003.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 34

TU Berlin

[63] Xiaoqi Yin, Vyas Sekar, and Bruno Sinopoli. Toward a Principled Framework to Design
Dynamic Adaptive Streaming Algorithms over HTTP. In Proc. of 13th ACM Workshop
on Hot Topics in Networks (HotNets), pages 1–7, Los Angeles, CA, 2014.

[64] Liu Yitong, Shen Yun, Mao Yinian, Liu Jing, Lin Qi, and Yang Dacheng. A Study on
Quality of Experience for Adaptive Streaming Service. In Proc. of IEEE International
Conference on Communications Workshops (ICC), pages 682–686, 2013.

[65] Chao Zhou, Chia Wen Lin, Xinggong Zhang, and Zongming Guo. A Control-Theoretic
Approach to Rate Adaption for DASH Over Multiple Content Distribution Servers.
IEEE Transactions on Circuits and Systems for Video Technology, 24(4):681–694, 2014.

[66] Chao Zhou, Xinggong Zhang, Longshe Huo, and Zongming Guo. A Control-Theoretic
Approach to Rate Adaptation for Dynamic HTTP Streaming. In Proc. of IEEE Visual
Communications and Image Processing (VCIP), pages 1–6, San Diego, CA, 2012.

[67] Xiaoqing Zhu, Zhi Li, Rong Pan, Joshua Gahm, and Rao Ru. Fixing Multi-Client
Oscillations in HTTP-based Adaptive Streaming: A Control Theoretic Approach. In
Proc. IEEE 15th International Workshop on Multimedia Signal Processing (MMSP),
pages 230–235, Pula, Italy, 2013.

[68] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik Jana,
Xin Jin, Jennifer Rexford, and Rakesh K Sinha. Can Accurate Predictions Improve
Video Streaming in Cellular Networks? In Proc. of the 16th International Workshop on
Mobile Computing Systems and Applications (HotMobile), pages 57–62, Santa Fe, NM,
2015.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 35

TU Berlin

Appendix A.

Information Contained in the Traces

Each of the collected traces contains several types of information. First, it contains the
first 96 bytes of each incoming TCP packet belonging to the monitored TCP flow. Second, it
contains the first 512 bytes of each received IEEE 802.11 frame independent of its destination
address, including radiotap headers1 that contain internal MAC information, such as the
retransmission flag, the Modulation and Coding Scheme (MCS), and the Signal Strength
Indicator (SSI). Except for the radiotap headers, the captured frames are encrypted. Finally,
the traces contain periodically recorded values of internal TCP variables, obtained using the
tcp info data structure via the socket interface. From the traces, we computed time series
containing various statistics from overlapping time intervals of 1 s to 10 s duration shifted
with a step size of 1 s. In addition to throughput statistics, we computed statistics of cross-
layer information such as for TCP: delay jitter statistics and the statistics of outstanding
bytes, and, for MAC: the number of own frames received, the number of other frames received,
MCS and SSI statistics, and the statistics of retransmissions. Figure A shows the throughput,
averaged over one second intervals, of one complete trace with a CV of 0.879 recorded at a
busy outdoor hotspot of a major German telecommunications operator.

0 200 400 600 800

Time [s]

0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Figure A.1.: A complete example trace with a CV of 0.879, recorded at a busy outdoor
hotspot of a major German telecommunications operator.

1http://www.radiotap.org

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 36

TU Berlin

Appendix B.

Prediction Methods

We abbreviate the methods by 〈type〉:〈n〉:〈parameters〉, where 〈type〉 is the name of the
method, n is the number of past throughput values used as input, and 〈parameters〉 include
further optional configuration parameters.

B.1. Simple moving average

SMA is one of the simplest prediction methods. The predicted value is the average over
a number of past measurements. The configuration parameters are the number of past
measurements and the type of the used mean value: arithmetic, geometric, or harmonic.
In the following, we abbreviate this method with SMA:〈n〉:〈mean type〉, where n ≥ 1 is
the number of past measurements, and ‘mean type’ is one of {ar, gm, hm}. For example,
SMA:2:ar means that the predicted value is the arithmetic mean from two past measurements.
In particular, we denote the näıve approach of using the most recent measurement as the
predicted value with SMA:1:ar.

B.2. Linear extrapolation

Linear extrapolation is another straightforward prediction method that differs from SMA in
that it takes into account the linear trend from the past measurements. More specifically,
linear extrapolation fits a linear curve into the set of given past measurements, minimizing the
MSE, and computes the prediction from extrapolating the curve to the prediction horizon. It
thus requires at least two past measurements to compute a prediction. We abbreviate linear
extrapolation with LinExt:〈n〉, where n ≥ 2 is the number of past measurements.

B.3. Double exponential smoothing

Similar to linear extrapolation, double exponential smoothing tries to account for the trend
in the data. In the following, we use a variant of the method, usually referred to as Holt-
Winters double exponential smoothing. With Holt-Winters, for the given past measurements
x1, . . . , xn, the prediction is computed as xn+1 = an + bn, where an, bn are computed by the
following recursive procedure.

an = αxn + (1− α)(an−1 + bn−1) , for n > 2

bn = β(an − an−1) + (1− β)bn−1 , for n > 2 ,

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 37

TU Berlin

with a2 = x2, and b2 = x2 − x1.
The Holt-Winters method has configuration parameters α and β that strongly influence

the prediction quality and thus have to be carefully tuned. In our work, we tune them for
each prediction by minimizing the MSE within the past measurements, which is given by
1

n−2

∑n
k=3 (xk − (ak−1 + bk−1))

2. Thus, this method requires at least three past values to
compute a prediction. As abbreviation, we use HW:〈n〉:mse, where n ≥ 3 is the number of
the last values, and mse indicates the approach used to tune α and β.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 38

TU Berlin

Appendix C.

Correlation of Underestimations and

Overestimations

As described in Section 6.3, we observed that in all the studied traces the probability for
occurrences of underestimations and overestimations exhibit significant temporal correlation.
In particular, the probability that an underestimation is followed by an overestimation and
vice versa is significantly over 50% for most traces for all time scales, exceeding 80% or even
90% in some cases. This observation is directly related to the distinct negative correlation
of the throughput process after differencing, as depicted in Figure 5.1. The distribution of
per-trace values is depicted in Figure C.1.

1 2 3 4 5 6 7 8 9 10

Sampling interval [s]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r[
U
E
jO
E
]

1 2 3 4 5 6 7 8 9 10

Sampling interval [s]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r[
O
E
jU
E
]

Figure C.1.: Per-trace probability that an underestimation is followed by an overestimation
and vice versa. Horizontal line: median, box: quartiles, whiskers: 0.5 and 0.95
quantiles, flier points: outliers. See Section 6.3 for details.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 39

TU Berlin

Appendix D.

Fitting Prediction Error Distributions

For the underestimation errors, distributions are truncated to the range [0, 1], and for the
overestimation errors, to the range [0,∞). The CDF Ftr(·) of a distribution truncated to

[a, b] is obtained from the original CDF F (·) as Ftr(x) =
F (x)−F (a)
F (b)−F (a) , x ∈ [a, b].

We fit a distribution to the data by minimizing the squared distance (L2-norm) between
its CDF and the truncated ECDF. In order to make the fit more precise in the range which
is relevant for adaptive streaming clients, we truncate ECDF’s to the interval [0.1, 5.0] for the
overestimation errors, and to the interval [0.1, 1.0] for the underestimation errors. Afterwards,
Kolmogorov-Smirnov test is used to verify the goodness of the fit [19].

The results are shown in Figure D.1. The CDF’s are fitted to ECDF’s over the joined set of
data points from all traces. It turns out that both the underestimation and the overestimation
errors are extremely well represented by a Lomax distribution. These findings are consistent
with those obtained by fitting the prediction errors from individual traces, which are omitted
here.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 40

TU Berlin

0.1 0.4 0.7 1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
m

p
ir

ic
a
l
+

 f
it

te
d
 C

D
F

's
U

n
d
er

es
ti

m
a
ti

o
n

ECDF lomax exp normal logistic

0 1 2 3 4 5

Relative error
Sampling interval: 2 s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
m

p
ir

ic
a
l
+

 f
it

te
d
 C

D
F

's
O

v
er

es
ti

m
a
ti

o
n

0.1 0.4 0.7 1

0 1 2 3 4 5

Relative error
Sampling interval: 5 s

0.1 0.4 0.7 1

0 1 2 3 4 5

Relative error
Sampling interval: 10 s

Figure D.1.: Fitting distributions for relative prediction errors. See Section 6.4 for details.

Copyright at Technische Universität Berlin.

All rights reserved.
TKN-16-001 Page 41

