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ABSTRACT With the recent increased usage of video services, the focus has recently shifted from the

traditional quality of service-based video delivery to quality of experience (QoE)-based video delivery. Over

the past 15 years, many video quality assessment metrics have been proposed with the goal to predict the

video quality as perceived by the end user. HTTP adaptive streaming (HAS) has recently gained much

attention and is currently used by the majority of video streaming services, such as Netflix and YouTube.

HAS, using reliable transport protocols, such as TCP, does not suffer from image artifacts due to packet

losses, which are common in traditional streaming technologies. Hence, the QoE models developed for

other streaming technologies alone are not sufficient. Recently, many works have focused on developing

QoE models targeting HAS-based applications. Also, the recently published ITU-T Recommendation series

P.1203 proposes a parametric bitstream-based model for the quality assessment of progressive download and

adaptive audiovisual streaming services over a reliable transport. The main contribution of this paper is to

present a comprehensive overview of recent and currently undergoing works in the field of QoE modeling

for HAS. The HAS QoE models, influence factors, and subjective test methodologies are discussed, as well

as existing challenges and shortcomings. The survey can serve as a guideline for researchers interested in

QoE modeling for HAS and also discusses possible future work.

INDEX TERMS HTTP adaptive streaming, QoE modeling, TCP, video quality assessment.

I. INTRODUCTION

The Cisco Visual Networking Index forecasts an increase

of Internet traffic, with video alone being 82% of the net

consumer Internet traffic by 2021 [1]. There has been a

considerable amount of work on video delivery over the

Internet to meet this increased demand. With the deployment

of new wireless technologies such as 4G LTE-Advanced,

the available end-user bandwidth has increased considerably

over the recent years and it will further increase with 5G

wireless systems. However, with the emerging video for-

mats (e.g., Ultra High Definition (UHD), High Dynamic

Range (HDR), Light Field) and new services such as Virtual

Reality, Social-TV, Cloud Gaming, the available network

technology will not be able to meet the increased demand

for high bandwidth for all the users and to satisfy users’

expectations for any content, any place, any time. The new

The associate editor coordinating the review of this manuscript and
approving it for publication was Martin Reisslein.

video formats such as 4K and HDR result in files of enor-

mous size and hence call for modern video compression

standards. The effort in this direction resulted in the recently

introduced new video compression standard H.265/MPEG-

HEVC, which on an average, for the tested sequences,

is shown to achieve 50% higher compression efficiency than

its predecessor H.264/MPEG-AVC [2]–[4]. VP9, a royalty-

free encoder developed by Google as a competitor of the

H.265/HEVC encoder, has gained much popularity and is

supported by almost all browsers except for Safari. Licensing

issues with H.265/HEVC and the aim to develop a more

futuristic royalty-free video codec led to the creation of a

consortium of industry partners called Alliance for Open

Media (AOM).1 The joint efforts of the members of AOM

have since then drove to the development of the AV1 codec2

with the final bitstream specification frozen in early 2018.

1http://aomedia.org/
2https://aomedia.googlesource.com/aom/
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Recent studies comparing the performance of AV1with x265,

x264 and libvpx considering on-demand adaptive streaming

applications have found it to result in the highest bitrate

savings but at the cost of huge encoding times [5], [6]. The

applicability of such encoders for live streaming applications

remains an open question.

The advancements in the field of video streaming have

recently resulted in the rise of both Video-On-Demand

(VOD) (YouTube, Netflix, Amazon Video, Hulu, etc.)

and Live (Twitch.Tv, YouTubeGaming) streaming services.

As evident, video streaming is not a niche market anymore,

and there exist a wide range of options for the consumers

to choose from. Hence, as a service provider, it is no more

sufficient just to provide a service, but it is equally important

to make sure that the needs and expectations of the end user

of the offered services are met. This has led to the shift

from traditional technical Quality of Service (QoS) based

assessment (see, e.g., [7]) to Quality of Experience (QoE)

based assessment (see, e.g., [8], [9]).

To correctly determine the end user QoE and subsequently

move towards QoE based control and management, there

exists a need for the development of reliable and accurate

QoE models. Such models usually take into account various

network and application level factors (including several QoS

factors) and aim at predicting the QoE as experienced by the

end user.

Having established the importance of QoE modeling and

considering that HTTP Adaptive Streaming (HAS) is the pre-

ferred video streaming technology, we present in this paper a

review of existing QoE models for HAS applications. While

there exist previous surveys, such as by Seufert et al. [10],

which discuss HAS and related influence factors, and by

Juluri et al. [11], which discuss tools and measurement

methodologies for predicting QoE of online video streaming

services, a survey of QoEmodels for HAS applications is still

missing. Towards this end we present in this paper a review of

the proposed QoE models for HAS applications. The major

objectives of this review are:

• To classify the existing models and provide the

reader with an overview of different works so far

in the field of QoE modeling for HAS applications

(Section V).

• To identify the different influence factors as considered

by the model proponents and discuss their impact on the

model design and performance (Section VI).

• To present the different subjective test methodologies

used for model design and validation. We discuss how

such information can favor reproducible research and

steer the development of models valid in different set-

tings and conditions (Section VII).

• To present a list of publicly available open source

datasets for HAS QoE model design and/or validation

(Section VIII).

• To identify existing research gaps and provide a set of

recommendations for futuremodel design and validation

(Section IX).

The rest of this paper is organized as follows. We start with

a brief introduction to QoE, QoE assessment methodologies

and the various influence factors which need to be taken into

account for QoE model design in Section II. In Section III

we discuss QoE modeling and how QoE models can be

classified based on the type of input information they require.

Then we briefly introduce in Section IV the HAS technology.

Section V reviews the existing work in the field of HASmod-

eling and provides a detailed discussion of the proposed mod-

els. In Section VI a detailed discussion on the effect of various

influence factors is presented and in Section VII subjective

test methodologies as used for model validation and/or testing

by the model proponents is discussed along with their impor-

tance, advantage and shortcomings. Section VIII presents a

discussion on publicly available HAS based datasets which

can act as a valuable resource for model design and validation

by future researchers. Finally, in Section IX we summarize

our observations and findings and point out some existing

gaps and challenges for future work.

II. QoE: DEFINITION AND ASSESSMENT

METHODOLOGIES

A. QoE DEFINITION

The EU Qualinet community (COST Action IC1003: ‘‘Euro-

pean Network on Quality of Experience in Multimedia Sys-

tems and Services’’) defines QoE as: ‘‘QoE is the degree of

delight or annoyance of the user of an application or service.

It results from the fulfillment of his or her expectations with

respect to the utility and/or enjoyment of the application

or service in the light of the user’s personality and current

state’’ [12], [13]. QoE takes into account the end user’s expe-

rience and level of satisfaction and is of much interest to both

academic and industrial players in the field of multimedia.

Understanding the end users’ expectations and experience is

paramount to the development of future services as well as

improvement of the existing technologies and services.While

traditionally QoS has been used to measure the effectiveness

of a service, it fails to take into account end user related

factors (user expectation, environmental factors, etc.). Also,

QoS is limited to telecommunication services and relies only

on technical measurements. QoE on the other hand covers

domains beyond telecommunications and is multidisciplinary

in nature, including domains such as psychology, business,

technical, environmental, etc. Figure 1 illustrates the encap-

sulation of QoS and QoE.

FIGURE 1. QoS and QoE encapsulation.
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B. QoE ASSESSMENT

ITU-T Recommendation P.10/G.100 Amendment 5 defines

QoE assessment as the process of measuring or estimating

the QoE for a set of users of an application or a service

with a dedicated procedure, and considering the influencing

factors (possibly controlled, measured, or simply collected

and reported) [13]. The main objective of QoE assessment is

the design of a system which can identify the various factors

and their influence on the end user QoE. Such information

can then be used by the various stakeholders for optimization

along the process of service delivery (encoding pipeline, load

balancing, resource allocation, etc.) to provide a reasonable

QoE to the end user while making optimized usage of the

available resources. Lossy compression is usually required

for multimedia data which need to be transported over the

Internet, to decrease the required bandwidth and transport

costs. During lossy compression, information is lost, with

higher compression ratios resulting in a higher amount of

information loss. Also, in traditional streaming technologies,

transmission errors such as jitter, delay, packet loss, etc., lead

to further artifacts which are annoying to the end user. Since it

is almost impossible formost practical applications to provide

a service without any artifact, a proper QoEmodel/metric can

help quantifying the amount and kind of distortions and the

magnitude of their effect on the end user QoE, which can then

lead to the design of proper strategies to help overcoming

such artifacts.

C. VIDEO QUALITY ASSESSMENT (VQA) METHODOLOGIES

VQA approaches can be categorized into two main cate-

gories: objective and subjective. Objective VQAmethods are

mathematical models that aim at providing a quality score

which closely resembles the perceived image/video quality.

Subjective VQA, on the other hand, tries to take into account

the user feedback in the form of ratings and targets to estimate

the video quality as perceived by the end user.

Subjective assessment scores are typically reported as

Mean Opinion Score (MOS) which is the average of the opin-

ion scores collected from the assessors. For repeatability and

validation purpose, common guidelines for conducting sub-

jective tests are issued in ITU-T Rec BT.500 and ITU-T Rec

P.910 [14], [15]. These recommendations include a detailed

description of the test settings, methodology and procedures

that need to be followed, including data processing guide-

lines, such as outlier detection, etc.

The common approach to evaluate an objective quality

metric’s performance is to calculate the correlation coeffi-

cients andMSE values between theMOS scores estimated via

the objective VQA metrics and the actual MOS scores from

subjective assessment, for the same set of test sequences.

Both objective and subjective VQA approaches have inher-

ent drawbacks. While subjective VQA provides information

on the actual quality experienced by the users, it is not

suitable for real-world applications. Also, conducting sub-

jective tests incurs costs and time, and only a small number

of influence factors can be evaluated due to constraints in

test duration and assessors. Objective VQA using metrics

such as Peak Signal to Noise Ratio (PSNR) and Structural

Similarity (SSIM) index, while fast and comparatively easier

to implement, do not always correlate well with the end user

quality [16], [17]. For two videos of different (perceivable)

quality, the objective metric may provide a similar score and

hence does not necessarily reflect the end user’s perceived

quality. Also, many objective metrics require the source

sequences, which is not practical in most of the real-world

quality estimation scenarios.

Quality metrics such as PSNR and SSIM were initially

developed and used for ImageQuality Assessment (IQA). For

Video Quality Assessment (VQA), they are calculated on a

frame-by-frame basis and then the final score is reported as

the average of the individual scores over the full duration of

the video sequence. There also exist different pooling meth-

ods to combine the scores such as Minkowski summation,

exponential weighting, etc. A discussion of temporal pooling

strategies is out of the scope of this paper and interested

readers can refer to [18] for an interesting comparison of the

pooling mechanisms and their performance in HAS applica-

tions.

Traditional models used for VQA, such as PSNR, SSIM,

VQM [19], etc., are not designed for long-term quality pre-

dictions. Also, most of the traditional objective VQA metrics

were designed for quality estimation of impairments due to

compression and/or due to packet losses etc., during the trans-

mission process. They do not take into account impairments

such as rebuffering, quality switches etc., which are present

in HAS applications. Therefore, new approaches for QoE

estimation model design are required for HAS applications

which take into account IFs such as rebuffering and quality

switching along with impairments due to lossy encoding.

D. QoE INFLUENCE FACTORS

A QoE influence factor is ‘‘any characteristic of a user, sys-

tem, service, application, or context whose actual state or set-

ting may have an influence on the Quality of Experience for

the user’’ [12]. As defined in ITU-T Rec. P.10/G.100 Amend-

ment 5, QoE influence factors include the type and char-

acteristics of the application or service, context of use,

the user’s expectations with respect to the application or

service and their fulfillment, the user’s cultural background,

socio-economic issues, psychological profiles, emotional

state of the user, and other factors whose number will likely

expand with further research [13]. Influence factors on QoE

can be grouped into the following four categories as described

by Skorin-Kapov and Varela [20].

1) SYSTEM IFs

System IFs mostly consist of the technical aspects of quality,

for example, the ones which can be measured using QoS

based measurement approaches. They cover a wide range of

aspects such as media related (quality switching events), net-

work related (wired/wireless/mobile, bandwidth, delay, jitter,
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packet loss, etc., resulting in impairments such as tempo-

ral interruptions/pauses) or end-user device related (display

resolution, playback capabilities such as supported codecs,

formats, etc.).

2) HUMAN IFs

Human or User IFs include aspects which refer to the infor-

mation about the end-user and related aspects. These include

individual characteristics of a user such as expectations from

the service, memory and recency effects, usage history of the

application (e.g., browsing history, frequently played video),

demographic and socio-economic background, physical and

mental constitution (users’ emotional state), memory, catego-

rization and attention among many others.

3) CONTEXT IFs

Context IFs deal with factors such as location, end user envi-

ronment (viewing environment, acoustic conditions, etc.),

time of the day, type of usage (e.g., just casual browsing,

newly released episode of favorite TV show), time of service

consumption (peak time, offload time, etc.)

4) CONTENT IFs

One of the most important is the content IFs which addresses

the characteristics of the content. The aspects in this cat-

egory include information about the content being offered

by the service/application under consideration. For example,

for video, the content level IFs are duration, video type and

content complexity (spatial and temporal complexity).

III. QoE MODELING

Managing Quality of Experience (QoE) in a communica-

tion system is a complex task, primarily consisting of three

steps, as shown in Figure 2 and discussed in [21] and [22].

A key step in QoE management is the design of QoE mod-

els. ITU-T Recommendation P.1201 defines a QoE model

as ‘‘An algorithm with the purpose of estimating the sub-

jective (perceived) quality of a media sequence’’ [8]. QoE

models take into account various influence factors and try

to estimate the end user QoE. QoE monitoring and measure-

ment(s) can be done by any stakeholder and the parameters

measured will depend on the application and the interests of

the stakeholder [23], [24]. The final step in QoEmanagement

FIGURE 2. QoE management process.

includes QoE optimization and control, typically performed

based on models or measurements. Again, the optimization

process and the parameters controlled will depend on the

stakeholder and the application type. In this paper, we limit

our discussion to the first step, focusing on QoE Modeling

for HAS applications using reliable transport protocols such

as TCP or Quick UDP Internet Connections (QUIC) [25].

A. IMPORTANCE OF QoE MODELING FOR DIFFERENT

STAKEHOLDERS

QoE modeling is one of the critical steps in the QoE man-

agement process chain, as the performance of the QoE model

will decide the reliability and accuracy of the next steps along

QoE based management. We discuss next the importance of

QoE modeling from the point of view of various stakeholders

in the multimedia streaming process chain.

1) NETWORK PROVIDER

With increasing demand for OTT services, both VOD and

live, there is a tremendous pressure on the network operators

to provide seamless connectivity and high QoE to the end

users. QoE models can help network operators identifying

the various IFs and their respective impact on the end user

QoE and hence allow the network operators to take necessary

actions (resource allocation such as network throttling, load

balancing, caching and network provisioning) to prevent user

churn.

2) SERVICE PROVIDER

In today’s highly competitive environment with almost simi-

lar pricing schemes, the service provider cannot rely on profit

generation based solely on the provision of a service, but

should also take into account different factors whichmay shift

the user base to the competitors. For example, for a service

provider measurable QoE factors such as viewing duration

are of huge interest [26]. For advertisement based services,

longer viewing duration implies more advertisement. On the

other hand, for subscription based services, shift of even a

smaller percentage of viewer base can result in significant

effect on revenues. One of the disadvantages of HAS services

is the requirement of additional storage space, as multiple

copies of the same file are stored in the server. In such cases,

optimized encoding bitrates can lead to huge storage space

savings for the OTT provider while also reducing the demand

for required bandwidth. Hence, proper QoE models can pro-

vide an insight into the IFs and their impact on the service,

and in turn allow the service provider to take appropriate

decisions/measures to ensure high end user QoE.

3) DEVICE MANUFACTURER

Nowadays, most of the device manufacturers, such as Sam-

sung, LG, Sony, etc., are involved in manufacturing of both

small screen devices (mobiles, tablets) and big screen devices

(PC/TV). Different devices have different capabilities and the

perceived quality depends on various factors, one of which

is the device screen size. Also, small screen devices have
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different processing capabilities compared to large screen

devices. Hence, good QoE models can provide insight to the

device manufacturers, considering the device features (dis-

play size, display resolution, CPU, ram, etc.), onwhat settings

to use such that the QoE of the end user can be maximized.

Also, media-layer models (see Section III-C.1) can be used

for codec comparison and hence allow device manufacturers

to provide optimized encoding and decoding support so as to

support the latest codecs in the shortest possible time. Many

device manufacturers are also interested in QoE modeling for

production of QoE monitoring solutions such as probes, QoE

estimation modules etc.

4) END USER

In the end, the user is the king or queen. The success of

a service will depend on the acceptance of the same by

users. As mentioned in [22], successful QoE management

will lead to satisfied end users as their requirements and/or

expectations will be met and hence they may be further open

to adopt new and complex services, leading to growth of more

advanced technologies.

To summarize, QoE modeling can help us identify the

various Key Performance Indicators (KPIs). The actual appli-

cability and performance of the model will vary depending on

the stakeholder as different actors involved will focus on dif-

ferent aspects (mostly the ones they can control). For exam-

ple, in the case of HAS, a network provider may be interested

in rebuffering, quality switches, etc. and their corresponding

effect on QoE as they are directly or indirectly related to the

network QoS parameters such as delay, jitter, packet loss,

etc. A content provider may be interested more in the effect

of average bitrate, segment size, video popularity, etc., for

example, to save storage costs, optimized video caching,

etc. At the application layer, the service provider may be

interested in IFs such as adaptation frequency, adaptation

magnitude, etc. to take these into account for the design of

the client’s adaptation algorithm.

B. QoE MODEL PERFORMANCE EVALUATION

The criteria for the evaluation of the performance of an

objective QoE model, as mentioned initially in Video Quality

Experts Group (VQEG) FRTV Phase I and later in VQEG

FRTV Phase II [27], [28], are:

• Prediction Accuracy It refers to the ability of a model to

predict the subjective rating scores with low error. The

accuracy of the QoE model will affect the applicability

and effectiveness of the QoE management process.

• Prediction Monotonicity It refers to the degree of

model’s prediction agreement with the relative magni-

tudes of the subjective rating scores.

• Prediction Consistency It refers to the ability of a model

to maintain prediction accuracy over a wide range of test

sequences with a variety of video impairments.

The prediction accuracy of a model can be evaluated by using

the Pearson Linear Correlation Coefficient (PLCC) between

the predicted and actual subjective rating scores. Similarly,

the prediction monotonicity of a model can be evaluated

using the Spearman’s Rank Correlation Coefficient (SROCC)

between the predicted and actual subjective rating scores.

Finally, the prediction consistency of the model can be eval-

uated using measurements such as the Outlier Ratio (OR).

A low OR value indicates a high consistency of prediction,

withOR = 0 implying that the model will be stable to predict

the QoE. A good QoE model should provide insight on how

the IFs affect the QoE of the end user. Such insight can help

various stakeholders in a more efficient and optimized system

design.

C. QoE MODEL CLASSIFICATION

Depending on the application area or range of system or

service the model applies to, there exist many ways to classify

models such as based on model input parameters, application

scope, measurement scope, etc. [22]. While there exist many

approaches for classification of models, we use the approach

presented by Takahashi et al. [29], similar to the one pre-

sented by Raake et al. [30] as shown in Figure 3.

FIGURE 3. QoE model classification for streaming applications (adapted
based on input from [30]).

1) SIGNAL-BASED MODELS

Signal-based models, also known as pixel-based models or

media-layer models, utilize the decoded audio/video signal

to estimate the video quality. Since such models do not use

any codec specific information, they are widely used in codec

comparison and optimization of unknown systems.

Based on the relationship between the input and output of

the system, i.e., depending on the amount of source (refer-

ence) information required, VQA metrics can be classified

as Full Reference (FR), Reduced Reference (RR) and No

Reference (NR).

(a) FR:As the name suggests, FRmetrics require the avail-

ability of full information of the source video. They

are computed based on a frame-by-frame comparison

between the reference and the distorted image/video.

The source video should be available in pristine qual-

ity (unimpaired and uncompressed) so that there can

be a direct comparison (e.g., pixel by pixel) between
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the reference and distorted image/video. Due to the

availability of full source information, these metrics

are usually more accurate than their counterpart (RR

or NR metrics) but as such are not suitable for most

real-world applications. Some of the most widely used

quality metrics in the field of image and VQA are FR

metrics such as MSE, PSNR and SSIM [16] and ITU-T

Recommendations [31]–[33].

(b) RR: RR metrics have access to limited source informa-

tion. Due to partial source information, they are usually

less accurate than the FR metrics. Some of the RR

metrics are [34]–[41].

(c) NR: No reference quality metrics do no use any

source/reference information and try to predict the

quality based on the received signal. Commonly used

NR metrics include DIIVINE, BRISQUE, BLIINDS

and NIQE [42]–[45]. In the absence of source informa-

tion, such metrics are usually less accurate than their

counterparts, FR and RR metrics.

2) PARAMETRIC MODELS

Parametric models use measured or expected packet/network

related parameters to estimate the quality. These can be fur-

ther classified in packet-layer models and planning models,

described below.

(a) Packet-layer models: Parametric packet-layer mod-

els utilize only information that can be extracted

from packet headers, such as bitrate, packet loss rate

(PLR), frame rate, frame type, etc., and no media sig-

nal information is required. Such models are hence

non-intrusive in nature and are easily deployable and

computationally very inexpensive (e.g., ITU-T Rec.

P.564 for speech and ITU-T Rec. P.NAMS [8], [46]).

Due to the absence of any payload information, such

models are not suitable for individual QoE monitoring

solutions such as determination of effect of content

dependence on end-user QoE.

(a) Planning Models: Unlike other models, planning mod-

els do not require input information from an existing

service. Such models estimate the quality based on the

quality planning information available during the plan-

ning phase from the networks and terminals. Informa-

tion such as expected bitrate, PLR, codec type, etc. are

used as input in this kind of models. Such model type

includes some of the most widely used model in the

field of videophone services (ITU-TRec. G.1070 [47]),

E-model (ITU-T Rec. G.107, widely used network tool

for public switched telephone network (PSTN) and

Voice over Internet Protocol (VoIP) [48]) and for video

and audio streaming applications [49].

3) BITSTREAM MODELS

Bitstream models take into account the encoded bitstream

and packet layer information. Features such as bitrate, frame

rate, Quantization Parameter (QP), PLR, motion vector, mac-

roblock size (MBS), DCT coefficients, etc. are extracted and

used as input to the model. Such models are also relatively

computationally inexpensive and can be used for real-time

QoEmonitoring. Bitstream basedmodels have recently found

application in the field of multimedia streaming services such

as ITU-T Rec. P.1202, with ITU-T Rec. P.1203 being the

most recently approved recommendation for adaptive audio-

visual streaming services over reliable transport [9]. While

bitstream based models show comparatively higher corre-

lation with subjective quality scores, they suffer from the

drawback that they are suitable for a specific codec. Bitstream

models which can minimize their performance reliance on

codec specific parameters such as size of MB, motion vec-

tor size, etc. will prove to be more useful and find wider

acceptance.

4) HYBRID MODELS

Hybrid models are usually the most effective ones as they

combine two or more of the previously described models and

hence can use much more information as input compared to

any of the standalone models discussed previously.

IV. HTTP ADAPTIVE VIDEO STREAMING

In this paper we focus exclusively onHTTPAdaptive Stream-

ing (HAS) applications using reliable delivery mechanisms

such as TCP and QUIC. Reliable transport protocols such

as TCP make sure that all data will be delivered correctly

to the destination process without any errors. This is usually

achieved by a connection oriented approach between the

sender and the receiver with the receiver acknowledging the

receipt of packets and retransmission of lost or erroneous

packets. Some of the most widely used implementations of

HAS include:

• Adobe HTTP Dynamic Streaming (HDS) [50]

• Apple HTTP Live Streaming (HLS) [51]

• Microsoft Smooth Streaming [52]

• Dynamic Adaptive Streaming over HTTP (DASH) [53].

The first three are proprietary and vendor specific HAS

implementations while DASH, also commonly known as

MPEG-DASH, is an open source international standard

developed by MPEG [54]. The underlying logic is common

in all these implementations with some differences in the

manifest file, recommended segment size, etc.

A. CONCEPT OVERVIEW

Figure 4 illustrates the basic concept behind HAS appli-

cations. The video file is encoded at different representa-

tion levels (spatial/temporal/quality, see Section IV-B) and

then divided into chunks (also referred to as segments) of

equal durations (often 2, 4 or 10 seconds, but depends on

the standard/implementation) which are then stored on a

server. The reverse process of first segmenting and then

encoding can also be used, as currently done by most of

the Over-the-top (OTT) providers to speed up the encoding

process. When a first request for the video file is made by

the client, the server sends the corresponding manifest file

(e.g., .mpd for DASH, .m3u8 for HLS) which consists of the
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FIGURE 4. HAS Schematic (Q3, Q2 and Q1 denote high, medium and low
quality level respectively).

details about the video file such as video duration, segment

size, available representation levels, codec, etc. The client

then requests for video chunks based on its rate adapta-

tion logic. The client’s rate adaptation logic can be broadly

categorized into throughput-based, buffer-based and hybrid

approach. For a comprehensive survey of the rate adaptation

methods for HAS, we refer the readers to the survey paper of

Kua et al. [55]. Figure 4 illustrates the concept of streaming

assuming a throughput-based rate adaptation method. It can

be observed that the client, based on its network condition,

adapts the quality of the video to provide a smooth streaming

experience to the end user.

B. QUALITY SWITCHING DIMENSIONS

Videos can be encoded at different bitrates (quality levels)

by adjusting any/two/all of the following parameters: spatial

resolution, frame rate and QP. A bitrate decrease usually indi-

cates lower quality but the reverse does not necessarily holds

true, i.e., increasing the bitrate after a certain threshold (which

depends on the video content type) does not necessarily result

in higher (perceived) quality videos. Figure 5 illustrates the

adaptation dimensions for video encoding, described in the

following:

1) Spatial Adaptation: The videos are encoded at different

resolutions, hence decreasing the number of pixels in

the vertical and/or horizontal dimensions.

2) Temporal Adaptation: The temporal resolution of the

video is decreased by dropping some of the frames,

i.e., encoding a lower number of frames per second,

hence reducing the encoded bitrate.

3) Compression Quality Adaptation (Switching): Increas-

ing (decreasing) QP values results in an allocation

FIGURE 5. Video quality switching dimensions.

of less (more) bits per pixel, hence resulting in

lower (higher) bitrate values.

The actual dimensions of adaptation will depend on the

application type and also on the content type. For most

content types, compression based quality is considered the

most important dimension. For similar bitrate values, spa-

tial resolution reduction is perceived better than frame rate

reduction (the actual impact of upscaling depends on the

specific player used for video playback at the end user

device), hence resolution is one of the most widely used

adaptation dimensions [56]. For smaller screen sized devices

such as mobile, tablets, etc., spatial resolution plays an impor-

tant role in QoE. In general, in HAS, adaptation in multi-

ple dimensions is perceived better than a single dimension

adaptation [57] and hence is widely used by major OTT

providers.

HAS is one of the most popular streaming technologies

for video delivery over the Internet, currently used by the

primary OTT providers such as Netflix and YouTube, with

both together consisting of more than 50% of the total peak

Internet traffic for fixed access networks in North America

and LatinAmerica [58]. The success of HAS can be attributed

to the following advantages it offers over traditional stream-

ing technologies:

1) Scalability: Since HTTP based progressive download

solutions already existed, no special streaming server

infrastructure is required allowing for the reuse of exist-

ing infrastructure.

2) Reliability: HAS uses reliable transport protocols

(mostly TCP, recently QUIC) with guaranteed packet

delivery and congestion control mechanisms. Hence

network impairments such as packet loss do not cause

any artifacts such as blurring, motion jerkiness, etc.,

as the lost/corrupted packets are retransmitted.

3) Runs natively over HTTP: HAS uses HTTP, which is

firewall friendly and avoids Network Address Transla-

tion (NAT), leading to easier access to HAS services to

the end users.

4) Stateless protocol: In HAS, the server does not store

any information related to the client and/or the requests.

This is useful from a network point of view (e.g., load

balancing) as now each request is treated individually,

hence can be handled by any of the servers, without

keeping track of which server is serving which request.

Some of the challenges in the implementation of HAS

include:

1) Increased overhead: In general, for a good streaming

performance, TCP throughput of approximately twice

of the video bitrate is required, which points to a major

drawback of HAS applications [59].

2) Increased storage and encoding costs: Due to the

creation of multiple quality representations for the

same video/audio content, HAS solutions need much

higher storage requirements compared to other tradi-

tional streaming solutions. While the costs of storage

have considerably decreased over the recent years, new
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video formats such as 4k and HDR results in huge file

sizes. Hence, the high storage costs are still a concern

for OTT providers, especially because a typical OTT

provider includes millions of video contents.

3) Quality switching: The rate adaptation algorithm

switches video quality depending on the network con-

dition and/or buffer status. While quality switching is

an important feature of HASwhich helps inminimizing

the number of stalling events, frequent quality switch-

ing might result in increased user annoyance.

4) Live streaming: During the initial years, HAS was

exclusively used for VOD/Offline streaming applica-

tions. While many services currently use HAS for

real-time applications, encoding videos in multiple rep-

resentations in real-time remains a big challenge.

5) Full segment download: For most of the HAS applica-

tions, full segment download is required before play-

back of the segment can start. Such requirement can

lead to increased cases of stalling events during video

playback.

V. HAS QoE MODELING

In this section, we review the work related to models which

predict the subjective quality (e.g., MOS) for HAS applica-

tions. Table 2 presents a comprehensive overview of all the

models (26 models in total) reviewed in this work. The mod-

els are classified into three categories depending on their type.

The table describes the various IFs considered by the models,

along with the modeling method and the main observations

as reported by the model proponents. It is important to note

that in this review we limit the scope only to models proposed

for HAS applications. For a more generic overview of models

for QoE prediction, we refer the reader to the survey paper by

Juluri et al. [11].

We start in Section V-A with a discussion of definitions

and terminology along with a common set of symbols so as

to have a more comprehensive understanding of the models

discussed later in Section V-B. The models are presented

and discussed based on their classification as described

in Table 2.

A. SYMBOLS AND TERMINOLOGY

We introduce here the terminology we use for the description

of the models: for simplicity and easier comparison of the

models later, our goal is to use consistent terminology and

symbols for all the models described.

• Media Session: Media session indicates video/

audiovisual playback from the start till the end of the

video and includes the effects of initial loading delay,

rebuffering events and quality switching if any. Hence,

in the presence of any of these events, the media session

length will be longer than that of total video/audiovisual

playback length.

• Rebuffering: Rebuffering refers to the event when there

is no data in buffer, hence video playback is stalled

(frame freezing occurs). Such events in video streaming

are usually represented by a loading sign or a spinning

wheel, or sometimes just the current frozen frame, and

occur because of the video packets arriving late.

• Total duration of rebuffering: It refers to the combined

length of all rebuffering events in a single media session.

• Frequency of rebuffering: Frequency of rebuffering

refers to the number of rebuffering events per unit of

time.

• Temporal location of rebuffering: Temporal location of

rebuffering indicates the time instant when a rebuffering

event starts.

• Quality switching: Quality switching, also referred to

as rate adaptation or quality adaptation, refers to the

change of quality over the duration of the media

playback.

• Quality switching frequency: It refers to the rate of

change of the quality during the media playback.

• Quality switching magnitude: It refers to the ‘‘gap’’

between the levels of quality switching.

• Down-switching: Quality switching from a higher qual-

ity level to a lower quality level.

• Up-switching: Quality switching from a lower quality

level to a higher quality level.

• Time on the highest layer: Time on the highest layer

indicates the percentage of time the media playback is

at the highest quality.

• Initial Loading Delay: Also known as initial buffering,

initial loading delay is the time duration between the

request for video playback by the client and the actual

start of the video playback.

• Encoding Quality: It refers to the quality of the com-

pressed video/audio sequence due to loss of data follow-

ing the encoding process. This is typically expressed in

terms of an objective quality metric (e.g., PSNR, SSIM,

VMAF). Some authors characterize the encoding quality

in terms of bit-rate or QP value.

• Primacy and Recency Effects: The psychological phe-

nomena according to which experiences which occurred

recently (recency), and experiences that occurred at the

very start of the session (primacy) affect more the expe-

rience quality.

Table 1 describes the parameters and corresponding sym-

bols used in this review. In addition we use IQS , IILD & IRB
to denote the impairment due to quality switching, initial

loading delay and rebuffering respectively.3

B. HAS QoE MODELS

Here we present and discuss the QoE models in detail.

We start with a discussion of the proposed parametric models,

followed by a discussion of bitstream and hybrid mod-

els. We classify the models based on the discussion in

Section III-C.

3IILD, IRB and IQS refer only to the respective type of impairment and not
necessarily to how they are actually calculated
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TABLE 1. Summary of symbols used in this review. 1) PARAMETRIC MODELS

One of the earliest works towards building a QoE model for

HAS applications was presented by Mok et al. [60]. This

model quantifies QoE for HAS applications using network

and application layer QoS parameters. Based on analytical

models, empirical evaluation, and (subsequent) subjective

tests, Mok et al. quantified the predicted MOS as a simple

equation as:

MOS = 4.23 − 0.0672Lti − 0.742Lfr − 0.106Ltr (1)

where Lti, Lfr and Ltr are the levels (1, 2 or 3 corresponding to

low, medium and high levels) of initial loading delay (LILD),

rebuffering frequency (RN ) and rebuffering duration (RAVG)

respectively. The rebuffering frequency is found to be the

main IF. While this work has the advantage of proposing a

simple linear equation mapping application QoS metrics to

QoE, the subjective assessment used to perform the regres-

sion analysis to obtain the proposed model was limited to

only a single video (single content type) rated by 10 users

and limited to a single resolution, which is not realistic

for most HAS applications. An evaluation of the proposed

model on a subjective database of new data is missing. Also,

the work assumes constant network bandwidth, Round Trip

Time (RTT) and Packet Loss Rate (PLR), which is not always

true for the real networks and also leaves out one of the major

IFs of HAS: quality switching. The authors conducted further

studies to correlate QoE with network QoS, and it is observed

that the rebuffering frequency increases due to decreased

network throughput by packet loss and RTT. One of the

major advantages of this model is the fact that content-related

information is not used, hence the model can be used for

encrypted traffic quality estimation by stakeholders such as

network provider of third-party OTTs.

An extended version of this model is presented in [61]

which takes into account user actions such as pausing and

forward/backwards seeking, leading to a better model fit and

an increase in its explanatory power. Video impairments may

lead to various user reactions such as pausing the video,

resizing, etc. and hence such factors need to be considered

in the model design for a more realistic QoE model. Among

all the models reviewed in this paper, this is the only work

which considers user action. Based on the model, it is found

that while some user actions such as pause show a marginal

effect on the final QoE, other user actions such as switching

the screen size have no significant impact on the final QoE

score. While the proposed model is an improvement over

the previous model [60] taking into account more content

types, more test subjects and multiple resolutions, it is still

limited by the network parameters taken into consideration

and also does not take into account quality switching related

impairments. Also, the performance evaluation of the model

is missing.

Rodríguez et al. [62] model the effect of location of pauses

depending on their position in the video. They propose video
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TABLE 2. Overview of the reviewed models.
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Streaming Quality Metrics (VsQM ) as:

VsQM =

k∑

i=1

RN LiWi

VLS
(2)

where k , RN , Li, Wi and VLS are the number of temporal

segments of a video, number of rebuffering events, average

length of the pauses, weight factor representing the degree of

degradation and length of each segment respectively. Based

on the subjective scores, this is then mapped into 5-point

MOS scale as:

VsQMMOS = C exp

( k∑

i=1

RN LiWi

VLS

)
(3)

where C is a constant and all other factors are as defined

in (2). Based on the subjective assessment results, it was

found that the first segment has higher impairment weight

compared to middle or end segments, based on which the

authors conclude that the pauses, in the beginning, are more

important and hence will have a higher impact on the final

QoE value for streaming scenarios. This is in contradiction to

other works which consider the recency effect to have a high

impact on the QoE. The authors also propose some guide-

lines for subjective test assessment methodologies such as

considering longer duration sequences which is more typical

of HAS applications and to allow multiple viewing of the test

sequences as desired by the test subjects.

An extension of this model is presented by

Rodríguez et al. [66]. Here temporal interruptions (number,

location and length of the rebuffering events) during a video

session, initial loading delay and quality switching (number

and location) are considered to propose a new quality metric,

VsQMDASH . The effect of initial loading delay is modeled as:

IILD = 5−B exp(αd LILD/VL) (4)

where LILD, α, VL and B are initial buffering delay (seconds),

exponential decay factor, total video length and constant

respectively. For quality switching events, the authors observe

that for the same frequency of rebuffering, compared to tem-

poral resolution changes, spatial resolution changes have a

more significant effect on users’ QoE. The final QoE model,

VsQMDASH , modeled using 5-point ACR MOS scores is:

VsQMDASH = C exp

[ k∑

i=1

Wi

VLS

(
RNsLi

+

n∑

j=1

PjiRji +

m∑

l=1

QliSli

)]
− IILD (5)

where C is a constant, i, j and l indicates the current segment,

temporal switching type and spatial switching type respec-

tively, k is the total number of segments in a media session,

RNs and Li are number and average length of pauses in the

same temporal segment, m and n are number of spatial and

temporal resolution switching types respectively, Wi, Pji and

Qli are weight factors and Sli is the number of switching type

and IILD is the effect of initial loading delay as defined in (4).

It was observed that the quality of the initial temporal segment

has a greater influence on the QoE and for switching events,

the spatial resolution affects the quality more than the tempo-

ral resolutions. The model is shown to be of low complexity

in terms of processing and energy consumption and hence

suitable for devices such as mobile phones and tablets which

have limited power and processing capabilities. The proposed

parametric model uses only application-level parameters and

hence is suitable for QoE monitoring of encrypted traffic,

specifically at the network side. The model validation is done

using similar types of patterns as used for model design,

and also considers a fixed number (four) of segments, hence

leaving an open question about the performance of the model

on unknown dataset employing different playout patterns and

of different video length.

Alberti et al. [63] present a parametric QoE model which

maps the QoS parameters to estimate QoE as:

eMOS =

N−1∑

i=0

ai x
ki
i (6)

where x0 . . . xN−1 are measured values of parameters such

as video bitrate, frame rate, QP, rebuffering frequency, aver-

age rebuffering duration and quality switching rate, whereas

a0 . . . aN−1 and k0 . . . kN−1 are tunable parameters. The

authors report that QoE degradation due to encoding quality

is on a shorter time interval compared to QoE degradation

due to IFs such as rebuffering and quality switching. The

model parameter estimation and design are done using sub-

jective tests consisting of two video sequences and taking

into account various QP, rebuffering and quality switching

factors. The authors report high prediction accuracy with

0.5 MOS difference for the worst case when compared to

MOS scores obtained by subjective tests. In the absence

of the model validation and performance estimation (e.g.,

regarding the correlation of the predictedMOSwith the actual

MOS), the actual performance of the model remains an open

question.

Hoßfeld et al. [64] investigate the effect of five IFs: qual-

ity switching amplitude, last quality level, recency time for

the different number of switches, the frequency of quality

switching and time on the highest quality level. The authors

found that quality switching shadows the effect of recency

and also recency time (total duration of high-quality play-

back after the last quality switch) does not affect the QoE.

Also, it was observed that the time on each quality level

has a more significant impact than that of the frequency of

rebuffering. Discarding other IFs (based on statistical anal-

ysis), the authors propose a simple QoE model, considering

only two IFs, which take into account the effect of amplitude

(the difference between the two quality levels) and time on

the highest level using an exponential relationship as:

y(th) = 0.003e0.06 th + 2.498 (7)
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where y(th) is the predicted MOS, and th is the time on the

highest level. The effect of switching amplitude is quantified

by bounding the MOS values to the quality levels. The pro-

posed model only proposes a parametric equation using sub-

jective test results using a single content type and considers

only two quality levels and lacks performance validation.

Lievens et al. [65] propose a MOS predictor, PQM , based

on user evaluations as:

PQM (T ) =
1

T + γRALL

∑

T

Q
[
fidelity

(
t−Fτ

( ∂fidelity(t)
∂t

))]

−εα
Fβ

(
∂freezes(t)

∂t

)
− Fδ

(∂framerate(t)

∂t

)
(8)

where Fτ , Fβ , Fδ , T and RALL are functions which represent

quality switching, amount of rebuffering events, frame rate,

total duration over which MOS is evaluated and total time of

rebuffering event, respectively. α, γ and ε are constants and

Q is the encoder-side MOS for a given fidelity (quality level).

Based on the subjective assessment using three Full HD

(FHD) video sequences and various encoding and rebuffering

conditions (not described in the paper) the authors observe

an increase of MOS with an increase in resolution or bitrate.

Below a specific bitrate, upscaled lower resolution video is

found to be of higher quality compared to higher resolution

video encoded at the same bitrate. On the temporal scale,

no significant difference was found in between 50fps and

25 fps video while lower frame rate video (below 25fps)

was rated lower with the video having quality changes rated

lower than that of constant quality. Effect of rebuffering

was observed to be non-linear depending on the individual

duration of each event and frequency of rebuffering. Thework

presents only a parametric equation taking into account the

various IFs but does not report the performance of the model

using subjective assessment.

Yamagashi and Hayashi [67] present a quality model

which was submitted as part of the competition for the ITU-T

Rec. 1203. The model follows the framework used in Para-

metric Non-intrusive Assessment of TCP-based multimedia

Streaming quality (P.NATS) consisting of an audio qual-

ity estimation module and video quality estimation module

which output per-second respective quality scores which are

then integrated into per-second audiovisual coding quality

scores in the audiovisual-integration/temporal module. The

overall QoE is defined as:

QOverall = 1 + (QST − 1)S (9)

which integrates the short term (per-second) audio-visual

coding quality, QST , with other IFs factors as:

S = exp(
−RN

s1
)exp(−

RALL/VL

s2
)exp(−

A/VL

s3
) (10)

where RN is the number of rebuffering events, RALL is the

total length of rebuffering events, A is the average interval

between rebuffering events, VL is the length of the content

and s1, s2 and s3 are constants with positive values.

The MSQ is modeled and evaluated in terms of 5-point

ACR. The proposedmodel parameter selection and validation

are performed by using well designed and defined subjective

assessment using a total of thirty 1-min audiovisual SRCs

and eleven 3-minute audiovisual source sequences. While,

as discussed by the authors, the test design ‘‘hides’’ the

effect of source quality on the QoE, in terms of the reported

RMSE and PLCC values, the overall model performance still

looks quite promising, especially considering the fact that the

model does not use any media bitstream information, result-

ing in a low complexity model which is suitable for encrypted

QoE monitoring. The authors report that the model performs

quite well for video sequences without rebuffering and also

with some specific sequences with rebuffering (where the

rebuffering occurs at the point where the compression quality

is worse). This leads to the observation that the amount of

QoE degradation due to rebuffering is dependent on the qual-

ity of the video frame where the rebuffering occurs. Hence

results from other works which take into account the temporal

location of pauses (e.g., [62]) can be used to further improve

upon this work. Unlike most of the other works, Yamagashi

and Hayashi discuss the limitations of their work such as ver-

ification of the model for the H.264 high profile (which is still

the preferred and widely used profile for TV sets), validation

of themodel for small screen devices, performance evaluation

of individual quality estimation modules, etc. Future work in

this direction may include addressing these shortcomings and

also the possible inclusion of other IFs such as initial loading

delay, etc.

2) MEDIA-LAYER MODELS

While the most used video quality metrics (e.g., Peak Signal

to Noise Ratio (PSNR), Structural Similarity (SSIM), Video

Multimethod Assessment Fusion (VMAF)) are in this cate-

gory, we focus here only on themetrics specifically developed

for adaptive streaming over HTTP.

Taking into account the multi-segment and multi-rate fea-

tures of HAS applications, Wang et al. [68] present two QoE

models based on regression and classification. Using regres-

sion they propose an evolved PSNR (ePSNR) model based

on average, maximum, minimum and standard deviation of

differential PSNR (dPSNR), where dPSNR is defined as:

dPSNR = PSNR− PSNRref (11)

where PSNRref is the PSNR of the available highest rate

segment and PSNR is the PSNR of the segment under con-

sideration. ePSNR is then defined as:

ePSNR = [a b c d] × Q̃ + e (12)

where a, b, c, d, e are constant values and Q̃ is the vector

defined as:

Q̃ =

[
mean

j
(qij) max

j
(qij) min

j
(qij) std

j
(qij)

]T
(13)

where qij represents the dPSNR of the ith video scene and jth

video segment. Please note that T here refers to the transpose
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operation. The classification method model uses weighted

k-nearest neighbor (WkNN ) based on segment bitrate and

video segment position to predict QoE. Both models are eval-

uated using subjective tests consisting of two videos using a

real-world LTE network testbed. Both regression and classi-

fication based methods are shown to provide high correlation

with subjectiveMOS. Based on the correlation results, the last

two segments have been found to have more effect than the

other segments. In terms of PLCC results, the classification

based model is found to have higher performance compared

to the regression method, but in terms of complexity the

ePSNR model is found to be of lower complexity.

3) BITSTREAM MODELS

Singh et al. [69] propose a bitstream model for QoE pre-

diction by considering QP and frequency (RN ), average

(RAVG) and maximum duration (RMAX ) of rebuffering events.

Considering H.264/AVC as the encoder, for QP estimation,

the authors use the average of QP values over all macroblocks

in all video frames. The playout interruptions are modeled

as a function of RN , RAVG and RMAX using the cumulative

distribution function, F(x), of the delay as:

F(x) =





αx

RAVG
, if x ≤ RAVG

(1 − α)
x − RAVG

RMAX − RAVG
, if x ∈

[
RAVG,RMAX

]

1, otherwise

(14)

where α = 1 −
RAVG
RMAX

and RMAX and RAVG are maximum and

average values of the individual rebuffering events during the

video playback. Pesudo-random values distributed uniformly

on [0, 1] and the inverse function of F(x) are used to obtain

the playout interruption duration values based on which

pauses of that duration are then inserted in the videos. The

authors observe that compared to video quality due to higher

QP values, users are more sensitive to rebuffering events with

higher rate of drop of QoE with increase in RMAX , which

saturates after a certain value (6-8 seconds). In contrast, initial

increase in QP results in slower QoE degradation with rapid

fall in QoE at higher QP values. The 3-layer RNN model

is validated using RMSE using subjective test scores. Since

the model uses bitstream level information, the model suffers

from inherent drawbacks of bitstream models such as limited

scope of applications and also limited applicability to single

codec. The proposed model was evaluated using only four

content types of short duration (16 secs).

Xue et al. [70] propose a QoE model which com-

bines instantaneous qualities and cumulative quality taking

into account video segment quality, quality switching and

rebuffering events. The instantaneous perceptual quality is

evaluated using a linear model using QP values, and instan-

taneous rebuffering related degradation is modeled as the

opposite of the weighted intensity of the interrupted frame.

Initial loading delay related degradation is assumed to be

constant and is modeled using the initial QP value which

approximately represents the average quality of the video.

The instantaneous qualities are then pooled using exponential

decay temporal pooling (which takes into account the end

user attention memory) to obtain the final QoE estimation.

The model is shown to be of low complexity and stable with

reasonable performance results. Since the subjective tests for

model parameter estimation and subsequent validation are

done using only two QP values, we will see later that, in the

presence of multiple resolutions and QP values, the model

performance is not that satisfactory.

Guo et al. [71] propose amodel which estimates the overall

quality using a linear combination of median and minimum

of the instantaneous quality as:

QOverall = αQmedian + βQmin (15)

where α and β are constants (0.68 and 0.33 respectively),

and Qmedian and Qmin are the median and minimum of the

average quality. The instantaneous quality is obtained from

QP values using the normalized quality vs. inverted nor-

malized quantization stepsize (NQQ) model in [88]. Based

on this work, the authors also observe that the qualities of

the composing frequency components of a non-periodic QP

varying video session can be used to estimate the overall

quality of the video. Among all these frequency components

(of the instantaneous qualities), the one with the worst quality

has the highest impact on the final quality.

Tran et al. [72] present a QoE estimation model consid-

ering encoded video quality and quality variation as the

IFs. The quality of the encoded video is calculated for each

segment considering the average QP which is then used to

model the effect of encoding quality and quality variation

using the histogram of bins of segment qualities and segment

quality gradients respectively. The overall session quality is

modeled as:

QOverall =

NSQ∑

n=1

αnFQn +

1∑

m=−M

βmF
`
Qm (16)

where αn and βm are model parameters, NSQ(= 5 in this

work), FQn and F`
Qm are number of segment quality bins,

frequency of segment quality bins and frequency of quality

gradient bin respectively. Segment quality bins represent the

encoded video quality while quality gradient bins represent

quality variations. Model parameter estimation and valida-

tion are done using subjective assessment for three videos

of 74 seconds consisting of 2-second length segments and

nine quality levels. A comparison with previously discussed

models [71] and [75] for the given dataset shows a superior

performance of the proposed model in terms of PLCC and

Root Mean Square Error (RMSE). As in [78], the authors

conclude that the effect of quality up-switching has a neg-

ligible impact on the overall QoE compared to that of quality

down-switching. IFs such as rebuffering events, initial load-

ing delay and quality switching of starting quality values are

not taken into account in their model. The authors also assume

that various representations are of the same resolution and
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frame-rate which is the case in many popular HAS applica-

tions which use multi-resolution video representation in their

applications.

An extension of the previous model [72] is presented

in [73], where the authors, in addition to quality degradation

due to encoding and quality switching, also consider the

effect of different initial quality, initial loading delay and

rebuffering related impairments. The overall QoE is esti-

mated as:

QoEOverall = IQS − IRB − IILD (17)

where IQS is the impairment factor due to varying quality

modeled using the switching amplitude and the initial qual-

ity value, IRB is the impairment factor due to rebuffering

duration, and IILD is the impairment factor due to initial

delay modeled using a logarithmic function. The authors find

that the impact of switching amplitude depends not only

on switching amplitude but also on the starting quality. For

example, for equal switching amplitude, down-switching in a

low-quality region is worse than down-switching in the higher

quality region. Also, rebuffering duration of 0.25 seconds or

less have a negligible effect on the final QoE value, while

rebuffering durations of more than 2 seconds can lead to

extreme QoE degradation.

Robitza et al. [74] describe another candidate model for

ITU-T Rec P.1203 competition. It follows a similar mod-

ular approach where the pooled audiovisual per second

scores, representing the media quality (QLT ) and degradation

due to initial loading delay (IILD) and rebuffering events

(IRB), are combined to obtain the final Audiovisual MOS

(MOSAVFinal) value as:

MOSAVFinal = QLT − (IILD + IRB). (18)

The model considers quality variations over time, recency

effect, length and location of rebuffering events and encoding

quality and is designed for sequences up to 5 minutes in

length. The authors use simple averaging of the per-second

scores into the final session quality score as other temporal

pooling methods did not seem to provide increased perfor-

mance gains. A similar observation was also reported in [18].

While the authors claim the model to be video or audio codec

agnostic, the performance results for the proposed model is

reported only for the mode using full bitstream information

(Mode 3), hence leaving an open question about its per-

formance for other modes (Mode 0, Mode 1 and Mode 2).

Parameter selection based on the manual count of quality

changes and exhaustive brute-force optimization procedure,

as used by the authors, may lead to an over-fitting of the

model parameters for the given test conditions and hence

the performance of the same for other datasets can help in

the evaluation of the actual performance gains of the model

for possible real-world applications. Also, the model perfor-

mance was only evaluated on PC/TV databases and its per-

formance for mobile video streaming scenario still remains

an open question.

4) HYBRID MODELS

Vriendt et al. [75] propose the following relationship for

MOS prediction

Mpred = αµ − βσ − γRQS + δ (19)

where α, β, γ and δ are tunable parameters, and µ, σ and

RQS represent the average of the quality of the chunks,

the standard deviation of quality information and frequency

of switches respectively. Depending on how the parameter

values are estimated, equation (19) can be used to obtain four

different models (bitrate, objective quality (PSNR/SSIM),

chunk-MOS and quality level). The chunk-MOS model uses

MOS values associated with each quality level which can be

estimated during the parameter tuning process, as is done for

other parameters, or can be assumed to be uniformly spaced

between amaximum andminimumvalue (which is equivalent

to the quality level model). The parameter estimation is per-

formed based on RMSE values using subjective MOS scores.

Based on the results obtained in terms of RMSE, PLCC and

SROCC values considering mobile phone and tablet devices,

the general chunk-MOS model was found to perform better

than others. As discussed by the authors, the results are

limited to a single content type and a particular rate decision

algorithm.

Chen et al. [76] model the Time Varying Subjective Qual-

ity (TVSQ) of HAS rate-adaptive video streams using a

Hammerstein-Wiener (H-W) model with input and output

functions as:

u[t] = β3 + β4
1

1 + exp(−(β1qst [t] + β2))
(20)

and

q̂[t] = γ3 + γ4
1

1 + exp(−(γ1v[t] + γ2))
(21)

where q̂ is the predicted TVSQ, β and γ are model parame-

ters, qst is the Short Term Subjective Quality (STSQ) and v[t]

is the output of the linear filter of the form

v[t] = bT
(
u
)
t−r :t

+ f T
(
v
)
t−r :t−1′ (22)

where b = (b0, . . . br )
T and f = (f0, . . . fr )

T are

model parameters. Temporal distortions such as mosquito

effects, jerkiness, etc., are captured usingVideo-RREDSTSQ

predictor [89]. The proposed model, while achieving good

performance and providing valuable insights into the TVSQ

optimization problem, does not take into account playback

interruptions such as rebuffering, which limits the model

application for more realistic cases. Also, the H-W model

implementation as used by the authors is not suitable for

videos of different durations [82].

Shen et al. [77] present a QoE model which takes into

account segment quality, primacy and recency effects and

quality switching (using bitrate distribution) as IFs. Each seg-

ment of the video is assumed to be of Constant Bitrate (CBR)

and the respective encoded video quality of each segment is
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calculated as:

QSeg = γ
BR

MV + δ
(23)

where BR is the bitrate, γ , δ are constants, and MV is the

motion parameter calculated as:

MV =
1

N − 1

N∑

f=2

stdspace|y(f ,w, h) − y(f − 1,w, h)| (24)

where y(f ,w, h) is the pixel value at position (w, h) of the

f − th frame. The primacy and recency effects are modeled

as:

f (t) =
αP

1 + α2
Pt

2
+

βR

1 + β2
R(t − T )2

, 0 ≤ t ≤ T (25)

where αP and βR correspond to the effect of primacy and

recency respectively. The overall adaptive streaming QoE is

given by:

QOverall = IQS
−→
S

−→
W T (26)

where IQS represents the impact of quality switching,
−→
S

is a vector consisting of the QoE of each segment as esti-

mated using (23) and
−→
W is the weight vector for taking into

consideration memory related factors (primacy and recency)

using (25). The authors observe that at a particular aver-

age bitrate, down-switching achieves higher QoE than up-

switching. Also, video sequences with high startup and end

quality receive higher ratings due to primacy and recency

effect, with the primacy effect decreasing for long video

sequences. Bitrate distribution is found to be themajor IF. The

model was evaluated using only a single content type and also

limited to the test conditions with different average bitrates.

Hence the performance of the model for real-world applica-

tions remains an open question, mainly because the model

does not take into account rebuffering related impairments.

Liu et al. [78] propose a no-reference QoEmodel consider-

ing both temporal and spatial quality and taking into account

IFs such as initial delay, rebuffering and quality switching.

The proposed overall QoE model is adapted from the ITU-T

E-model [48] as:

DASH −MOS = 1+0.035R+7×10−6R(R−60)(100−R)

(27)

where R is estimated based on impairment due to initial delay

(IILD), stalling (IRB) and quality switching (IQS ) as:

R = 100 − IILD − IRB − IQS

+ α IILD
√
IRB + IQS + β

√
IRB ∗ IQS . (28)

Here α and β are estimated using subjective assessment (as

0.15 and 0.82 respectively). Based on the subjective assess-

ment, the authors find that the initial loading delay related

impairment is linear and hence is modeled using a linear

equation. Impairments due to rebuffering, which are more

complicated to estimate and have more dependent variables,

are modeled using a combination of a number of rebuffering

events, total rebuffering duration, and video motion content

of the video. Quality switching related impairments are mod-

eled using the VQM [19] metric by taking into account both

encoding related impairments and impairments due to quality

switching. Based on their tests, the authors observe that, for a

fixed number of rebuffering events, the impairment increases

monotonically with the rebuffering duration, while for a

fixed rebuffering duration, the impairment due to rebuffer-

ing frequency does not increase monotonically. Also, higher

frequency of rebuffering leads to higher impairment. While

the model was designed and evaluated using 1-minute long

video sequences, a preliminary investigation by the authors

shows that it performs quite well for video sequences of up

to 10 minutes duration.

Garcia et al. [79] present an interesting modular approach

of pooling short-term quality models for long-term quality

estimation which then are combined with rebuffering related

information to obtain the overall media session quality. Such

a modular approach leaves out the interdependencies, leading

easier integration and development. The proposed model can

be summarized as:

Q = QLT − IRB (29)

where QLT is obtained by pooling short-term audiovisual

quality scores and IRB is the quality degradation due to

rebuffering. Six different models are used to estimate the

short-term audiovisual quality scores: VQMAV is the general

VQM model, PSNRAV is the PSNR averaged per segment,

DT0 is the frame-basedmodel based on ITU-TRec series [8],

DT1 and DT2 are variants of DT0 and Dummy is 5-point

scale quality levels. degStal is calculated as defined in ITU-T

Rec series [90]. Irrespective of the pooling method used,

the performance of short-term quality models is found to be

a good representative of the long-term quality model perfor-

mance. It is observed that the best short-term quality models

also perform best for long-term models, with DT2 resulting

in the best performance in terms of RMSE values.

Duanmu et al. [80] present a QoE model (referred to as

Streaming Quality Index (SQI)) considering the combined

effect of initial loading delay, rebuffering and encoding qual-

ity. The overall quality is computed from the instantaneous

quality in a moving average fashion where the instantaneous

quality at each time unit, Qn, is considered to be a linear

combination of instantaneous video presentation quality Pn
estimated at the server side by frame-level VQA model and

impact of rebuffering at individual frames Sn as:

Qn = Pn + Sn. (30)

Based on the assumption that each rebuffering event is addi-

tive and independent, the authors model the memory decline

of memory retention due to rebuffering (based on Hermann

Ebbinghaus forgetting curve [91]) as:

M = exp(−
t

TM
) (31)

where M , t and TM represent memory retention, the current

time instant and relative strength of memory respectively,
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which are then used in a piecewise model to get the collective

effect of rebuffering on QoE degradation. The authors find

that for a given rebuffering event at the same temporal loca-

tion and of the same duration, the QoE is inversely related to

the quality of the frame at that same temporal instant. The

overall QoE value is calculated as the average of the pre-

dicted individual QoE scores. An evaluation of the existing

models (PSNR, SSIM,MS-SSIM, SSIMplus [92], FTW [93],

Mok et al. [60], VsQM [62] and Xue et al. [70]) and the

proposed SQI using PSNR, SSIM, SSIMplus, MS-SSIM on

the designed database shows that the proposed SQI model,

when used with SSIMplus as the VQAmodel, has the highest

performance, with other SQI models (SQI with PSNR, SSIM

and MS-SSIM as VQA) performing better than the other

compared models. The presented model is a big step for-

ward towards QoE modeling considering both encoded video

quality and rebuffering related information with reasonable

performance on the given dataset. Given that the database

and IFs considered in this work are somewhat limited due to

the short duration of the sequences (only 10 second videos,

fixed duration rebuffering events and just two rebuffering

events at fixed location (start and middle)) which is not

realistic, the performance of the model on more practical

datasets remains an open question. We will discuss later how

the model, when evaluated by other authors, does not result

in high performance. The authors publicly released one of

the first subjective databases for HAS application scenarios

which considers rebuffering.

Bampis and Bovik [81] propose a machine learning-based

framework, Video ATLAS, which combines QoE related fea-

tures such as objective quality metrics, rebuffering related

factors and memory-related functions to predict the end user

QoE. Simple regressors combined with main IFs such as

video quality, rebuffering and memory-related effects are

found to provide good results. The video quality is evaluated

using well-known image and video quality metrics and other

IFs, such as length of each rebuffering event normalized to

the duration of each video, the number of rebuffering events,

number of seconds with normal playback at the maximum

possible bitrate until the end of the video and time per

video over which a bitrate drop took place, both normalized

to the duration of individual video. The calculated features

are then combined using various learning-based algorithms

(Support Vector Regression (SVR), Random Forest (RF),

Gradient Boosting (GB), Extra Trees (ET) and Ridge and

Lasso regression [94]) to provide a single final overall

QoE score. The authors evaluate 6 objective IQA metrics

(PSNR, PSNRHVS [95], SSIM, MS-SSIM [96], NIQE [43]

and GMSD [97]) and two VQA metrics (VMAF [98] and

STRRED [89]) on the subjective dataset and it is observed

that STRRED gives the highest performance in terms of

SROCC considering both a subset of the database with no

rebuffering and considering the whole dataset. Based on this

observation the authors conclude that IFs such as rebuffering

and bitrate changes should be considered jointly and not

separately which contradicts the approach of many other

models discussed here (e.g., [67], [74]). In terms of content

independence, MS-SSIM using ET was found to perform

the best in terms of SROCC while STRRED using SVR

performed best in terms of PLCC. Based on the results, it is

observed that the video quality model used for the prediction

of compressed video quality plays a very important role in the

QoE prediction quality. Also, rebuffering duration is shown to

have a small effect with a possible explanation of the duration

neglect effect [99]. Using STRRED as the objective video

quality metric, it was observed that for various combinations

of IFs considered in this study, linear regressors Ridge and

Lasso performed best in terms of SROCC and PLCC. In terms

of prediction monotonicity (median SROCC) and perfor-

mance (median PLCC), for a different amount of training-test

data split, MS-SSIM performed the best (considering ET as

the learning algorithm). Compared to other models (FTW,

VsQM, PSNR, SSIM, MS-SSIM and SQI), the proposed

model is shown to have superior performance when using the

SSIM and MS-SSIM for all regression models.

Similar to their previous work, in [82], Bampis et al.

present a machine learning based Nonlinear Autoregressive

Network with Exogenous Inputs (NARX) model which uses

objective metrics for video quality prediction, rebuffering

related information and memory related features for QoE

prediction. NARX is a nolinear-autoregressive model which

assumes a non linear relationship between its output and

inputs (delayed versions of its output, yt−1, yt−2 and so

on which helps in modeling the memory effect) along with

exogenous inputs given by the vector, ut (e.g., video encod-

ing quality, rebuffering information) which can be defined

approximately as:

yt = F(yt−1, yt−2, yt−3, . . . , ut , ut−1, ut−1, . . .). (32)

As discussed by the authors, the usage of such autoregres-

sive models for real-time QoE prediction may result in erro-

neous QoE prediction results due to prediction error propa-

gation/amplification (as the prediction scores are fed back to

the prediction engine). The proposed model is trained using

the Levenberg-Marquardt algorithm, and QoE prediction is

performed on a continuous time scale and hence can be used

for continuousQoEmonitoring solutions. Based on themodel

evaluation on LIVE-NFLX database, it is observed that the

model performance varies across different playout patterns

which point towards the instability of the model. Considering

only objective VQA metrics, STRRED results in the best

performance compared to PSNR, SSIM, MS-SSIM, NIQE

and VMAF while, if rebuffering and memory effects are

taken into account, both SSIM and STRRED give the best

prediction results. When compared to the earlier proposed

continuous QoE predictionmodel by Chen et al. [76], consid-

ering only bitrate related impaired sequences, the proposed

model is shown to have better RMSE and outage rate but

worse dynamic time warping (DTW) [100] distance. A pos-

sible extension of the proposed model can be to evaluate its

performance for retrospective QoE prediction using various

temporal pooling strategies.
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Bampis and Bovik present another model in [83] which

builds upon the previous two models [81], [82] addressing

one of the significant shortcomings of the two earlier dis-

cussed continuous-time quality prediction models [76], [82]:

instability. The authors propose a new model based on an

augmented NARX approach for continuous QoE prediction

taking into account degradation due to compression and

rate adaptation. In contrast to the previous models where a

single objective quality metric was used for encoded video

quality estimation, here multiple VQA metric outputs are

used as inputs for quality prediction which results in supe-

rior performance in comparison to [82]. It is observed that

when VQA models are used together, the prediction quality

improves significantly. This is based on the observation that

while a single VQA metric alone may not be designed to

take into account all types of quality impairments, multiple

VQA metrics collectively can better model the distortions,

which results in significant increase in prediction accuracy.

The model performance evaluation is done using the same

database as used by Chen et al. [76]. While the performance

for the proposed NARX model with multiple VQA inputs

is quite promising, the model complexity is quite high and

is not suitable for practical applications as it does not take

into account QoE degradation due to rebuffering. Model

performance evaluation and possible enhancements taking

into account rebuffering related impairments could be an

impressive future work.

All the three models discussed above [81]–[83] are

designed and evaluated using the partly public LIVE-NFLX

database [101]. The LIVE-NFLX database consists of

14 source videos at FHD resolution encoded using

H.264 using 8 different playout patterns (constant encoding

at 250 and 500 kbps, adaptive rate drops at 66 and 100 kbps,

two patterns of constant encoding with one rebuffering

event, constant encoding with two rebuffering events and one

with adaptive rate drops with rebuffering) rated by 56 test

subjects. For a more detailed description of the database,

we refer the reader to the related publication [101]. One

of the major shortcomings of the previous three models is

that they are all evaluated using the same database which

is designed for low-bitrate applications (considering videos

of max 250 kbps bitrate and min 100 kbps) such as video

streaming over mobile networks and hence the performance

efficiency and applicability of suchmodels for larger displays

and higher bitrate applications (PC/TV) using networks with

higher throughput remains an open question. Also, it can be

observed that the number of stall patterns and rate adaptation

conditions are quite limited and fixed. Also, in the absence

of the full database (only three out of total 14 source and

respective HRCs are made public), a comparative study and

further model improvement remain challenging.

Eswara et al. [84] present a QoE evaluation framework

and a model for continuous time QoE prediction taking

into account rebuffering frequency (per minute), rebuffering

duration (in seconds), memory effects (recency) and objec-

tive video quality metric. Based on the premise that quality

degradation due to encoding and rebuffering are mutually

exclusive, the model is divided into two parts: QoE during

regular playback and QoE during the rebuffering. The authors

employ SVR for QoE estimation of the video during normal

playback which is trained using Reduced Reference (RR)

metric STRRED [89] and previous time instant QoE value.

The QoE degradation due to rebuffering is modeled using

the IQX hypothesis (exponential Interdependency of QoS and

QoE [102]) as:

Q(t) = e−λQ(t − 1) (33)

where λ depends on the QoE value just before the onset of

rebuffering and QoE value at the end of rebuffering. The pro-

posed model is designed and validated using well designed

subjective assessment. A total of 18 uncompressed reference

videos covering a wide range of genres and 36 distorted

videos are used in the subjective assessment. Based on the

results of the model performance in terms of PLCC of the

recency effect on overall QoE, the authors conclude that both

instantaneous QoE and overall QoE values depend to a great

extent on the most recent experience of the user. One of the

significant advantages of the proposed model is that, among

all reviewed works, this is the only one which considers UHD

videos. Also, this is one of the first publicly available database

consisting of FHD and UHD video sequences which jointly

considers both quality switching and rebuffering distortion

on a continuous time scale. While the authors used learn-

ing based QoE estimation using Video-RRED for standard

video playback quality and exponential model based on IQX

hypothesis for QoE during rebuffering state, they acknowl-

edge that there does not exist any particular reason for their

selection which can easily be replaced by other VQA and

learning algorithm and parametric model respectively. The

performance of such model indeed will need to be evaluated

on the given dataset which can be an exciting future work.

Some of the limitations of this work include usage of limited

test conditions such as only two quality switching patterns,

which leaves an open question about the performance of the

model in real-world scenarios.

Ghadiyaram et al. [85] build upon the work of

Chen et al. in [76] and their previous work in [103] which

uses the Hammerstein-Wiener (H-W) model for QoE model-

ing as discussed previously in the discussion of the work of

Chen et al. [76]. In addition to the rebuffering related impair-

ments (see Table 2), client-side buffer model, scene criticality

and perceptual quality IFs are first modeled mathematically.

Each of these mathematical models is then used to train a

Single Input Single Output (SISO) H-Wmodel with memory,

thus capturing the hysteresis effects and non-linearity of the

human behaviour. Depending on the methodology used to

combine the individual H-W model outputs, two variants of

the continuous-time QoE prediction model are proposed. The

first continuous model, TV-QoE2 uses the model outputs

of the individual H-W model as input to train a Multiple

Input Single Output (MISO) Wiener model (a variant of the

Hammerstein-Wiener model without an input non-linearity
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block). The second variant of the continuous QoE prediction

model, TV-QoE1, uses SVR instead of the Wiener model.

The various model parameters are estimated using training

data. In addition to the continuous QoE model, an overall

QoEmodel is also proposedwhich takes into account number,

total duration, frequency and rate of rebuffering events along

with time since the last rebuffering event and perceptual

quality score. The proposed model is modular in nature

as additional/existing inputs can be added/removed without

changes to the model structure. Also, the model is found to

be computationally efficient for both training and real-time

calculations. Both continuous QoE prediction model and the

overall QoE prediction model are trained and evaluated using

three different publicly available QoE databases ([80], [101],

[103], see Table 5). In terms of the median of the per-frame

correlation and RMSE between actual and predicted QoE

score on a continuous time scale, the proposed model is

found to outperform the SQI model in [80]. Also among

the two proposed continuous-time QoE models, TV-QoE-

2 performs slightly better than TV-QoE-1. In general the

global QoEmodel providing the overall estimation of quality,

while in terms of correlation and RMSE values is found

to perform quite well on all the three databases, fails to

provide superior performance when compared to SQI [80]

and Video ATLAS [81] models. Also in the absence of taking

into account quality switching as an IF, the performance of the

model on real-world use cases remains an open question.

Eswara et al. [86] propose a recurrent neural network

(Long Short-Term Memory (LSTM) network) based QoE

prediction model, LSTM-QoE, to predict the time vary-

ing QoE. The authors argue that the continuous QoE is a

nonlinear stochastic process which exhibits non-Markovian

temporal dynamics due to the hysteresis effect which can

be modeled using a network of multi-layered, multi-unit

LSTMs. The predicted instantaneous QoE, Q(t) is mod-

eled as:

Q(t) = LSTMo
l,d (x(t), c(t − 1)) (34)

where x(t) is the input feature vector, c(t) represent the set

of LSTM cell states in the network, l and d are the number

of LSTM layers and number of LSTM units respectively.

LSTMl,d provides two functionalities: LSTMo
l,d for output

QoE prediction and LSTM c
l,d for cell state update which is

defined as:

c(t) = LSTM c
l,d (c(1 : t − 1),Q(1 : t − 1)), ∀ t > 1. (35)

Three IFs are considered for QoE prediction: STSQ, current

playback status and total time since the last rebuffering event.

STSQ, which takes into account the perceptual quality of a

video segment, is calculated using traditional VQA metrics

such as STRRED, NIQE, etc., as was also used in previ-

ously discussed models [82]–[84]. The proposed model is

evaluated using four publicly available HAS datasets: LIVE

QoE Dataset for HTTP based Video Streaming, LIVE Net-

flix Video QoE Database, LFOVIA Video QoE Database

and LIVE Mobile Stall Video Database (see Table 5 and

Section VIII for more details about the databases). Model

design and evaluation over the four publicly available datasets

and performance comparison against different state-of-the-

art continuous quality prediction models [82], [84], [103]

demonstrates a superior performance of the proposed model.

The authors also report that mean and media QoE score

obtained by pooling the continuous QoE scores correlates

well with the reported overall QoE scores.

Duanmu et al. [87] investigate a novel approachwhere they

consider an Expectation Confirmation Theory (ECT) based

model design to predict the end-user QoE. The proposed

model primarily takes into account the effect of adaptation

intensity, adaptation type, intrinsic quality and content type

IFs on the end user QoE. For a methodological study and

investigation into the effect of quality adaptations (compres-

sion, spatial and temporal) on end user QoE they designed

a new and now publicly available dataset which is then

used for model design and evaluation (see Waterloo QoE

Database (ECT) in Section VIII for more details on the

dataset). The post-hoc quality of the nth segmentQnp is defined

as a function of intrinsic spatial quality (QSi ) and intrinsic

temporal quality (QTi ) feature representation as:

QSeg(n) = f (QSi (n) − QSi (n− 1),QSi (n),Q
T
i (n)

−QTi (n− 1),QTi (n)). (36)

The authors observe that the average pooling of the

segment-level post-hoc quality scores correlate well with the

overall QoE scores and hence the overall QoE is given by:

QoEOverall =

Ns∑

n=1

QSeg(n) (37)

where Ns is the total number of video segments. A compari-

son of the model performance with other state-of-the-art QoE

models such as [9], [76], [78] etc. indicates superior perfor-

mance of the proposed ECT-QoEmodel on the subjective test

dataset. While the investigation and possible use of ECT for

QoE prediction with promising results are quite impressive,

the current work is limited in that the dataset used for its

evaluation consisted of videos of only 8 seconds duration and

one quality adaptation and some important factors (such as

rebuffering events) are not considered. Future assessment on

a more exhaustive dataset considering more realistic stream-

ing scenarios can help better understand the applicability of

such model for QoE evaluation.

As briefly mentioned earlier, towards building a model

for adaptive audiovisual streaming services, ITU-T Rec.

P.1203, also known as P.NATS was approved and finalized in

Nov. 2016 [9]. The ITU-T Rec. P.1203 series describes model

algorithms to predict the audiovisual quality of progressive

download and adaptive streaming based applications consid-

ering reliable transport protocols such as TCP. The model

proposed in this recommendation series follows a modular

approach which consists of a short-term audio-video quality

model providing per-one-second output scores which are then

integrated along with initial loading delay and rebuffering
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events IFs, to give an estimate of quality for HAS media

session between 10 secs to 5 minutes. The model consists of

three modules, a video module Pv, an audio module Pa and

an audio-visual integrationmodule, Pq. The short-term scores

from Pa and Pv are integrated into the Pq module along with

rebuffering related information. Depending on the amount of

required input information to Pv module, the model provides

four different modes of operation: Mode 0, Mode 1, Mode 2

and Mode 3 (in increasing order of complexity). Mode 0

includes display resolution, frame rate and target and real

bitrate, Mode 1 consists of all of Mode 0 and frame related

information such as frame type and frame size and Mode 2

includes all of Mode 1 and partial bitstream information.

Mode 3 consists of Mode 1 along with complete bitstream

information. For detailed information about the models and

the integration module, we refer the user to the recommen-

dation series, P.1203. The recommendation, while indeed

a significant step towards building a QoE model for HAS

application, in its current form suffers frommany drawbacks.

For example, it assumes a perfect knowledge of buffering

duration, number of re-buffering events, etc., which is not

always practical. The model has been developed and vali-

dated using a fixed set of encoding settings using a single

codec. While adaptive streaming applications such as HAS

are codec agnostic, the P.NATS model is bitstream-based

(except for mode 0), which makes the proposed model’s per-

formance codec dependent. Satti et al. performed a prelimi-

nary real-streaming application analysis of the P.1203 model

for YouTube, Vimeo, Amazon Instant Video and proprietary

DASH-based streaming framework [104]. The authors found

the overall performance of Mode 0 and Mode 1 to be quite

accurate for H.264 codec configuration, except for the lower

quality range where the predictions were found not to be so

precise. More tests in real-world applications are required to

better understand the performance of the model and future

development of more accurate and reliable models. A soft-

ware implementation of the P.1203 ITU Rec has been made

publicly available by the authors in [105] which also includes

subjective ratings, per condition metadata (bitrates, resolu-

tions, initial loading delay and rebuffering events), per-frame

statistics (frame types, sizes) and bitstream level statistics

(QP values and macroblock types) from four out of the

total 30 datasets used in the design and validation of the

recommendation. Due to the absence of the video sequences

(reference as well as distorted videos), such database is of

very limited use for model design and/or validation. For a

more exhaustive model, joint work by ITU-T Study Group

12 and VQEG known as AVHD-AS/P.NATS Phase II is

ongoingwhich aims towards building a comprehensivemodel

considering a higher number of codecs (AVC, HEVC and

VP9), higher frame rate (up to 60 fps), higher resolution

videos (up to UHD) and a wider range of encoding settings.

C. SUMMARY

On a very abstract level, QoE can be described as:

QoE = f (x1, x2, . . . , xn) (38)

where x1, x2, . . . , xn are the various IFs [106]. There exist lots

of IFs [10], each leading to increased complexity of themodel

design.

Based on the list of models in Table 2, we can observe that

the focus recently has shifted from initial parametric models

(which usually tried to map QoS based IFs to QoE) towards

hybrid models which take into account media signals as well

as impairments such as quality switching and rebuffering.

Regarding IFs, we observed that while rebuffering, quality

switching and encoding related factors are taken into account

by most of the models, other IFs such as initial loading

delay, recency and primacy effects and user engagement are

considered by only a few of the models. While not all IFs

has a significant impact on the final QoE, there are still many

IFs whose effects are not investigated or have not been taken

into consideration for model design. While Mok et al. [61]

found user action such as pause to have a marginal effect

on QoE, there may exists other user factors, which when

considered together, may result in a significant effect on

the end user QoE. We also observe that with the recent

trend towards the design of hybrid models, the focus has

shifted towards additive models where impairments due to

various IFs are calculated separately and are then combined

to obtain the combined effect of all the impairments as done

in [74], [79], [84], among others. Such additive models have

also been used in ITU-T Rec. P.1201 (Amd. 2) [90] and more

recently in [9]. Hoßfeld et al. [106] discuss how an additive or

a multiplicative model, combining existing single-parameter

QoE models into a multidimensional QoE model, may lead

to different results. Hence, such models need to be verified

using independent subjective databases.

Regarding the model type, parametric models are not that

accurate but are ideal for encrypted traffic monitoring appli-

cations. Also, such models can be used at the client-side

because of low-complexity. On the other hand, bitstream

models suffer from the limitation that they are specific to

one codec and hence cannot generalize well, but are usually

more accurate than parametric models. Usually, hybrid mod-

els are more precise than parametric, and bitstream models,

but are of higher complexity and also need access to media-

signals, thus limiting their application to client or server-side

monitoring. Hence depending on the stakeholders involved

and the desired complexity, different model type needs to be

developed.

Also, while most of the models provide only an overall

quality estimation for a media session, some of the models

provide the prediction on a continuous-time scale. Some of

the continuous-time (usually per-sec) models also provide

final session quality which is usually the temporal averaging

of continuous-time scores. Both approaches have their advan-

tages and disadvantages. Continuous-time models are more

useful in applications where it is possible to take corrective

actions based on the estimated instantaneous quality, such as

in real-time streaming application where the encoding set-

tings and or transmission parameters may be adjusted based

on the estimated QoE of the user. Some continuous-time
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prediction QoE models can also be used for rate adaptation in

HAS applications, but such models are usually more complex

as they need to be calculated in real-time. On the other hand,

models providing overall QoE estimation are more suited

for applications where the prediction values can be used

retrospectively to design better systems, encoding strategies,

network planning etc. They are usually computationally inex-

pensive as the parameters gathered and prediction values

can usually be gathered and processed separately and not

necessarily at the server/client/network side.

VI. DISCUSSION ON THE IMPACT OF

INFLUENCE FACTORS

In Section V we presented the models along with the descrip-

tion of the IFs considered and how they were taken into

account in the model design which is summarized in Table 3.

Here we present a discussion of the IFs and general observa-

tions about their effect on QoE as described by the models.

We not only limit the discussion to the reviewed models

but also take into account the observations reported by other

works, so as to get a complete understanding of the influence

factors and their effects. Here we discuss the various IFs

considered by the models and their respective importance in

the QoE prediction. Since the IFs as considered by models

and their respective observations were already discussed in

Section V, here we limit our discussion only to effects of the

IFs and we do not describe them for each model separately.

For a more detailed discussion of how the effects of vari-

ous IFs are being proposed and considered by other related

works, we guide the reader to a comprehensive survey by

Seufert et al. [10].

A. QUALITY SWITCHING

This is one of the main differentiating features of HAS com-

pared to other traditional streaming technologies and is com-

monly used by HAS clients to adapt the media playback to

the anticipated/experienced network conditions and/or buffer

status. As the rate adaptation algorithm is not standardized

as part of the MPEG-DASH standard, it varies depending

on the client’s rate adaptation logic. While most of the rate

adaptation techniques aim at minimizing rebuffering events,

frequent quality switches may lead to annoyance and hence

need to be minimized.

• Quality switching frequency: Too frequent quality

changes leads to end-user annoyance. Some of the mod-

els such as [72] and [79] consider adaptation frequency

as one of the IFs for their model design.

• Quality switching magnitude: It refers to the ‘‘gap’’

between the levels of quality switching. In general, for

down-switching, quality switching of lower magnitudes,

i.e., in gradual steps (high → medium or medium →

low) is considered to be less annoying than that of high

magnitudes (abrupt high-low) [107].

• Quality switching direction In terms of the effect

of switching direction and their relative importance,

there does not seem to exist a conclusive agreement.

TABLE 3. HAS models and corresponding IFs.

While some observe no significant affect of up-switching

when compared to down-switching [72], [77], others,

like [108], find that both switching directions have a

considerable impact on user QoE.

• Time on the highest layer: Time on the highest layer

indicates the percentage of time the media playback

was at the highest quality. High values of time on the

highest layer indicate that the media playback was of

high quality for a high percentage of media playback

and hence can be used as an IF for model design as done

in [64].

B. REBUFFERING

Rebuffering has long been considered as one of major

IF in streaming applications and should be avoided or

minimized as much as possible. The rate adaptation

(quality switching) feature of HAS applications was actu-

ally designed with the major goal of minimizing rebuffer-

ing events during media playback. All models except

for [64], [68], [71], [72], [75]–[77], [83] take into account

one or more rebuffering related impairments as an IF in their

model design.
• Duration of rebuffering: While the general agreement

among researchers is that longer rebuffering duration

leads to increased annoyance of the end user, there

exists some disagreement when it comes to acceptable

level of rebuffering duration. While some researchers

say that rebuffering should be avoided at all costs, there

exists some who say that in general rebuffering events

of shorter durations (e.g., of 0.25 seconds [73]) are not

noticeable and hence do not lead to QoE degradation.
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Duration of rebuffering can be taken into account as con-

sidering the average duration of all rebuffering events as

done in [60] and [67] or taking into account individual

rebuffering event length as done in [74] and [81].

• Frequency of rebuffering: Highly frequent interrup-

tions are considered annoying and can result in a very

non-pleasant experience for the end user. Some of the

models such as [66], [68], [80], [81] among others, con-

sider the frequency of rebuffering as an IF.

• Temporal Location of Rebuffering: Temporal location of

pauses, while not as important as frequency of rebuffer-

ing and duration of rebuffering, certainly plays a role in

the end user QoE as a pause during an interesting scene

is considered to be more annoying than one just before a

scene change. The models in [62], [66], [74], [80], etc.,

take into account location of rebuffering as an IF in their

model.

C. ENCODING QUALITY

Encoded quality plays an important role in the end user QoE.

For example, higher compression may result in noticeable

artifacts in the encoded video which results in decreased

end-user QoE. There exist many different approaches which

can be used to estimate the video quality, such as QP, bitrate,

framerate, resolution etc.Many earlier works have focused on

the design of QoE models and objective metrics to estimate

the encoded video quality. In particular, for HAS applications,

the segment quality (in terms of bitrate/QP values) can also

be used to represent the encoded video quality. The type

of content plays a vital role in the perceived end-user qual-

ity. The actual effect of the various quality switchings (see

Section IV-B) depend on the content type. For example, drop-

ping frames will have a less noticeable effect on a video with

high motion content compared to a video with less motion

content. Also, content complexity will decide the quality of

the encodedmedia. Fewmodels such as [77] directly consider

content type information as an IF in their model design. Other

use parameters such as bitrate, QP etc. or existing QAmetrics

as discussed below.

• Bitrate: Bitrate is one of the most commonly used

parameters to estimate the encoded audio/video qual-

ity. Higher bitrate values usually indicate higher quality

videos. The media quality can be approximated by using

the downloaded bitrate values for a given session. The

models in [63], [67], and [77]–[79] use bitrate values as

an IF in their model.

• QP: QP is another commonly used factor to estimate

encoded audio/video quality. Higher QP values result

in higher compression and vice versa, and hence QP

values can be used to determine the quality of the

encoded media representation. The models proposed

in [63], [65], and [69]–[71] use QP values as one of

the IFs.

• Objective Metrics: Many models such as those pro-

posed in [68], [75], [81]–[84] among others use already

existing ormodified IQA orVQAmetrics to estimate the

encoded video quality. Using such well established and

widely used metrics benefits from the previous research

work in the field of quality assessment. One of the short-

comings of such models is the need of such models to

have access to themedia signals, hencemaking them less

suitable for applications where the traffic is encrypted.

D. INITIAL LOADING DELAY

Initial loading delay is usually present in all streaming

applications and is used by the applications to buffer some

video bits to minimize rebuffering related impairments.

The general agreement is that while shorter initial loading

delays do not have a significant impact on QoE, with some

users actually preferring higher initial loading delay than

rebuffering [109], very long initial loading delays may lead to

user dis-satisfaction which depends on application type and

usage scenario. Initial loading delay is used in models such

as [60], [61], [66], [67], [70], [72], [74], [78], and [80].

E. MEMORY RELATED FEATURES

Memory effects such as primacy and recency have recently

found application in the field of quality assessment. In video

streaming applications, primacy related factors may refer to

experience due to initial loading delay, starting quality etc.

while recency related factors may refer to effects due to

quality level, rebuffering events etc. towards the end of video

playback. Only a few of the models directly use memory

related factors. In general, primacy effects are considered

not that important, especially when considering long video

sequences as it is believed other factors will shadow the effect

towards the end [64]. Shen et al. [77] use primacy in their

model with the observation that higher quality at the start

leads to higher experience quality ratings but since they use

short-duration sequences in their tests, this observation valid-

ity for longer duration sequences remains questionable. The

recency effect is more widely used memory-related factor

with many studies reporting a high correlation between the

quality towards the end and the score provided by the end

user [68], [70], [74], [77], [80], [81].

F. USER ENGAGEMENT

User engagement refers to user actions during the media

playback, such as pause, seek forward/backward, aspect ratio

change (full-screen, etc.) which also influence the final end

user QoE. In the absence of recommended practices for such

user behavior related measurements, such factors are not

considered in the models reviewed in this paper with the

exception of Mok et al. [61], where the authors take into

account end user actions for the design of their model. Only

few works so far have investigated the user behavior and its

effect on the end-user QoE [110].

VII. HAS QoE MODELS: SUBJECTIVE TEST

METHODOLOGIES

Table 4 summarizes the subjective assessment methodologies

as used by themodel proponents for their model design and/or
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TABLE 4. Summary of subjective evaluation methodologies used by the models (D: Duration (seconds), V/AV: Video/Audiovisual), NV : Number of videos,
NA: Not available.
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validation. It can be observed that for many models there are

certain fields with missing information (marked by NA in the

table). The lack of such information might leave the reader

with a gap in understanding the actual applicability and valid-

ity of the proposed model(s) for specific application scenario

and also limit their reproducibility and comparability with

other existing models. Hence new works which propose a

model should provide as much information as possible about

the considered conditions for the reader to understand both

its advantages as well as limitations and also the applicability

of the model in real-world applications for QoE estimation.

Next, the different individual fields are discussed in detail.

A. DISPLAY DEVICE INFORMATION

Many studies in the past have found a strong correlation

between the device and QoE, with some even reporting high

correlation between the type of display and QoE (for the same

display size) [116]. Also, display size is shown to have a great

effect on QoE, with impact of higher resolution becoming

more prominent in displays of larger size. As evident from

Table 4, most of the models do not mention the display type

(mobile/tablet/PC/TV, etc.) and size of the display. Without

such validation of the models for different display size and

display types, their applicability and performance remain

questionable for real-world applications.

B. TEST SEQUENCE DURATION

Until recently, model design and validation was performed

using test sequences of 10-15 seconds duration which is

also recommended by ITU-T Recommendations [14], [15].

Short duration sequences for such model design were suffi-

cient as they mostly only dealt with perceptual video quality

due to loss of information due to compression, packet loss,

errors during transmission etc. On the contrary, short duration

sequences are not sufficient for effective consideration of IFs

such as rebuffering, quality switching, primacy and recency

effects, etc. For proper modeling of these effects the sequence

duration should be longer, possibly between 3 and 5 minutes,

which is the common viewing duration for most watched

videos streamed over the Internet [66], as considered by some

models in [67], [74], [76], among others.

C. NUMBER OF SOURCE VIDEOS

As discussed earlier in Section VI-C, the effect of com-

pression for a given parameter (e.g., bitrate, QP, framerate)

depends to a great extent on the content complexity. For a

model to give a stable performance and to be applicable to

more practical scenarios, it needs to be validated for different

content types. As is evident from the table, some of the mod-

els were designed and validated using few source sequences

and hence their effectiveness for other content types remain

questionable.

D. VIDEO RESOLUTION

Most of the earlier works were limited to low source

resolution such as CIF [77], and SD [60], [62], [64], [66].

Some more recent works have considered higher source

resolution formats such as HD [63], [71], [72], [76],

FHD [65], [67], [74], [79] and only one work has considered

UHD sequences [84]. Also, spatial resolution adaptation,

which consist of encoding the video at a lower resolution

(called as encoding resolution), is one of the most commonly

used strategies for quality adaptation by almost all major OTT

service providers such as YouTube, Netflix, Amazon Prime,

etc.While some of the works such as [66], [67], [74], and [79]

have considered such multiple resolution-bitrate pair encod-

ing conditions, many others only consider quality adaptation

at a single resolution (by using different bitrates/QP settings)

and hence those might not lead to satisfactory performance

when used for quality evaluation of such applications.

E. MODEL PERFORMANCE EVALUATION

As discussed in Section III-B, a performance evaluation of

a model for consistency, generality and prediction accuracy

can be done using Outlier Ratio (OR), Spearman’s Rank

Correlation Coefficient (SROCC) and Pearson Linear Cor-

relation Coefficient (PLCC) respectively. Some of the mod-

els lack a complete validation (e.g., [60], [61], [64], [65]),

which leaves an open question about the performance of the

models on unknown datasets and/or real-world applications.

Also, a comparison study of the proposed models with other

existing models is absent in most cases except for a few

like [81] and [82].

F. VIDEO/AUDIOVISUAL SEQUENCES

Some of the proposed models are limited to video only

(e.g., [72], [73], [78], [80], [81]), without considering audio

in their test sequences. This is not typical of real world scenar-

ios where most of the media consumed is audiovisual. Also,

none of the studies so far have included non-synchronized

audio-video playback at the end user device. It has been

found that audiovisual quality estimation is more challenging

than video alone due to the complex nature of HVS with

cross-modal interactions measured on an average of 0.5 on

a 5-point MOS scale [117].

G. CODEC

While currently H.264 remains one of the most widely used

codecs, the limitation of the proposed models to one codec

makes one question the future applicability of such models;

similarly some models only refer to a particular application.

For example, many applications like YouTube, etc., support

multiple encoders. Hence a proposed model dependent on

codec related parameters (e.g., bitstream based models) may

result in good performance but will fail for videos encoded

using another codec but streamed using the same application.

A possible solution for such applications will be designing

models which take into account the type of codec used and

then accordingly changing the parameters to compensate for

the differences between the codec performance or bitstream

syntax. An interesting work currently in this direction is

on-going under the joint collaboration of VQEG and ITU
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TABLE 5. Publicly available HAS databases.

project called AVHD/P.NATS Phase 2 which includes bit-

stream and pixel based models considering three encoders

(h.264, h.265 and vp9).

VIII. PUBLICLY AVAILABLE HAS DATASETS

Based on our discussion so far, it is clear that very few of

the works have made their implementation and/or the dataset

public. Recent years have seen tremendous growth in the

field of VQA, one of the main reasons behind which was

the availability of open source databases such as LIVE Video

Quality Database [118]. The availability of such open source

datasets allows researchers to gain comparable and more

generalizable results for VQA, QoE prediction modeling, etc.

by providing a baseline for comparing the performance of

newly proposedmodels andmetrics against the existing state-

of-the-art metrics. We discuss briefly in this section the seven

currently publicly available datasets and their advantages and

limitations in terms of their suitability for being used as a

benchmark for HAS models design and/or validation and

comparison. These are reported in Table 5 and discussed in

the following.
1) LIVE QoE Database for HTTP based Video Streaming

is one of the first publicly available dataset for mod-

eling continuous time-varying subjective quality. The

available videos are of 720p resolution and 300 sec-

onds duration, obtained by concatenating smaller dura-

tion videos. The quality switching is performed only

using the quality (compression) adaptation dimension

and does not include multiple resolution-bitrate pairs,

which is more realistic of the real-world applica-

tions. While this dataset is very useful for studying

and/or modeling the continuous time quality varying

prediction models, in the absence of other impairments

as commonly observed in real-world HAS based appli-

cations (rebuffering events, etc.) it is quite limited in

scope for the design and validation of a comprehensive

HAS QoE model.

2) Waterloo QoE Database consists of 20 uncompressed

HD videos and 60 compressed videos obtained by

encoding the videos at three different bitrate levels

(500 kbps, 1500 kbps and 3000 kbps) and 60 each

by introducing a 5 second stalling event at the start

and middle of the video playback resulting in a total

of 180 distorted video sequences. While this dataset

includes both stalling and quality switching, as dis-

cussed previously, this is fully realistic as the stalling

events are of fixed duration as well as at fixed locations

(start and middle of video playback). Also, quality

adaptation is considered based on only one dimen-

sion (compression) not taking into account other adap-

tation dimensions (spatial and temporal).

3) LIVE Netflix Video Quality of Experience Database

consists of subjective ratings considering 14 source

video contents and 112 distorted video sequences

obtained by compressing the videos using the

H.264 encoder and eight different playout patterns

(including rebuffering events). The video dataset is

limited to a single resolution of 1080p and of different

frame rates (24, 25 and 30 fps). One of the notable

shortcomings of this dataset is that since it uses eleven

copyright-protected videos out of a total of 14, only

three source videos and the corresponding distorted

videos are provided in this dataset. While most of the

commonly used FR and RR metric values are already
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provided, such a dataset is not suitable to evaluate

custom QoE models.

4) LFOVIA Video QoE Database consists of 18 uncom-

pressed reference videos and 36 distorted video

sequences of 120 seconds duration and is the only

dataset so far which includes videos of resolution

up to 4K. The dataset considers both rebuffering

events (rebuffering frequency and rebuffering dura-

tion) and quality switching (multiple resolution-bitrate

pairs) which are representative of real-world conditions

(though the ideal fixed duration up and down switch-

ing may not be too realistic). Such a dataset, which

includes both continuous and overall scores, is com-

prehensive enough for design/validation of real-world

applications.

5) Live Mobile Stall Video Database II, which focuses

only on stalling events, consists of 24 reference videos

and 174 distorted videos of 720p resolution generated

using 26 different stalling patterns. The dataset pro-

vides both continuous as well as retrospective scores.

Such a dataset can be used to study and probably model

the effect of stalling on user QoE, but, in the absence of

sequences and corresponding subjective ratings taking

into account other IFs which may affect end user QoE

in typical HAS based applications, it is not exhaustive

enough for design and/or validation of QoE models.

6) Waterloo QoE Database (ECT) consists of 12 source

videos 8s long, which are then further segmented to 4s

segments (referred to as short segments). The short seg-

ments are then encoded into seven different representa-

tion sets obtained by encoding them at different quality,

frame rates and resolution. By concatenating the 4s

segments, 8s segments are obtained to represent differ-

ent adaptation types (quality/spatial/temporal). A total

of 168 4s short segments and 588 eight sec segments

and their corresponding subjective ratings (overall and

continuous (per segment)) are made available in the

dataset. The dataset can be used as a baseline towards

studying the effects of quality adaptation but is limited

in many aspects, such as single adaptation event only

and missing impact of other IFs, hence is not compre-

hensive enough for design and/or validation of HAS

models.

7) The latest, newly designed, LIVE-NFLX-II Subjective

Video QoE Database is one of the most comprehen-

sive databases available till date. The database con-

sists of 15 source videos and a total of 420 distorted

sequences (using seven mobile network traces and

considering four client adaptation algorithms) but is

limited in that it considers only one resolution. The

encoding bitrates are obtained using the recently pro-

posed Dynamic Optimizer [122]. The use of four dif-

ferent adaptation algorithms in the database is useful

to investigate the effect of such client-side adapta-

tion on end user QoE and hence, in the design of a

more exhaustive QoE model. The database includes

both continuous as well as retrospective prediction

scores. Additionally, an open-source Python based tool

called Psychopy, to generate and display visual stimuli

and collect continuous per-frame subjective ratings,

is made available.

IX. CONCLUSION, CHALLENGES AND FUTURE WORK

In this paper, we surveyed the key QoE models for HAS

applications. It was observed that rebuffering, quality switch-

ing and encoding related impairments are the most widely

considered IFs. It is interesting to note that context IFs such

as viewing environment, video popularity, type of usage,

etc. are still not considered by any model except for one

by Mok et al. [61]. It is also observed that most of the

proposed models are limited in several aspects (considered

IFs, performance evaluation, modeling of IFs/model, etc.),

with a general comprehensive QoE model still far away from

being ready. Regarding the effect of various IFs on the end

user QoE, there remains a disagreement in the research com-

munity on the relationship and importance of a particular

IF on the end user QoE. For example, some of the models

advocate the usage of memory-related features, while others

ignore them with the reasoning that such factors do not have

a significant effect on the final QoE. More systematic, well-

designed, large-scale subjective tests are required to quantify

the impact of various IFs, as done in [108] for quantifying the

effect of resolution switching on QoE.

One of the biggest challenge currently faced by the

research community involved in QoE modeling for HAS

applications is that it is almost impossible for a single pro-

ponent to design and conduct all-inclusive and comprehen-

sive subjective test(s) due to high costs and time constraints,

especially when considering that, when considering multiple

IFs, the number of possible test conditions is enormous.

This has been further hindered by the lack of open source

databases. One of the primary reasons behind the progress

in the field of quality assessment for image and VQA can

be attributed to the open source databases such as LIVE

Video Quality Assessment Database [118] which facilitated

design and comparison of many quality metrics. For HAS

applications related models, out of the 28 reviewed models,

only few have made their databases public (see Section VIII).

This calls for a need for the research community to move

towards reproducible research by making work available

in the form of open source databases. As evaluated and

discussed by Tavakoli et al. [107], subjective data gathered

across different lab contexts provide comparable results.

Therefore, there is a need for the design of a methodological

approach for subjective test assessment procedures for HAS

applications so that the results and observations can be repro-

duced, reused and compared. There exist several methods

to perform subjective assessment, but, to make the results

reproducible, a set of standardized methods are published

by ITU-T in the form of recommendations, which discuss

the methodology for deciding various test conditions such

as the selection of proper test sequences, display settings,
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test environment, etc. [14], [15]. While such strict adherence

to lab-based conditions are not imperative for HAS related

subjective tests, following proper subjective test methodolo-

gies and, even more importantly, reporting the conditions,

can lead to easier understanding and reuse of results by other

researchers. For a more detailed analysis of subjective test

assessment methodologies and some related open questions,

we refer the reader to the work of Tavakoli et al. [107] and

Garcia et al. [123].

QoE modeling, due to its multi-disciplinary and highly

subjective nature, is a challenging topic, especially for HAS

applications where there are many IFs that need to be consid-

ered. Even though QoE modeling for HAS applications has

recently gained the attention of the research community, there

remain several open challenges and issues such as:

1) Multi-factor QoE model design: As discussed in [10],

there exist lots of influence factors which need to

be taken into consideration for the design of a com-

prehensive QoE model. Some IFs, especially context

related ones, such as the effect of environment, purpose

of watching the service, etc., are still not considered

by any model. As discussed in [124], to truly under-

stand the user’s QoE, a complete understanding of

both streaming technique and implementation details

of each application is needed. Such detailed informa-

tion can then be used for the design of a more ‘‘real-

istic’’ QoE model which can also take into account

user initiated actions such as play, pause, seeking (for-

ward/backwards), etc. Future models should consider

taking into account such IFs in their model design.

2) Model Complexity: Most of the works reviewed in this

paper, with the exception of two (Xue et al. [70] and

Rodríguez et al. [66]), do not provide any discussion on

themodel complexity and/or energy consumption asso-

ciated to the quality evaluation based on the model. The

use of high complexity QoE models at the client device

can lead to reduced performance of the application

due to increased consumption of power and computing

resources. Similarly, for server-based models, IFs mea-

surement information (rebuffering duration, number of

quality switches etc.) needs to be sent from the client

to the server to be considered by the model. Hence,

we argue that studies on the complexity of the existing

models are needed to help understand their real-world

applicability; similarly, relevant discussions should be

provided by the proponents of new models.

3) Subjective test methodology: As discussed in

Section VII, there still exists a need for proper sub-

jective assessment methodology for HAS applications,

hence research on this aspect is encouraged, for more

scientific and reproducible research.

4) Privacy Issues: Another challenge is the decision of

where (client/server/network) to deploy the monitoring

tool to acquire the measurements of the IFs consid-

ered by the model. Client-side monitoring and manage-

ment are an invasion of privacy and also suffer from

shortcomings such as possible cheating by end-user to

receive better service, etc. [21]. Network-side monitor-

ing, while overcoming these issues, is not that effec-

tive regarding insight into the influence of factors on

QoE [22].

5) Stakeholder: Depending on the amount and type of

information required as input to the model, its mea-

surement can be intrusive or non-intrusive. Also, some

models are designed to work with encrypted data, while

others require access to bitstream or media signals.

Depending on the stakeholder, the requirements will

vary. For example, a network provider, to monitor

third-party OTT traffic, may prefer a QoE model that

works with encrypted video, as sooner or later, all video

streaming traffic will be encrypted [124]. Such fac-

tors need to be taken into consideration during model

design.

6) QoE based management: Individual and joint effect of

the various IFs need to be evaluated for the design of

appropriate QoE control and management strategies.

Such insight can then be used for other applications.

For example, the knowledge that frequent quality

switching can lead to a decrease of QoE can lead

to the design of better rate adaptation algorithms by

the application provider while a network operator can

compensate for quality fluctuations by throttling the

network throughput, to limit the bandwidth fluctuation.

The research community has some exciting challenges

ahead of them. Faster and better results can be achieved by

collaborative efforts and by moving further towards repro-

ducible research.
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