
qopt: An experiment-oriented Qubit Simulation and Quantum Optimal Control
Package

Julian D. Teske,∗ Pascal Cerfontaine, and Hendrik Bluhm†

JARA-FIT Institute for Quantum Information, Forschungszentrum
Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany

(Dated: October 13, 2021)

Realistic modeling of qubit systems including noise and constraints imposed by control hardware
is required for performance prediction and control optimization of quantum processors. We intro-
duce qopt, a software framework for simulating qubit dynamics and robust quantum optimal control
considering common experimental situations. To this end, we model open and closed qubit systems
with a focus on the simulation of realistic noise characteristics and experimental constraints. Specifi-
cally, the influence of noise can be calculated using Monte Carlo methods, effective master equations
or with the efficient filter function formalism, which enables the investigation and mitigation of auto-
correlated noise. In addition, limitations of control electronics including finite bandwidth effects as
well as nonlinear transfer functions and drive-dependent noise can be considered. The calculation
of gradients based on analytic results is implemented to facilitate the efficient optimization of con-
trol pulses. The software easily interfaces with QuTip, is published under an open source license,
well-tested and features a detailed documentation.

I. INTRODUCTION

A central challenge for the realization of a universal
quantum computer is the loss of entanglement and coher-
ence due to the detrimental effects of uncontrolled inter-
actions between the system storing quantum information
and its environment [1]. To understand the underlying
error processes and predict the performance of quantum
processor designs, a realistic model for the manipulation
by control hardware and the noise introduced by the en-
vironment is required. Such a model is also essential for
optimizing the performance, for example using quantum
optimal control (QOC) techniques, which adapt control
pulses such that a suitably chosen metric is maximized
[2, 3]. QOC methods will be essential to achieve the
best possible gate accuracy for quantum devices, both
for noisy intermediate-scale systems and future univer-
sal quantum computers [4–9]. For increasing the number
of qubits in a quantum processing unit, QOC techniques
will likely be needed to address effects like crosstalk of
control fields, frequency crowding and unintended cou-
pling between qubits. Furthermore, a well-founded per-
formance assessment for benchmarking, platform selec-
tion and system design is only possible if the best possible
control approaches are considered.

In a physical system, the time-dependent control fields
implementing a desired quantum gate, which we refer to
as control pulses, are applied to a qubit using classical
control hardware (such as arbitrary waveform generators
or lasers). In numerical QOC, a qubit’s evolution is sim-
ulated for a given control pulse and then optimized prior
to the application to the experiment. To achieve the best
possible qubit performance, this optimization requires a

∗ j.teske@fz-juelich.de
† bluhm@physik.rwth-aachen.de

model of the whole system including any effects that in-
fluence its evolution. These factors can include the in-
trinsic properties of the qubits themselves, their coupling,
the unintended interaction with the environment [10] as
well as their response to and properties of the control
hardware. Incorporating the control hardware into the
models is also essential for the design of tailored control
electronics for quantum computation, e.g, cryolectronic
systems operated in close vicinity of the qubits for achiev-
ing a high wiring density. While providing at least the
minimally required control capabilities, additional con-
straints like a reduced heat dissipation compatible with
cryogenic cooling need to be considered [11, 12] for such
systems.

Even if the models used for pulse optimization are not
sufficiently accurate for the direct (”open loop”) exper-
imental application of the results, they can be a useful
starting point for further fine-tuning in a closed loop with
feedback from an actual experiment [13–15]. Even then,
they should behave as similar as possible to the physical
system and at least qualitatively capture all relevant ef-
fects. Simulation frameworks are also helpful to simulate
and develop such experimental tuning procedures [15–
17], or they can be combined with the characterization
of a qubit in an optimization loop [18].

The desire to achieve realistic models leads to a num-
ber of required features. The signal transduction from
the hardware to the qubit must be modeled including
all relevant technological limitations, such as the finite
bandwidth of arbitrary waveform generators [19] and sig-
nal pathways, that effect the actually implemented gate,
can also cause gate-bleedthrough [20] and crosstalk be-
tween different control signals. Furthermore, nonlinear
effects may arise, either due to the control-hardware it-
self, or because of a nonlinear relation between the phys-
ical control fields and the effective control Hamiltonian,
e.g., due to a truncation of the Hilbert space involving
a Schrieffer-Wolf transformation. Regarding decoherence

ar
X

iv
:2

11
0.

05
87

3v
1 

 [
qu

an
t-

ph
] 

 1
2 

O
ct

 2
02

1



2

effects, it is important to realistically consider all relevant
noise sources and their properties. An important aspect
are correlations of noise, which can be incorporated by
nontrivial spectral noise densities [10]. Correlated noise
is a limiting factor for high-fidelity gates in many sys-
tems [16, 21, 22], but correlations can also be exploited
to reduce decoherence effects in dynamically corrected
gates. The performance quantification of quantum op-
erations can be extended to such a mitigation of noise
effects, often termed robust optimal control [10]. In case
of nonlinear relations between control fields and qubit
Hamiltonian, the effect of noise in the control field auto-
matically depends on the control field, thus representing
drive-dependent noise.

From a performance point of view, it is important to
be able to use efficient algorithms that are well-suited for
the problem at hand. Many algorithms for the numeri-
cal optimization discretize control pulses in time to yield
a finite dimensional parameter space. The discrete ele-
ments of the control pulses can then be updated simulta-
neously using gradient ascent methods such as GRAPE
[23] or subsequently with Krotov’s method [24] as well
as gradient-free methods [25]. More advanced gradient-
based algorithms include the use of second order deriva-
tives [26], gradient optimization of analytical controls
(GOAT) [27] and the application of the Kalman filter
for the estimation of gradients [28]. Another approach
is to parameterize control pulses in terms of a randomly
chosen subspace using CRAB [29] or the remote version
RedCRAB [30].

To ease the application of advanced models and al-
gorithms, general purpose, flexible and easily usable
software implementations are highly advantageous. An
early example is the unifying algorithmic framework DY-
NAMO [31], which implements GRAPE and Krotov’s
method in Matlab and inspired the implementation of
an optimal control package in the Quantum Toolbox in
Python (QuTiP) [32], an open-source software for the
simulation of open quantum systems. An additional
package introduces Krotov’s method to QuTiP as de-
scribed by Goerz et al. [33]. QuTiP’s extension by
the subpackage for quantum information processing in-
troduces the capability to simulate quantum gates on the
pulse level with the option to include noise but without
optimal control techniques. There are also special pur-
pose optimization frameworks like QEngine [34] for ultra-
cold atoms or Pulser [35] for neutral-atom arrays. Some
of these implementations can be generalized to noisy sys-
tems if an open system description based on master equa-
tions is adopted [36], thus readily treating Markovian
noise. One possibility do deal with non-Markovian noise
is the use of ancillary qubits [10, 37], which however is
computationally very costly as it substantially increases
the Hilbert space dimension. A methodology combining
open and closed loop optimization is the C3 tool set for
integrated control, calibration and characterization [18].

While these simulation frameworks are widely and suc-
cessfully used in their respective domains, we found them

to be less suited and difficult to extend to address the
above requirements for the realistic, hardware aware sim-
ulation. We thus implemented the new python package
qopt [38], which was in many ways inspired by QuTiP’s
optimal control subpackage, but has in some aspects a
different structure. Specifically, the performance of se-
quential optimization algorithms like Krotov’s method is
based on the possibility to efficiently update pulses inde-
pendently in each time step, which is incompatible with
our current implementation of parameterized pulses and
transfer functions.

Concurrent with our work, the startup Q-CTRL de-
veloped a software with similar methods but pursued a
different strategy and targeted a commercial audience
[39]. As for qopt, these methods include generalized filter
functions and the simulation of noise by explicitly sam-
pling noise distributions as Monte Carlo simulations. The
imperfections of control hardware are modeled by trans-
fer functions. Additionally, Q-CTRL provides methods
for the noise characterization of a given system. While
one may expect that the commercial multi-purpose soft-
ware of Q-CTRL leads to a feature-rich and easy to use
solution, the closed-source approach reduces the trans-
parency and flexibility, which is often important for re-
search use. As an GPL3-licensed open-source package,
qopt complements this approach, targeting mainly the
scientific community in academia and industry. Besides
low barriers to entry, the modular structure and com-
plete API documentation [40] provide full flexibility in
the implementation of new techniques that expand the
application to unsolved problems. The user can supply
her own optimization algorithm or replace any other rel-
evant part. Multi-processing is also supported.

This paper gives an overview of qopt’s capabilities
while a full documentation and numerous introductory
examples can be found online on readthedocs [40]. Sec-
tion II describes the mathematical formulation used for
the experimentally oriented simulation of qubits and the
application in QOC. The actual implementation of the
qopt package is portrayed in Section III, including a prac-
tical example. Finally, an outlook is given in Section IV.

II. PROBLEM FORMULATION AND
SIMULATION METHODS

A. Problem formulation

A rather general model for a driven qubit system sub-
ject to (classical) noise can be described by a Hamiltonian
of the form

H(t) = Hc(t) +Hd(t) +Hn(t) (1)

Hc(t) =
∑
k

uk(t)Ck (2)

Hn(t) =
∑
k

bk(t)sk(t)Ck (3)



3

with the control Hamiltonian Hc, the drift Hamiltonian
Hd and the noise Hamiltonian Hn. The control Hamil-
tonian models the manipulation of the system with time
dependent control amplitudes uk and Hermitian oper-
ators Ck. The drift Hamiltonian Hd incorporates any
effects that cannot be freely controlled but still affect
the dynamics. It describes the natural evolution of the
system in absence of any control, e.g., due to a fixed
energy splitting. The noise Hamiltonian Hn models un-
intentional interactions of the system with the control
hardware or the environment, like electrical noise on the
control amplitudes or the interaction with electromag-
netic fields from the host material. The noise amplitudes
bk describe the strength of the perturbation while the
noise susceptibilities sk describe the coupling strength
to the noise source. sk can depend on the control am-
plitudes uk to model noise originating from the control
mechanism. We assume the noise to be classical with
zero mean and (wide-sense) stationary. Auto-correlated
classical noise is characterized (up to higher-order corre-
lations for non-Gaussian processes) by its spectral density
Sk(ω) defined as the Fourier transform of the correlator
〈bk(t1)bk(t2)〉 = 1

2π

∫∞
−∞ Sk(ω)e−iω(t1−t2)dω.

In many experiments the control amplitudes uk(t) in
the Hamiltonian from Eq. (2) are not directly control-
lable by the experimentalist. Rather, they are functions
of physical control fields vi(t). We call the mapping of
vi to uk the amplitude function (see Fig. 1). An ex-
ample is the control by Rabi-driving where the control
amplitude v1(t) = A(t) and phase offset v2(t) = δ(t) of
a control signal appear in the Hamiltonian as u1(t) =
A(t)sin(ωt + δ(t)). Nonlinear amplitude functions can
also arise from the truncation of Hilbert space. For ex-
ample, the exchange interaction of two electron spins de-
pends nonlinearly on the detuning between different or-
bital states of the electrons, when the orbital states are
truncated.

Furthermore, imperfections of the control electronics
can be modeled by the use of linear transfer functions
[19] acting on the controllable optimization parameters
vk. This can be done by oversampling and smoothing
the control pulse e.g., by convolution with a Gaussian
kernel or by using a realistic transfer function, measured
for a specific device. Our implementation also allows the
user to add boundary conditions by padding the begin-
ning and end of each pulse with appropriate values. A
common use case is an additional idle time at the end of
each pulse in order to avoid transients across pulses [16].
Note that the amplitude and transfer functions have sim-
ilar roles, but different constraints. The amplitude func-
tion can be nonlinear but must be local in time, whereas
the transfer function must be linear but can be nonlo-
cal in time. The transfer function is applied before the
amplitude function.

B. Noise Simulation

For the numerical solution of the Schroedinger equa-
tion, we assume piecewise constant control during nt time
steps of length (∆t1, . . . ,∆tnt). The total unitary prop-
agator of an evolution is calculated as a product of ma-
trix exponentials of the time-independent Hamiltonians
U = e−iH(tnt )∆tnt . . . e−iH(t2)∆t2 · e−iH(t1)∆t1 using the
convention ~ = 1.

Noise can be taken into account with several methods,
which might be more or less appropriate and numerically
efficient depending on the noise properties.

Explicitly generating numerous noise traces whose
Fourier transform converges (on average) to the noise
spectral density S is one of the simplest methods. In
this approach the highest relevant noise frequency sets
the required time step for the numerical integration, so
that additional oversampling is required if it exceeds the
bandwidth of the pulse itself. Since the numerical com-
plexity of the simulation grows proportionally with over-
sampling, such a Monte Carlo approach becomes compu-
tationally inefficient if the noise spectral density cannot
be neglected at frequencies much higher than the band-
width frequency of the control electronics. Even if this
is not an issue, many repetitions are required to gather
statistics.

If the main noise contribution occurs at frequencies
much lower than the simulation dynamics, it is sufficient
to consider the noise amplitude to be static during the
pulse. For few noise sources, explicit numerical integra-
tion of the (typically Gaussian) probability distribution
of these noise values is more efficient than Monte Carlo
sampling in small dimensions [41]. The user can choose
between both methods in qopt.

If high noise frequencies are relevant, more efficient
methods than Monte Carlo or numerical integration are
available. They are based on master equations and filter
functions for white and auto-correlated noise described
by spectral densities, respectively [16, 17, 42, 43]. In the
special case of Markovian (uncorrelated) noise, the influ-
ence on the qubit system can be described by an effective
master equation in Lindblad form [42]. In this master
equation, the von-Neumann equation is complemented
by a dissipation term leading to non-unitary dynamics.
The Lindblad form is

ρ̇ = − i
~

[H, ρ] +
∑
n

γn

(
LnρL

†
n −

1

2
{L†nLn, ρ}

)
, (4)

where the Lindblad operators Ln describe dissipation ef-
fects and can themselves depend on the control ampli-
tudes.

The master equation is written as linear system of
equations with the Kronecker matrix product ⊗ and cal-



4

culated as matrix exponential:

vec(ρ)(t) = exp[(−iH+ G)t] vec(ρ)(0), (5)

H = I ⊗H −HT ⊗ I, (6)

G =

K∑
k=0

D(Lk), (7)

D(L) = L∗ ⊗ L− 1

2
I ⊗ (L†L)− 1

2
(LTL∗)⊗ I, (8)

where vec(ρ) denotes the density matrix written as vector
in column-wise order.

The derivation of a master equation in Lindblad form
requires the assumption of Markovian (uncorrelated)
noise. This approximation does not hold for many ex-
perimentally relevant noise sources such as flux noise in
superconducting qubits and charge noise in many types
of solid state qubits, which typically have an 1/f -like
spectrum. The filter function formalism provides a math-
ematical tool which can (perturbatively) model the de-
coherence caused by arbitrary classical noise [43]. Both
master equation and filter functions have already been
employed for numerical pulse optimization [17, 44].

In the filter function formalism, a so-called filter func-
tion Fα can be calculated given the evolution of the sys-
tem for each noise source α. For a given control pulse,
Fα captures the susceptibility of the resulting quantum
channel to the noisy quantity as function of frequency.
The noise contribution to the entanglement infidelity or
other figures of merit can be calculated as the integral of
the filter function and the spectral noise density

Iff =

∫ ∞
−∞

dω

2π
Sα(ω)Fα(ω). (9)

The filter function formalism is an approximate and
efficient method to calculate the infidelity caused by fast
non-Markovian noise of small amplitude. It outperforms
Monte Carlo simulations for small systems, while Monte
Carlo methods scale better with an increasing number of
qubits [45, 46]. The numerical routines for the calculation
of filter functions and their derivatives with respect to the
control amplitudes ∂Fα

∂uk(t) are provided by the software

package filter functions [47].

C. Fidelity measures

qopt implements various fidelity measures to quan-
tify the accuracy of quantum operations. For state
transfers, the state fidelity between the initial and fi-
nal quantum states described by the density matrices ρ1

and ρ2 can be used, which is defined as Fst(ρ1, ρ2) =[
tr
(√√

ρ1ρ2
√
ρ1

)]2
.

One commonly used measure for the closeness of two
quantum gates is the entanglement infidelity Ie(V † ◦U).
If both the simulated propagator U and the target gate

V are unitary, the entanglement fidelity Fe = 1 − Ie is
given by the Hilbert-Schmidt norm as

Fe(V † ◦ U) =
1

d2
|tr(V †U)|2. (10)

This fidelity can also be generalized for open quantum
systems [48] and we calculate it as

Fo(V,Us) =
1

d2
tr
((
V T ⊗ V †

)
Us
)
, (11)

where Us is the simulated noisy quantum process.
Leakage occurs in a quantum processor if states outside

the computational subspace are populated. To simulate
this error source, we extend the Hilbert space of compu-
tational states Hc as vector space sum H = Hc +Hl by
the space Hl spanned by the leakage states. We quantify
the amount of information lost into the leakage subspace
by cropping the unitary evolution on the entire system
to the computational states and calculating the distance
to unitarity of the projected propagator Uc as

L = 1− tr(U†cUc)/d. (12)

In order to investigate the amount of incoherent leakage,
i.e., caused by noise, this cost function can be combined
with a noise simulation.

D. Optimization Procedures

The minimization of such a fidelity over the optimiza-
tion space spanned by all possible control pulses u(t) for-
mally defines QOC as the minimization problem:

min
u(t)
I(u(t)) = I(u∗(t)). (13)

Although qopt provides a general interface for cost
functions that can be used with any optimization algo-
rithm, we set a special focus on the use of gradient-based
optimization algorithms. They are widely used and also
applicable in QOC [23]. For this purpose we implement
the analytic calculation of exact gradients, which do not
require any assumption about the time discretization nor
about the control strength and represent an alternative
to the use of automatic differentiation [18, 49].

When multiple cost functions are evaluated, the soft-
ware supplies them as a vector to the optimization algo-
rithm. This leaves more options for the optimization and
allows to give each cost function an individual weight.

III. IMPLEMENTATION

In this section we present qopt’s object-oriented imple-
mentation by first discussing the structure of an optimal
control setup with qopt, and then outlining the opti-
mization of an Xπ/2 gate for a single qubit controlled by
Rabi-driving as a simple illustrative example.



5

Si mul at or

Tr ansf er  
Funct i on

(Gaussian TF)

Ampl i t ude 
Funct i on

v ?  u

Sol ver
(Schrödinger  Equation)

Cost  
Funct i on

(Entanglement 
Fidel i ty) Opt i mi zer  

(New ton)
New  Parameter s

Resul tDat a 
Cont ai nerAnal yzer

Ini tial 
Optimization 
Parameter s

Dr i f t Noise

FIG. 1. Activity diagram of a pulse optimization with qopt. The solid and encircled dots show the start and end point
respectively. The arrows mark the flow of activity and the rounded rectangles the classes of the qopt package with base class
names written in bold and examples in brackets, while the parallelograms contain direct input from the model. The box of
the simulator is dashed because it defines an interface between the simulation and the optimization. Concrete examples or
explanations are given in the brackets below the class name, i.e., the example for a transfer function is the convolution with a
Gaussian kernel.

A. Program Flow

The intended setup is plotted as an activity diagram in
Fig. 1 giving a full picture, although not every feature and
every class needs to be used in practice. Only the solver
class is central to the simulation. The diagram shows the
modular software structure and the flow of information
between the classes.

The optimization commences with a set of initial opti-
mization parameters vk, which can be chosen randomly
or based on some insight. The package also features con-
venience functions to run the simulation with many dif-
ferent initial conditions in parallel to exploit the problem
structure for trivial full parallelization.

First, the ideal pulse parameters are mapped to the
actual pulse seen by the qubits as defined by a trans-
fer function class. Then, the control amplitudes uk are
calculated by the amplitude function class. The control
amplitudes enter the Schroedinger or master equation in
Lindlbad form together with the drift dynamics and the
noise. The appropriate differential equation to describe
the system is chosen by selecting the solver algorithm
class. The solution of the differential equation is subse-
quently passed to the cost function class, to calculate the
figure of merit for the optimization.

The simulator class is encircled in Fig. 1 by a dashed
box because it provides the interface between this sim-
ulation and the optimization algorithm. Furthermore it
gathers run time statistics like the time spent in each cost
function and for the calculation of the gradient. The op-

timizer class uses this interface to run the simulation in a
loop until the internal termination criteria are met. Then
it saves the final state in a result class and passes it to the
data container class. The analyzer class can be used to
visualize the results of several optimization runs stored
in the data container class.

The object-oriented modular implementation of the
code allows the user to easily replace single parts of the
optimization framework. Among other things, this allows
the user to make changes to the cost function (i.e., to use
a different fidelity metric) or use a specific transfer or
amplitude function. With the interface provided by the
simulation class it is possible to use most standard opti-
mization algorithms. Currently, the ’minimize’ and ’least
squares’ functions of scipy’s optimization subpackage are
supported [50].

Numeric operations are encapsulated in an operator
class. The computationally most expensive single opera-
tion during the simulation is the calculation of a matrix
exponential as required for the numeric solution of the
differential equations. The encapsulation allows the ex-
change of algorithms for the calculation of this matrix
exponential (see for examples [51]). The Qobj class from
QuTiP can be converted automatically into the qopt op-
erator class to improve the compatibility between both
packages. This makes it easy to transfer simulations to
qopt.

More information about qopt can be found in the on-
line documentation [40]. It features a complete API refer-
ence documentation and two series of IPython notebooks.



6

� � �� ��
��	
��
��

����

����

��
���

�
Iqs

� �� �� ��
��	
��
��

����

����

����

��
���

�
Ie

Iff

FIG. 2. Infidelities as cost functions of the iteration during
the optimization. (A) During the first optimization, we mini-
mize the infidelity in a Monte Carlo simulation of quasi-static
noise Iqs to find a pulse which is not susceptible to slow noise.
(B) Subsequently, we use the final parameters of the first opti-
mization to optimize the pulse for pink noise. We can see that
the infidelity Iff of Eq. (9) decreases during the second opti-
mization by about a factor of six. Thus pulses that mitigate
slow noise are far from perfect in mitigating pink noise.

The former explains each feature of qopt in detail while
the latter discusses practical examples including some in-
formation about the physics and numerics of qubit sim-
ulation, how noise sources can be characterized, which
type of noise simulation is the most efficient in each case
and which effects noise will have on the system. These
notebooks also serve as integration tests by demonstrat-
ing the consistency of different methods and the compar-
ison with analytic calculations. Together with various
unit tests for the critical parts of the implementation,
they ensure the reliability of qopt.

B. Example

We illustrate the usage of qopt in the pulse optimiza-
tion with the example of an Xπ/2 single-qubit gate and
optimize the pulse separately for quasi-static and auto-
correlated fast noise, so that we can demonstrate how

���

���

���

u
x
��


�−
1
��

� �� �� ��
	��
��
��

���

���

u
y
��


�−
1
�

���

���

���

u
x
��


�−
1
��

� �� �� ��
	��
��
��

���

���

u
y
��


�−
1
�

FIG. 3. Plots of the optimized control amplitudes as function
of time. (A) In the first optimization run, the control pulse is
optimized for quasi-static noise. (B) The control amplitudes
of the first run are used as starting point for an optimization
in the presence of pink noise.

different noise models are implemented in qopt’s API.
The Hamiltonian of the example will be a single qubit

manipulated by Rabi-driving in the rotating frame, which
can be denoted as H = ux(t)σx+uy(t)σy+δω(t)σz, where
ux(t) and uy(t) are the control amplitudes (correspond-
ing to the in-phase amplitude I and the quadrature am-
plitude Q of quadrature amplitude control), δω(t) the
deviation of the driving frequency from the resonance
frequency and the Pauli matrix σi for i ∈ x, y, z.

The detuning δω(t) enters Schrodinger’s equation as
a stochastic variable. In a first optimization we assume
that the resonance frequency changes much slower than
our gate time and is thus assumed to be constant during
the pulse (δω(t) = δω). We therefore integrate δω over
a Gaussian distribution and calculate the corresponding
infidelity Iqs using a Monte Carlo method.

In the second optimization we will use the final pa-
rameters of the first optimization as the initial pulse and
assume that the resonance frequency is subject to pink
noise and therefore the power spectral density of δω(t)
has the form S(f) = S0/f . In this case we calculate the
entanglement infidelity caused by systematic deviations
Ie separately from the one caused by noise, which we



7

calculate with filter functions Iff as in Eq. (9).
We optimize a pulse with 20 time steps of equal length:

1 import qopt as qo

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 n_time_steps = 20

6 delta_t = .5 * np.pi

We start setting up the first simulation with quasi-
static noise. The noise trace generator (NTG) provides
the noise samples for the solver algorithm:

7 noise_gen = qo.NTGQuasiStatic(

8 n_samples_per_trace=n_time_steps ,

9 n_traces =10,

10 standard_deviation =[.05 , ]

11 )

The solver class holds the information about the
Hamiltonian including the corresponding noise trace gen-
erator. The quantum operators are represented by the
dense operator class that is based on a numpy array. We
can also choose the exponential method, which is the
algorithm used to calculate the matrix exponential and
on demand its derivative (usually in combination). qopt
implements, among other methods, a spectral decompo-
sition or as in this example the default scipy method for
calculation of the Fréchet derivative of the matrix ex-
ponential. The solver class also interfaces to the filter
functions package [47].

12 solver = qo.SchroedingerSMonteCarlo(

13 h_ctrl =[.5 * qo.DenseOperator.pauli_x (),

14 .5 * qo.DenseOperator.pauli_y ()],

15 h_drift =[0 * qo.DenseOperator.pauli_x ()],

16 tau=delta_t * np.ones(n_time_steps),

17 exponential_method=’Frechet ’,

18 h_noise =[.5 * qo.DenseOperator.pauli_z ()],

19 noise_trace_generator=noise_gen ,

20 filter_function_h_n =[

21 [qo.DenseOperator.pauli_z ().data ,

22 np.ones(n_time_steps)]

23 ]

24 )

The target operation is an Xπ/2-gate and the cost func-
tion for the first simulation evaluates the mean devia-
tion between the simulated propagator and the target
gate. We can also choose to neglect the systematic er-
rors to calculate the entanglement fidelity on average be-
tween the unperturbed simulation and the simulation in-
cluding noise. The optimization algorithm is per default
the gradient-based L-BFGS-B algorithm implemented in
scipy and the bounds restrict the search space.

25 target = (

26 qo.DenseOperator.pauli_x ()

27 ).exp (.25j * np.pi)

28

29 cost_func_qs = qo.OperationNoiseInfidelity(

30 solver=solver ,

31 target=target ,

32 neglect_systematic_errors=False ,

33 label=[r’$\mathcal{I}_{\ mathrm{qs}}$’, ]

34 )

35

36 optimizer_qs = qo.ScalarMinimizingOptimizer(

37 system_simulator=qo.Simulator(

38 solvers =[solver , ],

39 cost_funcs =[ cost_func_qs , ]

40 ),

41 bounds =[[-1, 1], ] * 2 * n_time_steps

42 )

In the second simulation we use one cost function for the
systematic deviations calculated by the standard entan-
glement fidelity and a second cost function calculating
the infidelity caused by pink noise based on filter func-
tions. The sampling frequencies for the integral in equa-
tion (9) are set at the keyword argument omega.

43 cost_func_plain = qo.OperationInfidelity(

44 solver=solver ,

45 target=target ,

46 label=[r’$\mathcal{I}_{\ mathrm{e}}$’]
47 )

48 def noise_psd(f):

49 return 1e-3 / f

50

51 total_time = n_time_steps * delta_t

52 start = np.log10(1 / total_time)

53 end = np.log10 (1 / delta_t)

54

55 cost_func_ff = \

56 qo.OperatorFilterFunctionInfidelity(

57 solver=solver ,

58 noise_power_spec_density=noise_psd ,

59 omega=np.logspace(start , end , 200),

60 label=[r’$\mathcal{I}_{\ mathrm{ff}}$’]
61 )

62

63 optimizer_ff = qo.ScalarMinimizingOptimizer(

64 system_simulator=qo.Simulator(

65 solvers =[solver , ],

66 cost_funcs =[ cost_func_plain ,

67 cost_func_ff]

68 ),

69 bounds =[[-1, 1], ] * 2 * n_time_steps

70 )

The simulation is executed with the following commands:

71 np.random.seed (0)

72 result = optimizer_qs.run_optimization(

73 initial_control_amplitudes=

74 np.random.rand(20, 2))

75 result_ff = optimizer_ff.run_optimization(

76 initial_control_amplitudes=

77 result.final_parameters)

The resulting data can be stored with the data container
class and plotted with the analyzer class.

78 data_qs = qo.DataContainer ()

79 data_qs.append_optim_result(result)

80 analyser_qs = qo.Analyser(data_qs)

81 data_ff = qo.DataContainer ()

82 data_ff.append_optim_result(result_ff)

83 analyser_ff = qo.Analyser(data_ff)

Some cosmetics in plotting commands are shorted for
the sake of brevity. We can plot a final pulse (compare
to Fig. 3) with:

84 solver.transfer_function.plot_pulse(result.

final_parameters)



8

And the infidelity during the optimization (compare to
Fig. 2) with:

85 fig , axes = plt.subplots (2)

86 analyser_qs.plot_costs(ax=axes [0])

87 analyser_ff.plot_costs(ax=axes [1])

Each optimization took less than 10 s on a desktop PC.
The decrease in the infidelities during the optimizations
can be seen in Fig. 2 and the final pulses are plotted in
Fig. 3. With the second optimization run, the infidelity
as calculated in Eq. (9) is decreased by about a factor
of six, demonstrating the benefit of explicitly considering
fast auto-correlated noise.

IV. SUMMARY AND OUTLOOK

Our open-source software package qopt [38] provides
a general platform for the realistic simulation of qubit
systems and QOC. We set the focus on the accurate and
efficient simulation of arbitrary classical noise by includ-
ing three noise simulation methods with distinct applica-
tion areas. Quasi-static noise is efficiently simulated with
Monte Carlo methods or numerical integration, Marko-
vian noise is described best by a master equation in
Lindblad form, while fast non-Markovian noise can be
treated with filter functions. In the implementation of
each method, the noise model can be drive-dependent.
The limitations of control hardware are accounted for by
the use of transfer functions. In addition to the exam-
ple provided in this paper, the online documentation [40]
contains a complete API documentation and numerous
IPython notebooks discussing qopt’s features and an in-
troduction to practical simulations.

We also provide an open-source repository of pub-
lic simulation and optimal control projects called
qopt-applications [52]. It can serve as starting point
for new simulations and facilitates the transfer of knowl-
edge and new optimal control techniques.

QOC will continue to play a role in the search for the
optimal qubit system for the construction of universal
quantum computers. The increasing number of qubits
in quantum processors leads to new challenges like the
mitigation of crosstalk between adjacent qubits, robust-
ness of quantum gates towards qubit inhomogeneities or
increased noise levels in quantum processors operated
at higher temperatures. Since the improvements from
adopting QOC can be dramatic, any assessment of a
quantum computation platform should take the applica-

ble control techniques into account. The clean interface
between the simulation and the optimization algorithm
make qopt ideal for the comparison of various optimiza-
tion algorithms in the context of QOC. Novel AI-based
optimization algorithms are interesting candidates.

While we have found qopt to be very useful in a num-
ber of applications, there is certainly much room for ex-
tensions. One such a feature could be the application of
qopt for spectral noise analysis. This could, for example,
be achieved by the introduction of a cost function class
measuring the sensitivity of a pulse towards noise of a
specific frequency with the help of filter functions.

If performance becomes a bottleneck, qopt could profit
from a high performance compilation with numba [53],
the use of other algorithms for the calculation of ma-
trix exponentials, or highly optimized implementations
of performance critical functions in a compiled language.

For even more general modeling and pulse parameter-
ization capabilities, the amplitude and the transfer func-
tion classes could be generalized allowing for example the
application of the amplitude function before the transfer
function.

We published qopt with the vision of establishing a
new community standard for qubit simulations. The ap-
plication of a common simulation platform makes simu-
lations less time-consuming and more reproducible com-
pared to the use of special-purpose simulation code. Re-
producibility increases the trust in simulation results and
facilitates the transfer of simulation and optimal con-
trol techniques between different qubit systems. We
thus encourage users to upload new simulation code to
qopt-applications [52] to increase their visibility and
contribute to the advancement of the state-of-the-art.
We encourage the participation in the development and
welcome feedback on which new features would be useful.

ACKNOWLEDGMENTS

We thank Alexander Pitchford, Eric Giguère, Neill
Lambert and Franco Nori for helpful discussions and their
advice in the design of qopt. We also thank Alexander
Willmes, Christian Gorjaew, Paul Surrey, Frederike Butt
and Jiaqi Ai for testing qopt and providing feedback. We
acknowledge support from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No
679342), Impulse and Networking Fund of the Helmholtz
Association.

[1] W. G. Unruh, Phys. Rev. A 51, 992 (1995).
[2] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch,

W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy,
S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, and F. K.
Wilhelm, European Physical Journal D 69 (2015).

[3] C. Brif, R. Chakrabarti, and H. Rabitz, New Journal of

Physics 12, 075008 (2010).
[4] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi,

L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Phys.
Rev. A 82, 040305 (2010).

[5] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jef-



9

frey, A. Megrant, J. Mutus, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Mar-
tinis, Phys. Rev. Lett. 112, 240504 (2014).

[6] J. Preskill, Quantum 2, 79 (2018).
[7] X. Wang, L. S. Bishop, E. Barnes, J. P. Kestner, and

S. D. Sarma, Phys. Rev. A 89, 022310 (2014).
[8] X. C. Yang and X. Wang, Sci. Rep. 6, 1 (2016).
[9] B. E. Anderson, H. Sosa-Martinez, C. A. Riofŕıo, I. H.

Deutsch, and P. S. Jessen, Phys. Rev. Lett. 114, 240401
(2015).

[10] F. F. Floether, P. de Fouquieres, and S. G. Schirmer,
New Journal of Physics 14, 073023 (2012).

[11] L. Geck, A. Kruth, H. Bluhm, S. van Waasen, and
S. Heinen, Quantum Science and Technology 5, 015004
(2019).

[12] E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle,
S. Visser, L. Song, and R. M. Incandela, in 2016 IEEE
International Electron Devices Meeting (IEDM) (2016)
pp. 13.5.1–13.5.4.

[13] P. Cerfontaine, T. Botzem, J. Ritzmann, S. S. Humpohl,
A. Ludwig, D. Schuh, D. Bougeard, A. D. Wieck, and
H. Bluhm, Nat. Commun. 11, 4144 (2020).

[14] P. Cerfontaine, R. Otten, and H. Bluhm, Phys. Rev.
Applied 13, 044071 (2020).

[15] D. J. Egger and F. K. Wilhelm, Phys. Rev. Lett. 112,
240503 (2014).

[16] P. Cerfontaine, R. Otten, M. A. Wolfe, P. Bethke, and
H. Bluhm, Phys. Rev. B 101, 155311 (2020).

[17] P. Cerfontaine, T. Botzem, D. P. DiVincenzo, and
H. Bluhm, Phys. Rev. Lett. 113, 150501 (2014).

[18] N. Wittler, F. Roy, K. Pack, M. Werninghaus, A. S. Roy,
D. J. Egger, S. Filipp, F. K. Wilhelm, and S. Machnes,
“An integrated tool-set for control, calibration and char-
acterization of quantum devices applied to superconduct-
ing qubits,” (2020), arXiv:2009.09866 [quant-ph].

[19] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K.
Wilhelm, Phys. Rev. A 84, 022307 (2011).

[20] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jef-
frey, A. Megrant, J. Mutus, C. Neill, P. J. J. O’Malley,
C. Quintana, P. Roushan, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Mar-
tinis, Phys. Rev. Lett. 112, 240504 (2014).

[21] O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm,
V. Umansky, and A. Yacoby, Phys. Rev. Lett. 110,
146804 (2013).

[22] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R.
Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda,
Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha, Nature
Nanotechnology 13, 102 (2018).

[23] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,
and S. J. Glaser, Journal of Magnetic Resonance 172,
296 (2005).

[24] S. G. Schirmer and P. de Fouquieres, New Journal of
Physics 13, 073029 (2011).

[25] C.-H. Huang and H.-S. Goan, Phys. Rev. A 95, 062325
(2017).

[26] P. de Fouquieres, S. Schirmer, S. Glaser, and I. Kuprov,
Journal of Magnetic Resonance 212, 412 (2011).

[27] S. Machnes, E. Assémat, D. Tannor, and F. K. Wilhelm,
Phys. Rev. Lett. 120, 150401 (2018).

[28] J. D. Teske, S. S. Humpohl, R. Otten, P. Bethke, P. Cer-
fontaine, J. Dedden, A. Ludwig, A. D. Wieck, and

H. Bluhm, Applied Physics Letters 114, 133102 (2019),
https://doi.org/10.1063/1.5088412.

[29] T. Caneva, T. Calarco, and S. Montangero, Phys. Rev.
A 84, 022326 (2011).

[30] R. Heck, O. Vuculescu, J. J. Sørensen, J. Zoller,
M. G. Andreasen, M. G. Bason, P. Ejlertsen,
O. Eĺıasson, P. Haikka, J. S. Laustsen, L. L. Nielsen,
A. Mao, R. Müller, M. Napolitano, M. K. Ped-
ersen, A. R. Thorsen, C. Bergenholtz, T. Calarco,
S. Montangero, and J. F. Sherson, Proceedings of
the National Academy of Sciences 115, E11231 (2018),
https://www.pnas.org/content/115/48/E11231.full.pdf.

[31] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquières,
A. Gruslys, S. Schirmer, and T. Schulte-Herbrüggen,
Phys. Rev. A 84, 022305 (2011).

[32] J. Johansson, P. Nation, and F. Nori, Computer Physics
Communications 184, 1234 (2013).

[33] M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G.
Krauss, K. P. Horn, D. M. Reich, and C. P. Koch, Sci-
Post Phys. 7, 80 (2019).

[34] J. Sørensen, J. Jensen, T. Heinzel, and J. Sherson, Com-
puter Physics Communications 243, 135 (2019).

[35] H. Silvério, S. Grijalva, C. Dalyac, L. Leclerc, P. J. Kar-
alekas, N. Shammah, M. Beji, L.-P. Henry, and L. Hen-
riet, “Pulser: An open-source package for the design of
pulse sequences in programmable neutral-atom arrays,”
(2021), arXiv:2104.15044 [quant-ph].

[36] C. P. Koch, Journal of Physics: Condensed Matter 28,
213001 (2016).

[37] L. Pawela and P. Sadowski, Quantum Information Pro-
cessing 15, 1937 (2016).

[38] J. Teske, “qopt: A simulation and quantum optimal con-
trol package,” https://https://github.com/qutech/qopt
(2020).

[39] H. Ball, M. J. Biercuk, A. Carvalho, J. Chen, M. Hush,
L. A. D. Castro, L. Li, P. J. Liebermann, H. J. Slatyer,
C. Edmunds, V. Frey, C. Hempel, and A. Milne, “Soft-
ware tools for quantum control: Improving quantum
computer performance through noise and error suppres-
sion,” (2020), arXiv:2001.04060 [quant-ph].

[40] J. Teske, “qopt: Api documenta-
tion and introduction notebooks,”
https://qopt.readthedocs.io/en/latest/index.html
(2020).

[41] R. Caflish, Acta Numerica , 1 (1998).
[42] T. F. Havel, Journal of Mathe-

matical Physics 44, 534 (2003),
https://aip.scitation.org/doi/pdf/10.1063/1.1518555.

[43] T. J. Green, J. Sastrawan, H. Uys, and M. J. Biercuk,
New Journal of Physics 15, 095004 (2013).

[44] C.-H. Huang, C.-H. Yang, C.-C. Chen, A. S. Dzurak, and
H.-S. Goan, Phys. Rev. A 99, 042310 (2019).

[45] T. Hangleiter, P. Cerfontaine, and H. Bluhm, “Fil-
ter function formalism and software package to compute
quantum processes of gate sequences for classical non-
markovian noise,” (2021), arXiv:2103.02403 [quant-ph].

[46] P. Cerfontaine, T. Hangleiter, and H. Bluhm, “Filter
functions for quantum processes under correlated noise,”
(2021), arXiv:2103.02385 [quant-ph].

[47] T. Hangleiter, “filter functions: A package for efficient
numerical calculation of generalized filter functions,”
https://github.com/qutech/filter functions (2019).

[48] M. D. Grace, J. Dominy, R. L. Kosut, C. Brif, and H. Ra-
bitz, New Journal of Physics 12, 015001 (2010).



10

[49] M. Abdelhafez, D. I. Schuster, and J. Koch, Phys. Rev.
A 99, 052327 (2019).

[50] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
terson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Po-
lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-

dregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
Nature Methods 17, 261 (2020).

[51] C. Moler and C. V. Loan, SIAM Review 20, 801 (1978).
[52] J. Teske, “qopt-applications: Simulations

and optimal control implemented with qopt,”
https://github.com/qutech/qopt-applications (2020).

[53] S. K. Lam, A. Pitrou, and S. Seibert, in Proceedings
of the Second Workshop on the LLVM Compiler Infras-
tructure in HPC , LLVM ’15 (Association for Computing
Machinery, New York, NY, USA, 2015).


