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Abstract

Background: High-throughput next-generation RNA sequencing has matured into a viable and powerful method

for detecting variations in transcript expression and regulation. Proactive quality control is of critical importance as

unanticipated biases, artifacts, or errors can potentially drive false associations and lead to flawed results.

Results: We have developed the Quality of RNA-Seq Toolset, or QoRTs, a comprehensive, multifunction toolset that

assists in quality control and data processing of high-throughput RNA sequencing data.

Conclusions: QoRTs generates an unmatched variety of quality control metrics, and can provide cross-comparisons

of replicates contrasted by batch, biological sample, or experimental condition, revealing any outliers and/or

systematic issues that could drive false associations or otherwise compromise downstream analyses. In addition,

QoRTs simultaneously replaces the functionality of numerous other data-processing tools, and can quickly and

efficiently generate quality control metrics, coverage counts (for genes, exons, and known/novel splice-junctions),

and browser tracks. These functions can all be carried out as part of a single unified data-processing/quality control

run, greatly reducing both the complexity and the total runtime of the analysis pipeline. The software, source code,

and documentation are available online at http://hartleys.github.io/QoRTs.

Keywords: Quality Control, RNA-Seq, Next-generation sequencing, Differential expression, Differential transcript

regulation, Differential splicing

Background
High throughput next-generation sequencing of RNA

(RNA-Seq) provides an unprecedented volume of tran-

scriptomic information [1]. However, like all sequencing

technologies, RNA-Seq is prone to certain biases, errors,

and artifacts, necessitating robust and comprehensive

quality control (QC).

In most cases, major biases will be predictable and can

be accounted for in downstream analyses. Many inher-

ent biases will uniformly affect all replicates, and thus

may not invalidate cross-sample or cross-condition com-

parisons, depending on the analysis methodology used

[2–4]. In other cases, it may be possible to correct or ad-

just for such biases [5, 6].

However, RNA-Seq is a complex multi-stage process

with numerous potential modes of failure, both known

and unknown. Mistakes or inconsistencies in sample prep,

library creation, or in sequencing itself could potentially

introduce unanticipated artifacts, biases, or errors that

could lead to flawed results. In some cases such anomalies

will be obvious, but in many cases major artifacts can be

obfuscated by the sheer quantity of data involved. In these

(presumably rare) instances, it is vital that such issues be

detected so that they can be dealt with properly. However,

as the full set of all possible problems that could ever arise

with this technology is unknown, there is no comprehen-

sive way to automatically test for data quality.

Two existing tools, RSeQC and RNA-SeQC, can be

used to perform some quality control on RNA-Seq data-

sets [7, 8]. Other general-purpose tools can perform lim-

ited quality control on next-gen sequencing data,

including RNA-Seq [9, 10]. While these tools can pro-

vide some of the functionality necessary to validate the
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quality of RNA-Seq data, they all have significant short-

comings that limit their utility.

Here we introduce QoRTs, the Quality of RNA-Seq

ToolSet: a comprehensive, multifunction software package

that generates a broad array of quality control metrics and

allows bioinformaticians to view and compare RNA-Seq

data across numerous replicates, organized and differenti-

ated by batch, biological condition, library, read-group,

and/or sample [11].

Implementation
The QoRTs software package consists of two distinct

modules: a java package which performs most of the

data processing and a companion R package for

visualization and cross-replicate comparison. A recom-

mended analysis pipeline is illustrated in Fig. 1.

All count files, QC statistics, and browser tracks for a

given replicate can be generated using a single command

and over a single pass through the alignment file, greatly

streamlining the analysis pipeline. If desired, individual

sub-functions can be deactivated to reduce runtime.

QoRTs is both fast and efficient: it can generate a

comprehensive array of quality control metrics, browser

tracks, summary plots, and read counts in 3–6 min per

million read-pairs. For typical genomes and annotations

the QoRTs data processing utility requires less than 4

gigabytes of free memory. The companion R-package

(used for generating plots and pdf reports) has much

lower resource requirements and can generally run on

any desktop computer that can support R.

The java package was written in the Scala program-

ming language and uses the Picard sam-jdk API [12].

However, since all necessary libraries are compiled to

java bytecode and packaged in the distribution jar file,

neither Scala nor Picard is required for use. QoRTs is

designed to run on any machine that has both java (ver-

sion 6 or higher, 64-bit) and R (3.0.2 or higher), without

any additional dependencies.

The importance of quality control

Quality control in bioinformatics is a contentious issue,

and the necessity and utility of quality control metrics

is often called into question. However, across the field

of bioinformatics there are numerous cases where

biases, artifacts, and other data quality issues have

called results into question, sometimes resulting in re-

tractions [13–19]. In many of these cases the problems

were only identified when the study came under intense

external scrutiny, and the specific issues at fault were

not well-characterized up to that point. Such data-

quality issues can sometimes be corrected, but only

after they have been identified [20]. Thus: it is not suffi-

cient to check for issues that are already well-known:

quality control must be proactive and comprehensive.

RNA-Seq data in particular has numerous inherent

sources of bias including hexamer bias, 3’ bias, GC bias,

amplification bias, mapping bias, sequence-specific bias,

Fig. 1 An example analysis pipeline with QoRTs. This flowchart illustrates the recommended analysis pipeline for conventional RNA-Seq analysis using

QoRTs. Input and intermediary files are shown in blue, output files and results are shown in purple
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and fragment-size bias [5, 6, 21]. While most advanced

RNA-Seq analysis tools are designed with (at least some

of) these effects in mind, they often still rely on the as-

sumption these effects are consistent between samples

and uniform between experimental conditions [2, 22–24].

Outliers, batch effects, and/or effects that vary dispropor-

tionately between the experimental conditions can still

have the potential to drive false associations.

Without proactive and comprehensive quality control

it is not possible to be certain that unobserved errors,

biases, or artifacts do not violate the assumptions of

downstream analyses.

Quality control with QoRTs

Performing quality control with QoRTs requires two steps.

First the (java-based) data-processing module is run on

each replicate, and then the companion R package is used

for visualization and cross-comparison of replicates.

Simple multi-replicate plots that differentiate each

replicate individually (as offered in a limited capacity by

RSeQC and RNA-SeQC) may be adequate for small

sample sizes; however, with larger or more complex

studies these plots may be unreadable due to multi-

plotting and insufficiently distinct coloration. QoRTs

offers the ability to organize and differentiate replicate

Fig. 2 A small selection of the QC plots offered by QoRTs. This series includes 12 samples, each consisting of 6 technical replicates (for a total of

72 bam files), with 4 different biological conditions (3 samples per condition). In all nine plots, replicates are colored and differentiated by biological

group. In the line plots (c,d,e, and f) the samples are simply colored by biological group. In other plots (a and g), replicates are differentiated by

character, color, and horizontal offset. This differentiation allows easy identification of both outliers and systematic biases or errors associated with the

biological condition. Such systematic errors are of particular importance as they could potentially drive false associations. A full description of each plot

and its interpretation can be found in the supplementary materials
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groups by sample, sequencer-lane/run, or any arbitrary

grouping assigned by the user (such as biological condi-

tion). This allows easier identification of systematic biases

and artifacts in large-scale datasets. By default QoRTs pro-

duces a battery of 34 plots, which are each described at

length in the package user manual (Additional file 1) [25].

Fig. 2 includes a subset of these plots generated for a small

example dataset of 72 replicates (12 samples, 6 technical

replicates each). In this example, replicates are colored and

differentiated by biological condition. The standard battery

of QC plots can be automatically compiled into a single

multi-frame image or as a printable pdf report.

The purpose of these various plots is to characterize

the data in numerous ways, hopefully revealing any

artifacts, outliers, batch effects, or phenodata-associated

effects. In most cases any abnormalities should be re-

vealed by multiple plots, and the various metrics can

assist in identifying the underlying causes and assessing

whether downstream analyses are likely to be adversely

affected. The QoRTs user manual includes descrip-

tions of various potential issues and how they could

be recognized and differentiated using the available

QC plots [25]. The user manual also includes an in-

depth walkthrough of two examples in which QoRTs

was used to identify actionable quality control issues

in a real-world dataset.

In one such example, a shift in the sequencer scanner

at cycle 53 of read 2 resulted in a small number of reads

Fig. 3 Example issue detected via QoRTs. A subset of the output plots from a dataset in which a rare hardware-level fault produced an actionable

QC issue that can be easily identified via QoRTs. In (a) and (b) the replicates are colored by biological sample; in (c) and (d) replicates are colored

by sequencer lane. See the QoRTs vignette for more information (Additional file 1)
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(less than 1 %) being truncated (Fig. 3). Using the array

of information provided by QoRTs we can not only iden-

tify the presence of a QC issue, but also narrow down the

root cause of the issue and predict its impact on down-

stream analyses. In this example, the issue manifested as a

large increase in the rate of ‘N’ bases beginning at this

cycle and continuing to the end of the read. Similarly, an

abrupt increase in the alignment clipping rate was ob-

served beginning at this cycle. The fact that the issue was

specific to one lane (see Fig. 3c and d), rather than being

specific to any particular sample (see Fig. 3a and b)

implied that the issue likely originated at the sequencing

step rather than at sample or library preparation. The fact

that the alignment clipping rate jumped so dramatically at

cycle 53 indicated that the root cause was a massive

increase in the ‘N’ rate in a small subset of the reads,

rather than being a more subtle increase distributed across

all reads.

For most datasets these plots should not reveal anything

of interest: RNA-Seq is a relatively mature technology and

large-scale systematic errors should (theoretically) be rare.

However, when such errors do occur it is critical that they

be caught before the flawed data is analyzed and the

results reported.

Data processing for downstream analysis

In addition to its primary function as a quality control

tool, QoRTs automatically generates all input read-

count files needed for use with a number of differen-

tial expression/regulation analysis tools. Gene-level

read counts are generated using the same method-

ology specified by HTSeq and reproduced in the Bio-

conductor GenomicRanges package (using the default

“union” rule) [26, 27]. QoRTs also generates the exon-

level counts and related annotation files required by

DEXSeq [22].

QoRTs can also (optionally) produce a number of

browser track files designed for use with the UCSC gen-

ome browser or the IGV viewer [28–30]. QoRTs produces

“wiggle” files which can be used to view simple coverage

depth across evenly-spaced windows across the genome

(similar to those produced by the samtools “bam2wig”

utility) and specialized “bed” files which display coverage

depth bridging any known or novel splice junctions, pro-

viding functionality similar to the “sashimi” plots gener-

ated by IGV [30, 31]. QoRTs also provides tools for

generating summary tracks that display mean normalized

coverages across multiple samples.

Comparison with existing tools

QoRTs offers and improves upon many of the features

offered by the two other major RNA quality control

tools: RSeQC and RNA-SeQC (see Table 1).

The RNA-SeQC software package lacks many vital qual-

ity control metrics [8]. It does not calculate nucleotide-by-

Table 1 Features and capabilities of QoRTs compared with

those offered by other tools

QoRTs RSeQC RNA-SeQC

Sequence Metrics:

Quality score (by cycle) Yes Yes1,* Yes

G/C content Yes Yes Yes

Nucleotide vs cycle (NVC) Yes Yes1 No

N-rate by cycle Yes No No

Unclipped NVC Yes No No

Clipped Sequences NVC Yes No No

Alignment Metrics:

Strandedness Yes Yes2 Yes

Clipping Profile Yes Yes1,* No

Insert Size Yes Yes2,* Partial3

Cigar Op Profile Yes Partial1,2,4,* No

Cigar Op Length Distribution Yes No No

Gene / Exon Coverage

Gene-Body Coverage Yes Yes5,* Yes

Gene-Body Coverage, Low-/Medium-/
High-expression genes

Yes No Yes

Mapping Location rates (intron, exon,
UTR, etc.)

Yes Yes Partial

Gene Diversity Yes No No

RPKM/FPKM Yes Yes* Yes

“Wiggle” browser tracks Yes Yes5 No

Gene-level read counts for DESeq,
edgeR

Yes Partial No

Exon-level read counts for DEXSeq Yes No No

Splice Junction Metrics

# Distinct Junction Loci, Known/Novel,
High/Low coverage

Yes Partial5 No

# Splice Junction Events, Known/Novel,
High/Low coverage loci

Yes Partial5 No

Splice junction coverage “.bed” browser
tracks

Yes No No

Coverage read-pair counts for all Junc-
tion Loci

Yes No No

Visualization and Cross-Comparison

Cross-Comparison between replicates Yes Partial6 Partial6

Contrast by lane/run, biological group,
etc.

Yes No No

Generate Multiplots (png, svg, etc.) Yes No No

Generate QC reports (pdf) Yes No No

RSeQC functions with documented flaws are marked with an asterisk (*);

see the Additional file 2 for more information. (Note: 1Does not separately

track read-pairs for paired-end data. 2Performs analysis on a subsample of

input reads. 3Only calculates mean and standard deviation. 4Only profiles

some cigar operations. 5No paired-end mode, may double-count overlapping

paired reads. 6Generates comparison plots only for some metrics.)
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cycle, “N”-rate by cycle, insert size distribution, clipping

profile, cigar profile, or any splice-junction-related statis-

tics. While it may be sufficient for some purposes, the

absence of these critical QC statistics may allow biases,

artifacts, or errors to go undetected.

The RSeQC software package, which ostensibly

features a number of the functions implemented in

QoRTs, possesses numerous systematic bugs and flaws

that cause it to consistently produce erroneous and/or

misleading results across several critical QC metrics [7].

For the purposes of internal testing we generated a

variety of simple simulated SAM alignment files, each

containing up to a dozen ten-base-pair reads. Both QoRTs

(version 0.2.5, released March 5th, 2015) and RSeQC

(version 2.6.1, current as of March 5th, 2015) were run on

these example reads. Much of the resultant QC data

generated by RSeQC was found to be inaccurate. Docu-

mentation of a subset of these inconsistencies is provided

in the supplementary materials (see Additional file 2).

Many of these inaccuracies could potentially serve to

obfuscate real quality control issues or falsely suggest the

presence of nonexistent issues. The fact that such numer-

ous and fundamental errors remain present in a fully ma-

ture two-year-old software tool demonstrates that RSeQC

has not been subject to sufficient testing.

In addition, both RSeQC and RNA-SeQC only provide

very limited tools for visual cross-comparison between rep-

licates. The few cross-comparison plots that are available

simply plot all replicates over the same plotting area, each

in a different color. QoRTs can generate plots that contrast

and differentiate groups of replicates, allowing easy identifi-

cation of systematic biases or errors.

Conclusions
The QoRTs software package is a powerful, efficient, and

convenient multifunction toolkit capable of facilitating

quality control, data visualization, and data processing.

It quickly and efficiently generates numerous QC met-

rics and provides tools for cross-comparison of samples

by batch or group, greatly simplifying the identification

of outliers and of phenodata-associated patterns.

In addition, QoRTs reproduces and/or improves upon

the data processing functionality provided by numerous

other disparate tools such as the samtools bam2wig tool,

the DEXSeq count tool, and the HTSeq-count tool [22,

26, 27, 31]. These functions, along with the generation

of the QC metrics, can be executed as part of a single

unified data-processing/quality-control run, greatly redu-

cing both the complexity and the total runtime of the

analysis pipeline.

Availability and requirements

� Project name: QoRTs

� Project home page: http://hartleys.github.io/QoRTs/

index.html

� Operating system(s): Platform independent

� Programming language: R, Java/Scala

� Other requirements: Java 1.6 or higher (64-bit), R

3.0.2 or higher.

� License: This software is “United States Government

Work” under the terms of the United States

Copyright Act. It was written as part of the authors’

official duties for the United States Government and

thus cannot be copyrighted. This software is freely

available to the public for use without a copyright

notice. Restrictions cannot be placed on its present

or future use.

Additional files

Additional file 1: The QoRTs package vignette.

Additional file 2: Documentation of some of the errors and flaws

found with the RSeQC package.
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