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Abstract—

For wireless cellular and ad hoc networks with QoS constraints,
we propose a suite of problem formulations that allocate network
resources to optimize SIR, maximize throughput and minimize de-
lay. The distinguishing characteristics of these resource allocation
formulations is that, by using convex optimization, they accommo-
date a variety of realistic QoS and fairness constraints. Their glob-
ally optimal solutions can be computed efficiently through polyno-
mial time interior point methods, even though they use nonlinear
objectives and constraints.

Through power control in wireless cellular networks, we opti-
mize SIR and delay for a particular QoS class, subject to QoS
constraints for all other QoS classes. For wireless ad hoc net-
works with multihop transmissions and Rayleigh fading, we op-
timize various objectives, such as the overall system throughput,
subject to constraints on power, probability of outage, and data
rates. These formulations can also be used for admission control
and relative pricing. Both proportional and minmax fairness can
be implemented under the convex optimization framework, where
fairness parameters can be jointly optimized with QoS criteria.
Simple heuristics are also shown and tested using the convex opti-
mization tools.

Index Terms— Ad hoc Networks, Cellular Networks, Convex
Optimization, QoS Constrained Resource Allocation, Fairness

I. INTRODUCTION

S users of communication networks become less satisfied

with best efforts transmission, Quality of Service (QoS)
has become an important research and commercial issue. QoS
covers a wide array of network attributes, including bandwidth,
delay, and packet delivery guarantee. Voice, data, image, and
video have different bandwidth requirements. Some classes of
traffic, such as voice, are also much more sensitive to delays
than other classes, such as data.

QoS provisioning in a wireless network is a particularly dif-
ficult problem due to the time varying and unreliable physical
channel. We present a new framework of convex optimization
as a computationally efficient tool for resource allocation, in-
cluding power control and admission control, under QoS and
fairness constraints.

In wireless cellular networks, power control can be used to
control interference, and in doing so, indirectly control the QoS
seen by users on the network. In the downlink, a mobile user
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can receive interfering transmissions form base stations in ad-
jacent cells resulting in adjacent channel interference. In the
uplink, a base station experiences adjacent channel interference
from users in adjacent cells, and also co-channel interference
from mobile users in the same cell interfering with one another.
The Signal to Interference Ratio (SIR) is often used to capture
the effect of both co-channel and adjacent channel interference,
and is routinely used in this paper to characterize the QoS pa-
rameter of throughput of a particular link. Extending our work
in [10], sections IV and V formulate the following problems P1
to P3 for wireless cellular networks and show that they can be
solved using convex optimization techniques.

P1  Determining feasibility of a set of SIR requirements.

P2 Maximizing SIR for a particular class of users with
lower bounds on the QoS of all other users.

P3  Satisfying queuing delay requirements for users in

various QoS classes.

Ad hoc wireless networks pose additional technical chal-
lenges for QoS support. Unlike cellular wireless networks, ad
hoc networks have no cells or base stations, but are composed
of a set of nodes that transmit, receive and relay information
among each other. Packets traverse the network by multihop
transmissions from node to node until arriving at the destina-
tion. Consequently user QoS requirements are transformed into
a set of QoS link requirements for the hops taken from source
to destination.

Extending the results for cellular networks to ad hoc net-
works and our work in [7], the following problems P4 to P7
are solved for multi-hop networks in sections VI and VII:

P4 Finding the optimum power control to maximize over-
all system throughput consistent with QoS guarantees

in a fading environment.

P5  Determining feasibility of a set of service level agree-

ments (SLA) under network resource constraints.

P6  Solving for the minimum total transmission delay of
the most time sensitive class of traffic by optimizing

over powers, capacities, and SLA terms.

P7  Maximizing the unused capacity of the network.

Apart from performance optimization, fairness is another im-
portant issue in QoS provisioning. We show that both propor-
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tional fairness and minmax fairness can be formulated within
the convex optimization framework. A joint optimization of
the fairness parameters and the QoS criteria can also be imple-
mented under the proposed framework.

This paper unifies and extends our work in cellular networks
[10] and ad hoc networks [7]. In addition to unifying results
into one framework, the following new extensions are made.
Admission control and pricing in the ad hoc network is de-
scribed in detail with a simulation of the concepts, and delay
constraints in the geometric programming framework are ad-
dressed. Also, the fairness weights are extended to the non-
integer case, and it is shown that the weights can be used as opti-
mization variables. Finally, two simple heuristics are described,
and illustrate that the convex optimization formulations can be
used as a benchmark to compare the performance of heuristics
against.

II. RELATED WORK

As an important special case of resource allocation in wire-
less networks, power control in cellular networks has been stud-
ied extensively, and various schemes have been proposed or
adopted in 2G and 3G networks. For example, the classical
Qualcomm power control is used to solve the near far problem
in CDMA networks. We show in section IV that this particular
power control scheme is a special case of the proposed general
convex optimization framework.

Various iterative methods have been proposed to optimally
maximize the minimum SIR, to minimize total or individual
power, or to maximize throughput in [1], [3], [4], [6], [8], [9],
[13], [15], [18], [19], but these methods are not general enough
to allow a diverse set of QoS constraints and other objective
functions. We present a new framework of resource allocation
based on the computational efficiency and versatility of con-
vex optimization, which strikes a balance between efficiently
achieving global optimality and flexibly allowing different con-
straints, objectives and variables.

A similar idea has been used to minimize outage probability
in cellular networks under Rayleigh fading without QoS con-
straints in [11]. We show that the convex optimization frame-
work can be used to incorporate a variety of QoS constraints
and objectives, not just for cellular networks, but for ad hoc
networks as well.

III. CONVEX OPTIMIZATION AND GEOMETRIC
PROGRAMMING

We need efficient algorithms to find the optimal solution to
nonlinear problems P1 to P7. Fortunately, these problems can
be turned into convex optimization formulations, which have
efficient polynomial time algorithms such as the primal dual
interior point method.

Convex optimization refers to minimizing a convex objec-
tive function over convex constraint sets. The particular type
of convex optimization we use is in the form of geometric pro-
gram. [5]. Geometric programming focuses on monomial and
posynomial functions.

Definition 1: A monomial is a function f : R™ — R, where
the domain contains all real vectors with non-negative compo-
nents:

h(z) = caf'ag? ---afr, e>0anda; €R - (1)

Definition 2: A posynomial is a sum of monomials f(z) =
Zk ckx(lllkx;% .

Geometric program is an optimization problem with the fol-
lowing form:

. pank
UL

minimize  fo(x)
subjectto  fi(x) < 1 2)

where fo and f; are posynomials and h; are monomials. Ge-
ometric programming in the above form is not a convex op-
timization problem. However, with a change of variables:
y; = log x; and b;, = log ¢;x, we can put it into convex form:

minimize  po(y) = log>_, exp(al,y + bok)
subjectto  pi(y) = log3 , exp(ajy +bn) < 0
4(y) = ajy+b; =0
3)

It can be verified that the logarithm of a sum of exponen-
tials is a convex function. Therefore p; are convex functions
and ¢; are affine functions, and we have a convex optimization
problem. Note that if all posynomials are in fact monomials,
geometric programming becomes linear programming.

Convex optimization problems can be solved globally and
efficiently through the interior point primal dual method [14],
with polynomial running times that are often O(v/N) where
N is the size of the problem. Apart from computational ef-
ficiency, convex optimization also offer duality interpretations,
stability analysis and accommodate a variety of constraints. So-
lution algorithms also unambiguously and efficiently determine
feasibility. This paper shows how geometric programming can
solve many versions of QoS provisioning and resource alloca-
tion problems in wireless cellular and ad hoc networks.

IV. THROUGHPUT OPTIMIZATION FOR WIRELESS
CELLULAR NETWORKS

A. Problem formulations

We first consider power control in a wireless cellular network
in this section. For notational simplicity, this section considers
a single base station and NV links. Extensions to multiple base
stations and the associated links are straight forward. Each link
is a unidirectional path from the transmitter to the receiver. The
propagation model used in this section is as follows:

y
P, = PK (%’) 4)

where P, is the received power, P is the transmitted power, d
is the propagation path length, and dj is a reference distance
for the antenna far-field, usually taken so that the normalization
constant K equals 1. The path loss exponent v is usually be-
tween 2 and 6 for most indoor and outdoor environments. The
interfering users’ powers are decreased by the inverse of K,
which can be the spreading gain for a CDMA system or the
power falloff with frequency for an FDMA system. Accord-
ingly, SIR; for the 7*" link is defined as
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where the factors «; are introduced to accommodate normal-
ization constants and other factors, such as the effects of beam-
forming in multiantenna systems. SIR is well justified to be
used as a throughput QoS parameter. For example, channel ca-
pacity scales with log STR for high SIR, and the probability
of symbol decoding error for coherent MPSK and MQAM is
approximately aips Q(v/Bas - STR), where aps and 3y depend
on the modulation type and the Q function is the complemen-
tary Gaussian CDF.

The problem of SIR maximization can be formulated as a ge-
ometric program. In the following basic formulation, the SIR
is maximized for a particular mobile 7. At the same time QoS
for the other mobiles should also satisfy certain requirements
or constraints. The following four kinds of constraints are re-
flected in Formulation 1 below.

SIR; = : &)

1) Interference due to users, including base stations and mo-
biles, in index set I; ; must be smaller than a positive
constant ¢y, because their assigned QoS values are rela-
tively low.

2) Interference due to users in index set Ip; has to be
smaller than the received signal power for some mobile
k so as to achieve a required SIR, [y.

3) The received signal power for some mobile k needs to be
exactly equal to a positive constant Cf.

4) As in the special case of the classical power control
scheme to solve the near-far problem in CDMA, the re-
ceived signal power for one mobile k; needs to be equal
to that of another mobile k5.

With the objective and constraints thus formulated and upper
bounds P; ;g on all transmitted powers P; included, we obtain
the following non-linear optimization formulation:

Formulation 1: (SIR constrained optimization of power con-
trol) The following nonlinear problem of optimizing node po-
wers to maximize SIR for a particular user under QoS con-
straints for other users in a cellular network is a convex opti-
mization problem.

o
maximize SIR; = Zz\;l Piiil d;ij e
subject to ’

Yien, Pid; oy < o

Ok Zjelz,k PngldJWj a; + Oxne < Pkd;% o
Pkd];'” (677 == Ck

Prid, " o = Puod "ok
P; < Piup Vj
P; > 0 Vi

(6)
where the first four constraints are for all k in the appropriate
index sets. While the objective function is not a posynomial,

its inverse ISR = ﬁ is, and minimizing IS R over the same

constraints is equivalent to the original problem. The inequal-
ity constraints above are posynomials, since posynomials when
divided by monomials are necessarily posynomials in the para-
meters P;, d; and «;. The equality constraints are monomials in
the same parameters. The variables are the transmitted powers
P;. Therefore, this is indeed a geometric program, and there-
fore a convex optimization problem with efficient algorithms
that obtain the global optimality.

This general formulation can be applied to different power
control situations. For example, if there is no objective func-
tion, the above formulation reduces to a SIR requirement fea-
sibility problem. Also, the objective function can be replaced
by “minimize ) |, P;” as in the following formulation, and then
the minimum power vector under the QoS constraints can be
determined.

Formulation 2: (SIR constrained optimization for minimum
power)

The following nonlinear problem of minimum power alloca-
tion in a cellular network is a convex optimization problem.

minimize ) . P; 7
subject to  Same constraints as in Formulation 1.

Additionally, a weighted sum or powers, or the maximum
user power can be minimized. The d; can also be treated as opti-
mization variables for optimization of antenna sectoring, which
is a popular technique for interference mitigation.

B. Interpretations of the QoS Constrained Power Control

The log-sum-exp function can be interpreted as a smooth ap-
proximation of the maximum function [5]:

max(z;) < log Z e <log(n) + max(z;) 8)

7

Therefore, the above convex optimization of power control is
minimizing a smooth approximation of the maximum of

i Vi

P, d;
log( ) +log( 7). ©)
' J

When ; = ;, this is a weighted sum of the difference in po-
wers (measured in dB) and the difference in distance (also mea-
sured in dB) for users 5 and i.

The dual problem is a generalized entropy maximization [5].
By duality analysis, it can be shown that solving the QoS con-
strained power control problem is equivalent to finding the lin-
ear combiners of the Lagrangian function (the augmented ob-
jective function) with the maximum weighted sum of entropy,
where the weights are induced by the constraints of the dual
problem.

C. Proportional and Minmax Fairness Extensions

Fairness is another major issue in a QoS policy. Both pro-
portional fairness and minmax fairness can be accommodated
in the framework of geometric programming.

Formulation 3: (SIR constrained optimization with propor-
tional fairness)
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The following nonlinear problem of weighted fair power al-
location in a cellular network is a convex optimization problem.
maximize ) . w;log SIR; (10)
subject to  Same constraints as in Formulation 1.

This extended version of power control for general w; € R is
still a convex optimization problem in geometric program form
because maximizing ) . w; log STR; is equivalent to maximiz-
ing logII;SIR;", which is in turn equivalent to minimizing
IL,ISR;". Since a product of posynomials is also a posyno-
mial, both the objective function and constraints are posynomi-
als if the weights w; are integers.

While in general posynomials to noninteger powers can not
be handled in the geometric programming framework, the struc-
ture of this problem allows for noninteger weights. Auxiliary
variables t; can be introduced, the objective function changed
to min [ [, ¢, and the constraints /SR; < t; added to the ex-
isting set of constraints for all . The optimization variables are
now t; and P;, and the objective function and constraints are
posynomials in the optimization variables. Further, the value of
the objective function and the optimizing powers are the same
as in the original formulation.

The minimum SIR; can also be maximized subject to QoS
constraints for other users through convex optimization. This
minimax algorithm is useful in situations where the worst case
is of concern.

Formulation 4: (SIR constrained optimization with minmax
fairness)

The following nonlinear problem of minmax fair power allo-
cation in a cellular network is a convex optimization problem.

min; SIR;
Same constraints as in Formulation 1.

maximize
subject to

an

This is a geometric programming problem because minimiz-
ing {maxi ﬁ is equivalent to minimizing over an auxiliary
scalar variable ¢ such that max; ISR; < ¢, which is in turn
equivalent to minimizing ¢ such that ISR; < t Vi. So the
auxiliary variable ¢ acts as an upper bound on all ISR’s. When
minimized over all feasible P, the value of ¢ is reduced until it
achieves the minimax value.

D. SIR optimization simulation

A simple system comprised of five users is used for a simu-
lation of Formulation 1. The setup is as follows. First, the five
users are spaced at distances d of 1,5, 10, 15, and 20 units from
the base station. The power drop off factor v = 4, and o = 1.
Each user has a maximum power constraint of Pyp = 0.5W.
The noise power is 0.5u4W for all users. CDMA is used with
a spreading gain of K; = 10. The SIR of all users, other than
the user we are optimizing for, must be greater than a common
threshold SIR level (3. (3 is varied to observe the effect on the
optimized user’s SIR. This is done independently for the near
user at d = 1, a medium distance user at d = 15, and the far
user at d = 20. The results are plotted in figure 1.

Several interesting effects are illustrated by this simulation.
First, when the required threshold SIR for the non-optimized

users is high there are no feasible power control solutions. At
moderate threshold SIR, as [ is decreased, the optimized SIR
initially increases rapidly. This is because it is allowed to in-
crease its own power by the sum of the power decrease in
the four other users, and the noise is relatively insignificant.
At low threshold SIR, the noise becomes more significant and
the power trade-off from the other users less significant, so
the curve starts to bend over. Eventually, the optimized user
reaches its upper bound on power and cannot utilize the ex-
cess power allowed by the lower threshold SIR. Therefore, dur-
ing that stage, the only gain in the optimized SIR is the lower
power transmitted by the other users. This is exhibited by the
sharp bend in the curve to a much shallower sloped curve. We
also note that the most distant user in the constraint set dictates
feasibility.

E. Admission Control and Pricing

As shown by the interpretation of the above simulation, con-
vex optimization can also be used for admission control in wire-
less communication networks. A new user is only allowed ad-
mission into the network when a feasible solution of this geo-
metric program exists.

The effect of adding a new user to the system could be used
to establish pricing for that user. The concept is to charge more
to users who consume more of the total system user capacity.
Unlike fixed QoS systems, the effect of admitting a new user
depends heavily on the QoS requirements of the new user. A
user with a high QoS requirement will reduce system user ca-
pacity more than a user with easily supported QoS requirements
and should be charged commensurately more. For example, a
user seeking high data rates close to a group of other users will
more adversely affect user capacity, through interference and
power limitations, than a user seeking a lower data rate in a low
interference region.

The effect on capacity can be modeled using geometric pro-
gramming by determining the number of standardized users that
could be added to the system both before and after the new user
is admitted. The difference between these two numbers can be
taken as the reduction in the system (standard) user capacity
that results from admitting the new user to the system. The
price could then be set as an linear function of this difference.

Under this approach, a user could experience different ’spot”
pricing at different times depending on the existing load on the
system when the user sought to access the network. Spot pric-
ing is different from the current rate based pricing approaches,
and more realistically models the effect a user has on the net-
work from a revenue potential point of view.

V. QUEUING DELAY OPTIMIZATION FOR WIRELESS
CELLULAR NETWORKS

Delay can be an important part of QoS for a wireless cellular
network. There are three main component of the overall de-
lay: propagation delay, transmission delay and queuing delay.
Queuing delay is particularly important for bursty digital data,
where the short term data rate of the information to be trans-
mitted may exceed the data rate supported by the wireless link.
Buffering is used to address this short term imbalance. This
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Optimized SIR vs. Threshold SIR
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Fig. 1. Simulation results for constrained optimization of power control in a
cellular network, with implications for admission control and pricing scheme.

queuing delay can dominate the propagation delay for reason-
able link data rates.

By assuming that packets arrive according to a Poisson dis-
tribution and that packets are of variable length, the system can
be modeled as an M/M/1 queue. The average queueing delay,
D, can then be expressed as

1

D=umx

12)

where p(P) is link transmission rate, or service rate, and \ is
the arrival rate.

If a QoS agreement specifies an average delay bound D; and
an average maximum arrival rate, then this bound can be met by
constraining the SIR on this link to exceed a minimum thresh-
old, so that link transmission rate, as determined by the modu-
lation type and the SIR, is larger than D%, + A

VI. POWER CONTROL FOR THROUGHPUT OPTIMIZATION IN
WIRELESS AD HOC NETWORKS

In this section, we turn to power control in wireless ad hoc
networks with multihop transmission. We will further expand
the suite of formulations to more general resource allocation
settings in the next section.

The formulation used in this section explicitly takes into ac-
count the statistical variation of the received signal and the in-
terference power over a multi-hop network.

A. Multi-hop network model and Rayleigh fading

Consider a wireless ad hoc network with n transmit-
ter/receiver pairs, labelled 1,...,n, which transmit at powers
P ..., P,. The power received from transmitter j, at receiver
1 is given by

G Fij P 13)

The nonnegative number G';; represents the path gain in the
absence of fading from the j* transmitter to the i*" receiver.

G;j can encompass path loss, shadowing, antenna gain, coding
gain, and other factors.

The Rayleigh fading between each transmitter j and receiver
¢ is given by Fj;. The Fj;’s are assumed to be independent
and have unit mean. The G;’s are appropriately scaled to re-
flect variations from this assumption. The distribution of the
received power between any pair of transmitters j and receivers
1 is exponential with mean value,

E[G;jF;jP;] = Gij P; (14)
The signal to interference ratio (SIR) for user ¢ now becomes
PGy Fy;

~ 5)

SIR; =
> PiGijFij +my

B. Outage probability and system throughput

Due to multihop transmission over unreliable links, outage
probability is an important QoS parameter in wireless ad hoc
networks. An outage is declared when the received SIR falls be-
low a given threshold defined as ST R;, often computed from
a BER requirement. Neglecting the noise in the high power in-
terference limited case, the outage probability associated with
the i*" hop is given by

Oi = PT(SIRZ S SIRth) 16
= Pr(GuFuP, < SR Y, GuFuPy) 10
The outage probability can be expressed as [11]
1
O;,=1- Hk;ei 1+szﬁé{zicljiikpk (17)

Outage probability over a hop induces an outage probability
over a path .S

Prob(outage along the path S)
HSES(l - Ol)

seS Llk+#s (1+51Ré}%%{kpk)'

OpathS’ =

= 1- (18)

The constellation size M used by a hop can be closely ap-
proximated for MQAM modulation as follows

—1.5

M=1+—r—
" W(BER)

SIR 19)

where BER is the bit error rate. Defining K = L5 __ Jeads

WGBER)
to a monotonic expression for the data rate of the i*" hop as a
function of the received SIR:

R; = (1)T)log,(1 + KSIR;) (20)

The aggregate data rate for the system can then be written as
a sum of terms of this form.

Roystem = >_; Ri = (1/T) logy [ [;(1 + KSIR;)

So throughput maximization is equivalent to maximizing the
product of SIR. This was also observed by Qiu and Chawla in
[6], [15] where they used it for optimizing throughput in cellu-
lar networks. Overall system throughput is now defined as the
maximum aggregate data rate supportable by the system given
a set of users with defined QoS.

21
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C. Throughput optimization

Formulation 5: (Optimize power for throughput maximiza-
tion) The following nonlinear problem of optimizing user node
powers to maximize total network throughput is a convex opti-
mization problem.

maximize Rgystem

subject to
R; > Rirp, Vi
1
1-— Hk;ﬁi —1+ SIRéh(,;ikPk S P’I"outqz
1 ii Pi 1 < pr
Hses Hk;ﬁs 7(1+ SIRé,iLiGF;Lik P )y = out_path_s
P < PFus

(22)
The objective function is the overall system throughput.
In the actual optimization the posynomial objective function
[I; ISR; is minimized; which, as shown previously, is equival-
ent to maximizing the system throughput. The objective func-
tion is now optimized over the set of all feasible powers P;.
The first constraint is the data rates demanded by existing
system users. The second constraint is the outage probability
limitations demanded by users using single hops. The third
constraint is the outage probability limitations for users using
a multi-hop path. Lastly, the forth constraint is regulatory or
system limitations on transmitted powers.

D. Throughput maximization simulation

A simple four node multi-hop network is considered in the
following simulation. As shown in figure 2, the network con-
sists of 4 nodes A, B, C, and D, and 4 links 1,2, 3, and 4. On
link 1 node A is the transmitter and node B is the receiver; sim-
ilarly, the transmitter and receiver nodes for each link are shown
in the figure. Note that node A is the transmitter on both links
1 and 3, illustrating that a node can be a transmitter and/or re-
ceiver on many links. Nodes A and D as well as B and C' are
separated by a distance of 20m. By geometry the distance of
each transmit path is 101/2m.

For our simulation each link has a maximum transmit power
of IW. Alternatively, we could also have placed the power con-
straint on each node instead of each link by adding a constraint
that P; + P3 < 1W. All nodes are using MQAM modulation.
The baseband bandwidth for each link is 10kHz, the minimum
data rate for each link is 100bps for maintenance data, and the
target BER is 10~3. For the Rayleigh fading we require a prob-
ability of outage of P,,; = 0.1 for an SIR threshold of 10dB.

The gains for each link are computed as G;; = 545 [5]4 for
1 # j,and Gy; = [5]4, with the exception of G152 and Gy

which we set equal to 0 since we assume that a node does not
transmit and receive at the same time. The factor of ﬁ can
be viewed as the spreading gain in a CDMA system, or power
falloff with frequency in a FDMA system. This gives the fol-

lowing gain matrix:

0.2500 0.0003 0.0012 0.0003

104 | 0 0.2500 0.0003 0.0012
G =10 0.0012 0.0003 0.2500 0.0003 (23)

0.0003 0.0012 0O 0.2500

20m

D e

Fig. 2. Network Topology for Simulation

Using the geometric programming optimization method we
find the maximum aggregate data rate is R = 216.8kbps, with
M = 42.8QAM modulation for each link, R; = 54.2kbps for
each link, and P, = P; = 0.709W and P, = P, = 1W link
transmit powers. The resulting SIR = 21.7dB on each link.
The symmetry in modulation levels and SIR is due to the sym-
metries in the network topology, and not due to any explicit
optimization constraint.

E. Admission control and pricing

In this subsection admission control and a possible approach
to pricing are considered. As discussed in section IV E, a new
user is admissible if his QoS requirements can be supported by
the system without disturbing current users. In this model a
user is admissible if a feasible solution of the problem in for-
mulation 5 exists after the new user’s QoS constraints have been
added.

In the pricing discussion of section IV, a new user is charged
according to the equivalent number of standard users the new
user costs the system in lost future user capacity. In economics
this approach is termed the opportunity cost associated with
serving a new user.

The concept used for multi-hop networks is similar, but a
different measure of opportunity cost is used. In a multi-hop
network, the route taken by a stream of packets, not just its
QoS, jointly determine its effect on the network. Therefore, the
opportunity cost is taken as the data transport capacity lost by
the entire network in supporting a new user. When a new user
is added to the system the ability of the system to support addi-
tional data traffic is reduced. The opportunity cost can be esti-
mated for the multi-hop network by subtracting the maximum
data transport capacity of the system, in bits per second, after
the user is added to the system, from the capacity before the
user is added to the system. The value of the objective function
used in the multi-hop formulation is precisely the maximum
aggregate data rate for the network.
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F. Pricing Simulation

Consider admission control and pricing for the simulation in
Section VI-D above. Initially the system has no users with QoS
constraints beyond the basic setup given previously. So current
user data is admitted and priced based on a best effort trans-
mission. Three new users Uy, Us, and Us are going to arrive
to the system in order. U; and U, require 30kbps sent along
the upper path A — B — D, while Us requires 10kbps sent
from A — B. All three users require the outage probability to
be less than 0.1. When U; arrives to the system the optimiza-
tion with his QoS demands has the same solution as without the
demands, so his price is the baseline price. Next, Uy arrives,
and his QoS demands decrease the maximum system through-
put from 216.82 kbps to 216.63 kbps, so his price is the base-
line price plus an amount proportional to the change in system
throughput. Finally, Us arrives, and his QoS demands have no
feasible solution, so he is not admitted to the system.

Note that the prices charged are a function of system de-
mands when the user arrives. If Uy had arrived before Uy, Us
would have paid less and U; more. Similarly, Us would have
been admitted to the system for the baseline price if he had ar-
rived before Us, where as his price was effectively infinite when
he arrived after Us.

VII. RESOURCE ALLOCATION FOR DELAY AND
EFFICIENCY OPTIMIZATION IN WIRELESS AD HOC
NETWORKS

In this section multi-hop networks are treated from a general
perspective of resource allocation. Resources include power,
the number of flows in each category of service, bandwidth and
capacity of each link. These resources are allocated according
to the optimization criteria of transmission delay, unused capac-
ity and overall system throughput.

A. Problem formulations

Consider a network with J links with capacity of C; packets
per second for each link j. There are K classes of traffic with
different QoS requirements to be transported over the network.
For each QoS class k, the bandwidth required is by Hz, and the
delay guarantee in the service level agreement (SLA) is di.vp
seconds. End to end total delay consists of propagation delay,
transmission delay and queuing delay. Complementary to the
discussion on queuing delay in section V, in this section we
assume that transmission delay is the dominant term for ad hoc
networks. The minimum acceptable probability of delivering
the packet across the unreliable network in the SLA is denoted
by pk,LB-

Similar to the last section, each stream of traffic from source
s to destination d will traverse certain specific links as dictated
by the particular routing protocol used for the network. Denote
by K the set of traffic using link j and by Jj, the set of links
traversed by QoS class k. Denote by n; the number of packets
dynamically admitted in the k" class of traffic.

In an ad hoc network each link may fail due to a node leaving
the network or due to an outage. p; is defined as the probability
that this link will be maintained during the transmission. Note

that by increasing transmitter power over a link j while keep-
ing other parameters of the network constant, the SIR of link j
can be increased. Consequently, the outage probability of link
J will decrease and p; will increase. Therefore, power control
is reflected through the optimization variable p;. The sixth for-
mulation is the following:

Formulation 6: (SLA feasibility under network constraints)
The following nonlinear problem of testing SLA feasibility is a
convex optimization problem.

minimize No Objective Function
subjectto >y c e benk < Cj,Vy
Zi T

ZjeJk_ (7601;’ < dgun, Vk
e, pi > prLB, Vk
by, > Ry, Vk
ng* o *
o = dy;
Dj < DpjuUB
by, Cj,pj deu, P > 0

(24)

No objective function is necessary to test feasibility of the
SLA terms p;, dy, yp and py, .. Note that the first constraint
is the link capacity constraint, the second one is the delay guar-
antee constraint and the third one the delivery probability con-
straint. The fourth constraint delivers a guaranteed data rate to
each class of traffic. The fifth constraint makes room for SLA
terms that give a class of traffic the sole right to traverse a link
7*. This could be for bandwidth requirements or for security
reasons as in virtual private networks. The sixth constraint al-
lows for SLA terms that specify not just an end to end total
delay guarantee, but also an exact delay requirement for a par-
ticular traffic class k* on a link j*. The other constraints are
positivity constraints on the variables, and upper bound con-
straints on p;.

The following parameters can all become variables in the
optimization: by, ny,p;,Cj,dyup and pg rp. Variables
bk, dr,up and pi rp are terms in the SLA. The link capaci-
ties C; and probability of maintaining a link p; are network
resources to be optimized over. Admission control is reflected
mmng.

In the seventh formulation, the unused capacity of a particu-
lar link jo is maximized. This link could be a bottleneck link
or the most often traveled link in the network where capacity is
considered scarce or of great value.

Formulation 7: (Unused capacity maximization) The fol-
lowing nonlinear problem of maximizing the unused capacity
under SLA and network constraints is a convex optimization
problem.
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maximize Cjo — ZkeKjO bpnyg
subject to ZkeKJ b < Cj, VY
o

> e ( 760? < drun, Vk
ng,]k pj > prLB, Yk
bing > Ry, Yk
D ugex = Cj*
N * _ *
o/ = iy
Dj < DpjuB
bk7Cjapjadk,UB7pk,LB 2 0

(25)
The objective function is to maximize unused capacity of a
link jo by keeping the used capacity to the minimum under all
network and QoS constraints. The constraints are the same as
in formulation 6.
In the eighth formulation, the total delay for a particular class
of traffic is minimized.

Formulation 8: (Weighted Joint Capacity and Delay Min-
imization) The following nonlinear problem of minimizing
transmission delay under SLA and network constraints is a con-
vex optimization problem.

n
ZieKj v

minimize ZjeJkO —&,— ta (Z] Cj)
subject to ZkeKj brn < 05, V9
Diex, M

> et (Eci}jj < diup, Vk
Ilie, pi > pr.LB, Yk
by > Ry, Vk
bx ni = Cj
N * _ *
C’;* = dk,j
Pj < pjuB
b, Cj,pj,druB, Pk, = 0

(26)
where « is the marginal tradeoff of capacity for delay. By in-
creasing capacities available on each link at the relative cost
« through dynamic bandwidth allocation or bandwidth leasing,
delay of the most time sensitive QoS class can be decreased.

B. Joint capacity and delay minimization simulation

This simulation investigates the tradeoff between delay and
cost of capacity in Formulation 8. For the network in Fig. 3
there are three classes of traffic. The first class is data traffic
sent along path ABCD requiring a rate of 50 packets/second
and a maximum delay of 0.2 seconds. The second class is also
data traffic sent along path DFEA with the same rate and delay
requirements. The third class of traffic is voice sent along path
ABFD with a rate requirement of 250 packets/second. We want
to minimize both the delay of the voice traffic and the cost of
capacity that we must provision or lease. We accomplish this
by minimizing a weighted sum of the voice traffic delay and the
total capacity used, subject to meeting the rate constraints on all
traffic classes and the delay constraints on the data traffic. For
each value of «, the marginal tradeoff parameter between de-
lay and capacity, we find the minimum delay achievable for the

Fig. 3. Network Topology for Simulation
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Fig. 4. Trade off between voice traffic delay and capacity cost

voice traffic given in Fig. 4 with log scale for the x-axis. The
tradeoff curve shows that the minimum delay increases rapidly
with increasing cost of capacity until it reaches the delay asso-
ciated with the minimum capacity required to support the voice
signal; from that point onwards the tradeoff curve is flat.

C. Extensions

A number of extensions can be made to Formulations 6 to 8.
One extension is minimizing the maximum transmission delay
for users. A second extension is accounting for queueing delay
at the nodes. The formulations, proofs and interpretations are
similar to those in section IV C and section V, respectively.

Another extension is weighted fairness formulations which
can also be solved by geometric programming. The weight
parameters can become variables, therefore fairness and QoS
criteria can be jointly optimized using geometric programming.
This is based on the observation that the posynomial form of the
objective and constraint functions is maintained when weights
of proportional fairness are variables; thus preserving the ge-
ometric programming framework. Solving these problems
would give the globally optimal tradeoff between the weights
attached to each user and the resources allocated among the
users.
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VIII. SIMPLE HEURISTICS

Although geometric programming has highly efficient inte-
rior point algorithms that find the global optimal solution in
polynomial time, in some practical systems, suboptimal simple
heuristics with even lower computational load are desired. In
this section, we briefly outline two heuristics for some of the
formulations. Geometric programming now becomes an effi-
cient tool for heuristic validation and testing.

A. A heuristic for cellular networks

Using the geometric programming formulations in section IV
as an efficient tool of validating heuristics, we find that the fol-
lowing simple heuristic performs well with a small suboptimal-
ity gap for Formulation 1. Denote by D;; the total path loss
from the transmitter on link 7 to the receiver on link ¢ that takes
into account all factors other than power:

—Yij -1

D, = G s @)
g

where d;;, 75, and «;; are the distance, path loss exponent,
and normalization constant from the transmitter on link ¢ to the
receiver on link j, respectively. Denote by D; the mean of D;;
for j # i. The constraint set can then be rewritten as a system
of inequalities in terms of P; and D;. Let the SIR of user ¢*
be the objective function to be maximized under this constraint
set. For the heuristic, set P;+ to its maximum P« ;7 g, and make
all constraints active by turning the system of inequalities into a
system of equalities. Feasibility of the SIR requirements can be
analytically determined, and if feasible, the system of equalities
can easily be solved for P;,i # i*. Substituting the resulting
set of powers into STR;« gives the maximized SIR for user i*
under this heuristic. Note that the computational load for this
heuristic is very small.

From empirical results in simulations, the difference in SIR,
for both user ¢* and all the other users, between the convex op-
timization algorithm and this heuristic is smaller than 5 percent
for networks with sizes larger than 15.

B. A distributed heuristic for ad hoc networks

Extending similar ideas in [11], the following is a simple
iterative heuristic for throughput maximization in ad hoc net-
works under outage probability constraints as in formulation 5.
Briefly, the heuristic makes the constraints in formulation 5
active, and reexpress each constraint. For example, the con-

: 1
straint 1 — J[ o [Tjs (14 SR Gy < Prout_path_s be-

comes [ g [Tz (14 SIRéZ"iCj,’;’“P’“) = 17Prw1t_path_3' Next,
taking the log of both sides and multiplying both sides by F;,
the constraints are rewritten as a system of linear equations,
which can be put into matrix form Q(P)P = AP. Thus, an ini-
tial power vector P(?) can be randomly selected, and the next
iterate of the power vector P(!) can be computed as the Per-
ron Frobenius eigenvector of Q(P(?)). This heuristic becomes
a sequence of Perron Frobenius eigenvector problems, which is

computationally easy to solve.

IX. SUMMARY

Various QoS provisioning problems are considered for wire-
less cellular and ad-hoc networks from a resource allocation
point of view. Such formulations are nonlinear problems, but
can be efficiently solved by convex optimization. The geomet-
ric programming framework makes possible formulations that
include both throughput and delay as objective functions and
allow for a variety of general network models. Proportional
and minmax fairness algorithms are also possible. Simulations
show that these algorithms can be used for admission control
and pricing schemes that are based on the relative disturbances
on the use of network resources by the new users. Addition-
ally, two simple heuristics for cellular and ad hoc networks are
outlined.
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