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Abstract

Many value-added and content delivery services are
being offered via service level agreements (SLAs). These
services can be interconnected to form a service overlay
network (SON) over the Internet. Service composition in
SON has emerged as a cost-effective approach to quickly
creating new services. Previous research has addressed the
reliability, adaptability, and compatibility issues for com-
posed services. However, little has been done to manage
generic quality-of-service (QoS) provisioning for composed
services, based on the SLA contracts of individual ser-
vices. In this paper, we present QUEST, a QoS assUred
composEable Service infrasTructure, to address the prob-
lem. QUEST framework provides: (1) initial service com-
position, which can compose a qualified service path under
multiple QoS constraints (e.g., response time, availability).
If multiple qualified service paths exist, QUEST chooses the
best one according to the load balancing metric; and (2)
dynamic service composition, which can dynamically re-
compose the service path to quickly recover from service
outages and QoS violations. Different from the previous
work, QUEST can simultaneously achieve QoS assurances
and good load balancing in SON.

1 Introduction

The Internet has evolved to become a commercial in-
frastructure of service delivery instead of merely providing
host connectivity. Different forms of overlay networks have
been developed to provide attractive service provisioning
solutions, which are difficult to be implemented and de-
ployed in the IP-layer, such as content delivery overlays [1]
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Figure 1. Illustration of the Service Overlay
Network Model.

and peer-to-peer file sharing overlays [2]. Beyond this, we
envision the emergence of service overlay networks (SON),
illustrated by Figure 1. Each SON node provides not only
application-level data routing but also a set of value-added
services (e.g., media transcoding, data encryption). Each
service component is offered via a service level agreement
(SLA) contract [15]. Service composition in SON has
become necessary in order to cost-effectively create new
Internet services [8]. Thus, a challenging problem is to
provide a service infrastructure to enable efficient service
composition with quality-of-service (QoS) assurances.

Much research work has addressed the service compo-
sition problem. The SAHARA project [8] addressed the
fault-resilience problem in wide-area service composition.
The CANS project [9] addressed the adaptability problem
in service composition. The SPY-Net [17, 18] framework
addressed the problem of resource contention while finding
a multimedia service path. In the Gaia project [11], we
addressed the QoS consistency and load partition issues for
composing service path in ubiquitous computing environ-
ments. However, little has been done to support generic
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QoS provisioning for composed services, based on the SLA
contracts of individual service components.

In this paper, we present QUEST, a QoS assUred
composEable Service infrasTructure, which can provide
both QoS assurances under multiple QoS constraints, and
load balancing in SON. Service composition is performed
by the service composer (SC) using a composed service
provisioning protocol. The protocol is designed based on
a network-centric client-SERVICE model [4]. Instead of
contacting service providers directly, the client contacts
SC through a well-known address and specifies its desired
services and QoS requirements. Then, SC, as an interme-
diate agent, composes and instantiates a qualified service
path in SON. The key algorithms used by SC include:
(1) initial service composition, and (2) dynamic service
composition. The initial service composition algorithm
properly chooses and composes the service instances, based
on their SLA contracts and current performances in order
to best match the QoS constraints of the user. QUEST
achieves not only QoS assurances but also load balancing
in SON by comprehensively considering both QoS and
resources of different service instances. Moreover, QUEST
provides dynamic service composition, which is used during
runtime when service outages or QoS violations occur. The
algorithm finds an alternative service path in SON, which
can quickly recover the failed composed service delivery.

Extensive simulation results show that QUEST can pro-
vide much better QoS assurances and load balancing for
composed services in SON than other common heuristics.
The rest of the paper is organized as follows. Section 2 in-
troduces the overall system design. Section 3 describes the
design details and the key service composition algorithms.
Section 4 presents the performance evaluations. Section
5 discusses related work. Finally, the paper concludes in
Section 6.

2 System Overview

In QUEST, SON consists of various service compo-
nents1, called SON nodes. Each SON node represents a
service component, which is managed by individual compo-
nent service provider (CSP). The connections between SON
nodes are called SON links, which are application-level
virtual links. We assume that each CSP can manage and
control the quality levels of its own services in accordance
to the SLA contract with the portal service provider (PSP).
On the other hand, the PSP has an SLA contract with the
user for each composed service. In order to allow PSP
to monitor and manage the quality levels of the composed
service, we introduce SON portals that serve as the en-
trance/exit points of the SON. In QUEST, SON portals

1several service instances can co-located on the same physical host.

Figure 2. Illustration of the QUEST’s service
composition model.

define the management boundary of QoS provisioning for
composed applications. We call such a SON with SON
portals a managed SON.

The QUEST service composition model includes two
mapping steps, illustrated by Figure 2 (a). For each
user request, the service composer (SC) first maps it to a
composite service template, and then maps the template to
an instantiated service path. The mapping from the user
request to different composite service templates (mapping-
1) is constrained by the user’s application-specific quality
requirements and different pervasive client devices, such as
PDAs and cell-phones. Mapping-1 has been addressed by
several research work [11, 9]. It can be performed based
on the application-specific QoS specifications [12] or using
automatic composition plan tools [13]. The mapping from
the composite service template to an instantiated service
path (mapping-2) is constrained by distributed performance
(e.g., response time) and resource availability conditions.
Little research has addressed the mapping-2 that is the focus
of this paper.

In QUEST, the composed service delivery, within SON,
starts from the entrance portal, traverses through the chosen
service instances, ends at the exit portal, illustrated by
Figure 2 (b). We assume that each service instance ���

(or overlay link
�
� ) is associated with an SLA contract

specifying its QoS assurances such as response time
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�������
(or delay �	� � ) and availability 
 ��� (or 
�� � ). The

availability is calculated by  ����������������� ������������� ���"!#�%$��&���'(�*)+������&,�-&/.0��1�'(�('(���2'435���2�"��687:9 ���*�+�����;�2��� �������(�<�*�=���<!#� .
The connection between two service instances is called
the service link � � , which is mapped to an overlay routing
path � �?>A@CB ��DFE GHGIGJE ��K

. The availability 
MLON of
the service link ( �HP ) is calculated as Q� �<R/S 
 � � ; and the

delay � L N of the service link ( � P ) is derived using T� � R/S �	� � .
Each CSP provides an SLA contract to the PSP and is
responsible for managing its own service components or
overlay links. The composed service U is also associated
with an SLA contract specifying the QoS assurance that the
PSP promises to the user.

3 Initial Service Composition

In this section, we present the initial service composition
solution, which are used during the setup phase of the
composed service delivery. Suppose each service instance
� � (or service link � P ) is offered to the PSP via an SLA
contract specifying its provisioning QoS: availability 
 ���
(or 
VLWN ) and response time

��� � �
(or delay �XLON ). The QoS

assurances (availability: 
�Y and response time:
��� Y ) of

the composed application U : ��Z E �
D GIGHG[E

��\/] D can be
derived as follows 2,

^I_a`bdc e f�g;hi j k�l ^H_C`b-m �on
fip k�l ^H_q`b-r N (1)

sdt c e f�g;hi j k�l sdt m � n
fip k�l8u r N (2)

vdwyx{z�x}| l-~ x _4� z�� _8� x��(��z � � ^�� | f�g;h ~ x{�y� � �y��z � � ^��
Suppose also that the PSP has an SLA contract with the

user to specify its provisioning QoS for the composed ser-
vice X (availability 
��2�{�����<�Y and response time

�0� �2�{�����<�Y ).
In order to guarantee a successful service delivery, the
resource requirements of the instantiated service path have
to be satisfied. For simplicity, we only consider the CPU
resource for end hosts and bandwidth for overlay links.
We define the term cpu ratio for the service instance ���

as � � � � >���)��;�:����� � �5������ 9,��)����{��� �IL ��� L ����
. The ��)��;�5����� � �:������

represents the required CPU resource for running a new
� � process. The ��)����{��� �IL ��� L ����

represents the available CPU
resource in the physical hosting environment of � � . If � ������

1, then the service request can be admitted. Otherwise,
the service request will be denied. The smaller the � ����� ,
the more advantageous we choose the service instance in
terms of CPU load balancing because we start the new

2In order to make the metric availability becomes additive and
minimum-optimal, we apply the logrithm and inverse operations on the
metric availability. We assume that ��� m � and � r N are measured for an
application data unit (e.g., a video frame).

service process on a lightly loaded host. Similarly, we
define the term bandwidth ratio for the service link � P as��� L NV>�3{'(1��� V���¡��� �5����� � �:���L N 9¡3{'(1��¡ M�<�������{��� �IL ��� L �LON . With the
above notations, we can formulate the QoS-assured service
composition problem as follows,

DEFINITION 1. QoS-assured Service Composition
(QSC) Problem Suppose we are given a directed graph
representing a service overlay network (SON) topology, G
= (V, E), where V and E are the sets of N SON nodes and
M SON links, respectively. Suppose also each SON node � �

is characterized by nonnegative values of 2 additive QoS
attributes ( �21 D¢�£ � , �0� � � ), i = 1...N. Each SON link

�
� is

also characterized by nonnegative values of 2 additive QoS
attributes ( �¤1 D¢;¥ � , � � � ), i = 1...M. Given the template for a

composed service X and user QoS requirements �¤1 D¢�¦¨§�©�ª�«�¦¬
and

�0� �2�{�����<�Y , the problem of QoS-assured service compo-
sition is to compose a service path p  �

D E
��® GIGHG¯E � \

from � Z (entrance portal) to � \/] D (exit portal), such that�¤1 D¢�¦¨§�©�ª�«2¦¬ � �¤1 D¢ ¬ (equ.(1)) and
�0� �2�{�����<�Y � �0� Y (equ.

(2)), and also � �J��� � 1, i = 0... n+1, and
��� L N � 1, j =

0...n.
We now prove that the QSC problem is NP-complete.

Theorem 1 QSC problem is NP-complete.
Proof: We prove this by showing that the Multiple Con-

strained Path selection (MCP) problem, which is known to
be NP-complete [10] maps directly to a special case of the
QSC problem. The detailed proof is omitted due to the page
limitation. °

Besides its NP-completeness, the above QSC problem
definition also neglects several important practical issues.
First, in the real world SLA contract, the QoS attributes are
often specified using average values measured over a long
time period such as a month or a year [15]. However, the
composed service session can last for only several minutes
or hours. Hence, we need to consider not only SLA contract
values but also recent performance conditions of service
instances/links. Second, the PSP can concurrently serve
thousands of user requests by composing available service
instances. To achieve best aggregate QoS assurances for all
SON users, we also need to consider the load balancing
problem. Third, because SON is highly dynamic, QoS
violations can happen sometimes. Commercial SLA con-
tracts usually make the PSP lose money when QoS violation
happens [15]. Hence, the goal of our QSC algorithms is to
compose a service path that can best avoid QoS violations
or minimize the QoS violation degree if a violation occurs.

We now provide a polynomial heuristic algorithm, called
QSC-basic, for the QSC problem. The basic idea is
to use a modified Dijkstra algorithm by comprehensively
considering multiple constraints (e.g., SLA contracts, re-
cent performance, system load). The QSC-basic primarily
involves two steps: (1) Generate the weighted candidate
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Figure 3. Illustration of the QSC-basic algo-
rithm.

graph. Instead of searching the service path in the entire
SON, we first generate a candidate graph, illustrated by
Figure 3 (a), to minimize the searching range. The �"���
column in the candidate graph includes all the service
instance candidates providing the �<��� service function in
the application template. The “cost value” on the edge���0>  � ��� � P 7���� � � ��� � P �
	 is defined using the following
integrated metric:

���¤^��� e ^H_ h�����^H_ h� ����� c n
^H_Ch� £ N^H_ h� £ ��� c n u r �u ���

c n sdt m Ns t ��� c� ��� �
�����! "��#��%$��! �&�'� (��� f*) �

j f�+-, � ) ' f�.  (� )!. m
n ^H_ h� ���/ (� ) � f*.^H_ h�0�1��� c n ^I_ h� £ N  �� ) � f*.^H_ h� £ ��� c n u  (� ) � f�.r �

u ���
c n sdt  �� ) � f*.m Nsdt ��� c� ��� �

 (� ) � f�. $��! �&�'� (��� f*) �n 2 s m N2 s �3� c n
4Ms r �
4Ms ��� c� ��� �r

'(��5 ) ' f 5
j
.
j
' f m

(3)

Intuitively, the ratio 6687 § ¬ ( 9 represents any of the above
parameters) represents the normalized cost of selecting a
portion of the service path in terms of one specific factor
(e.g., QoS assurances or load balancing); and (2) Run the
Dijkstra algorithm to find the shortest path, which is re-
turned as the result of the QoS-assured service composition,
illustrated by Figure 3 (b).

However, the above QSC-basic algorithm does not con-
sider each individual QoS constraint while composing a
service path. We now present an enhanced algorithm, called
QSC-enhanced. After generating the candidate graph, we
associate each edge � � >  � � � ��P*7:�;� � � � � ��P<�=	 with a
“cost value”, which modifies the equation (3) by multiply-

ing a non-negative value   � ?> � � �A@ �
BT
�DC Z   � >FE�7 with

each ratio 66G7 § ¬ . The weight   � represents the significance
of the �"HI��� factor while selecting the service instance during
each EXTRACT Min step in the Dijkstra algorithm. The
higher the   � value, the more important the �(HI��� factor.
Different from the QSC-basic, the QSC-enhanced algorithm
dynamically changes the importance of different factors by
adjusting   � accordingly. The adjustment of   � is based

on the “pressure” of different QoS constraints. Intuitively,
if the current accumulated value of a QoS attribute (e.g.,
response time) approaches its constraint, we increase its
weight in hope that its accumulation will catch up in the
later stage of the service path composition. Suppose � �
is the current chosen node by Extract Min, whose final
shortest path from the source � Z is just determined. We de-
fine the response time pressure “ IKJ/L ”, availability pressure
“ I �{��� �WL ”, and the weight adjustment functions as follows,

MON%P e s t m!Q1R�m �sdt . �� "#�� .c S M �����
j r e ^I_ h� £ Q1T £ �^H_ h� ¦¨§�©�ª�«�¦¬ (4)

v l e v h e vVU e vXW e `Y[Z M �����
j r
Z � `V\ vV] \ vV^ �M �����
j r n M N%P (5)

vX_ e vV` e vVa e vXb e `Y[Z M N%P Z � `V\ vV] \ vV^ �M �����
j r n M N%P (6)

Both QSC-basic and QSC-enhanced algorithms have the
same computational complexity c ed ® 7 , where d is the
number of nodes in the candidate graph.

4 Dynamic Service Composition

SON is a highly dynamic system compared to the IP
network infrastructure. First, unlike routers, hosts can
dynamically join or leave SON over long time scales.
Second, hosts or underlying IP network path can experience
performance failures, outages, or degradations over short
time scales [3]. Hence, during runtime, an established
service path can become broken or violate QoS constraints,
particularly for the long-lived application session such as
multimedia streaming.

When the service instance (or link) experiences outage or
significant quality degradations, the SC is notified. It recov-
ers all the affected sessions using the dynamic service com-
position algorithms. We have designed two dynamic service
composition algorithms: (1) DQSC-complete, which com-
pletely re-composes the service path without considering
the original service path, to recover from failures; and
(2) DQSC-partial, which partially re-composes the service
path based on the original service path.

Figure 4 illustrates the complete service re-composition
algorithm DQSC-complete. Figure 4 (a) shows the can-
didate graph and the original service path, on which the
service instance �

D ® is failed and the service link between
� ® D and ��f D is broken. The DQSC-complete algorithm first
modifies the candidate graph by removing those failed or
poorly-performing service instances, and also replacing the
broken service links with alternate SON routing paths when
it is possible, illustrated by Figure 4 (b). In this example, �

D ®
is removed from the second column of the candidate graph.
The failure service link between ��® D and � f D is replaced
with an alternative SON path. The recovered service link
is illustrated as a dotted line in Figure 4 (b). Then, we use
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Figure 4. Illustration of the complete service
re-composition algorithm DQSC-complete.
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Figure 5. Illustration of the partial service re-
composition algorithm DQSC-partial.

the QSC-enhanced algorithm, described in Section 3.1, to
compose a new qualified service path. Thus, the service
session can quickly recover from failures or QoS violations
by switching from the old service path to the new one 3.

Contrasting with the DQSC-complete algorithm, DQSC-
partial algorithm partially re-composes the service path
based on the original service path. Figure 5 (a) shows
the same service path example as Figure 4 (a). In the
original service path SON entrance portal

E
�
D ® E � ® DE

� f DdE SON exit portal, service instance �
D ® is failed and

service link between ��® D and � f D is broken. In Figure 5
(b), however, we modify the candidate graph by not only
removing the poorly-performing or failed service instances
(e.g., �

D ® ) and recovering the broken service links (e.g., the
service link between ��® D and � f D ), but also removing, in the
column where the old service instance is good, the other
candidate service instances. In this example, � ® D and ��f D
still perform well. Thus, we remove � ®�® and � ® f in the
third column of the candidate graph, and � f ® and ��f1f in the
fourth column. Then, we use the QSC-enhanced algorithm
to compose a new service path on the modified candidate
graph, illustrated by Figure 5 (c). The purpose of such an
approach is to keep those original well-performing service
instances in the new service path. Hence, we can reduce the
migration overhead for switching from the old service path
to the new one. The computational complexity of DQSC-
complete and DQSC-partial is still c ed ® 7 , where d is the
number of nodes in the candidate graph.

Both DQSC-complete and DQSC-partial algorithms can

3We assume that the states of all the service instances can be recovered
by software.

quickly re-compose a new service path to recover from
failures or QoS violations. However, each of them has both
advantages and disadvantages. The advantage of the DQSC-
complete algorithm is that it can re-compose a better service
path in terms of QoS assurances than the DQSC-partial
algorithm, since it has more choices of service instances.
The disadvantage of the DQSC-complete algorithm is that
the service re-composition takes longer time since it re-
composes the entire service path. On the other hand,
the advantage of the DQSC-partial algorithm is that it is
quicker and easier to implement since it only changes part
of the service path. However, its disadvantage is that
the new composed service path may not be optimal. We
will further compare these two different dynamic service
composition approaches in the next section.

5 Performance Evaluation

5.1 Evaluation methodology

We evaluate the performance of the initial and dynamic
QoS-assured service composition algorithms using exten-
sive simulations. We first use the degree-based Internet
topology generator Inet 3.0 [16] to generate a power-law
random graph topology with 3200 nodes to represent the
Internet topology. We then randomly select 500 nodes as
the SON nodes and 40 other nodes as the SON portals.
We assume an equal-degree random graph topology for the
SON. Each SON node is randomly assigned 5 other SON
nodes as its neighbors. Hence, the probing overhead of each
SON node is within

� 9 � >8>J> E�� .
The initial resource availability of each IP link and

service instance is uniformly distributed in a certain range.
The SLA values of each IP link or service instance are also
uniformly distributed within certain range. Different values
reflect the heterogeneity and diversified quality guarantees
in SON. Moreover, to simulate the performance variation
in the real world, the QoS attributes of each IP link and
service instance are set by uniform distribution functions,
with SLA values as the mean values. We assume the
Dijkstra shortest path algorithm for both the IP layer and
overlay layer routing, using the instantaneous value of delay
as the routing metric. The bandwidth of an overlay link is
the bottleneck bandwidth along the IP network path. The
delay of an overlay link is the addition of the delays along
the IP network path.

During each minute, certain number of user requests
are generated. The user request is represented by any
of 40 composite service templates that comprise 2 to 6
services. Each user session lasts from 15 to 60 minutes. The
metrics we use for evaluating the QoS assurances include
QoS violation rate and QoS violation degree. The QoS
violation rate is measured by the ratio of the sessions during
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which QoS violation happens over the total sessions. For
each session, the QoS violation is said to happen if the
measured average QoS attribute values (i.e., availability,
response time) is worse than that specified in the SLA
contract. The QoS violation degree measures that if a QoS
violation occurs, how severe the QoS violation is. It is
measured by the ratio of difference between the measured
QoS attribute value and its target value, over the target
value. Those two metrics are often associated with the
financial refund/penalty policies specified in the real world
SLA contracts. The minimization of those two metrics
means to reduce the financial loss of the service provider.

The metric we use for evaluating the load balancing
is the provisioning success rate. A composed service
provisioning is said to be successful if and only if during its
entire session, all the service instances and links’ resource
requirements on the service path are always satisfied. The
composed service provisioning success rate is defined as the
number of successful requests over the total number of all
requests. Given the total amount of resource in SON, higher
provisioning success rate represents better load balancing in
SON.

For comparison, we also implement two common heuris-
tic algorithms for composing service path: fixed and random
algorithms.The fixed algorithm always chooses the same
service instances for a composed application. The random
algorithm randomly chooses service instances to compose
the service path.
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rate under different system load.

5.2 Results and analysis

Figure 6 and Figure 7 show the simulation results about
the violation rates of two QoS attributes: availability
and response time, respectively. In Figure 6, the X axis
represents different session request rate, calculated by the
number of composed service session requests per minute.
The range of session request rate is selected to reflect
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Figure 7. Average response time QoS viola-
tion rate under different system load.

different system workload put on the SON. The Y axis
shows the average QoS violation rate for the availability
attribute, achieved by the fixed, random and our four
QSC (QoS-assured service composition) algorithms. QSC-
Basic and QSC-Enhanced represent the two initial service
composition algorithms. Both of them do not include any
dynamic service re-composition mechanisms. Both DQSC-
Complete and DQSC-Partial use the QSC-Enhanced for the
initial service composition and also dynamically recovers
from the service outage/quality degradations by completely
or partially re-composing the service path. Each average
availability QoS violation rate ( � D ) value is calculated and
averaged over a period of 200 minutes for all successfully
composed sessions. The results show that all the four
QSC algorithms achieve much lower � D than the fixed
and random algorithms. The QSC-Enhanced has as much
as 20% improvements than the QSC-Basic. Both DQSC-
Complete and DQSC-Partial further reduce ( � D ) to almost
0% lower. The reason is that the application-level service
outage recovery can quickly finish in a few seconds while
the IP-layer Internet path recovery may take several minutes
or even hours [3]. However, the performance difference
between DQSC-Complete and DQSC-Partial is very small.

Similarly, Figure 7 shows the results of the QoS vio-
lation rate for the response time ( � ® ). Again, the QSC
algorithms achieve much lower � ® than fixed and ran-
dom. The performance order of different QSC algorithms
is QSC-Basic � (worse than) QSC-Enhanced � DQSC-
Partial � DQSC-Complete. The reason why the DQSC
algorithms are better than the QSC-Enhanced is that service
re-composition always uses the most recent performance
and load information, which allows it to make better service
instance choices in terms of response time.

Figure 8 and Figure 9 show the results about the QoS vio-
lation degree. Figure 8 shows the availability QoS violation
degree ( � f ). Once again, the QSC algorithms consistently
achieve better performance than fixed and random. Figure
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Figure 8. Average availability QoS violation
degree under different system load.
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Figure 9. Average response time QoS viola-
tion degree under different system load.

9 shows similar results for the response time QoS violation
degree. Hence, the simulation results further validate our
algorithms by showing that QSC algorithms can not only
greatly reduce the violation rate but also achieve lower
violation degree when QoS violations occur.

Figure 10 shows the results about the composed service
provisioning success rate. Similar to the above experiments,
each provisioning success rate value is calculated and aver-
aged over a period of 200 minutes. The results show that
all four QSC algorithms can similarly achieve much higher
provisioning success rate, namely better load balancing,
than the fixed and random.

In all of the above experiments, we observe that the
performance gains of the DQSC-Complete are very small
compared to the DQSC-Partial. The reason is that the initial
service composition algorithm QSC-Enhanced is already
very good. Hence, the selected service instances in the
old service path are still, by large probability, the best ones
when we re-compose the service path. Hence, it is a near
optimal solution that we keep the old good service instances
in the new service path, which is exactly the DQSC-Partial
algorithm.
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Figure 10. Average provisioning success rate
under different system load (load balancing).

6 Related Work

Besides to the related work mentioned in the Introduc-
tion, much other research work has also addressed the
service composition problem. The SWORD project at Stan-
ford [13] provided a developer toolkit for the web service
composition. It can automatically generate a functional
composition plan given the functional requirements for the
composed application. However, SWORD only addressed
the mapping-1 problem defined in our framework. The
eFlow project at HP labs [7] provided an adaptive and dy-
namic service composition mechanism for the commercial
e-business process management. It did not address the end-
to-end QoS assurances for the composed service. Our work
is also different from the traditional IP-layer QoS routing
problem [5] because: (1) The goal of IP-layer QoS routing
is to find a network routing path satisfying QoS constraints
while QUEST addresses two mapping problems to achieve
not only QoS assurances but also load balancing and fault-
tolerance; and (2) IP-layer QoS routing only considers the
network resource while QUEST considers not only network
resources but also end-system resources (e.g., CPU).

Other closely related work includes various overlay net-
works. Anderson et al. proposed a resilient overlay network
(RON) architecture [3] to allow distributed applications to
quickly detect and recover from the Internet path failure.
RON can recover from network path outage within several
seconds using the application-level routing. RON is useful
and beneficial to QUEST although it only solved a subset
of the dynamic service composition problems. In [6], Duan
et. al. also proposed the concept of SON, which can
provide value-added services with QoS assurances to the
user via SLA contracts. However, they only addressed the
bandwidth provisioning problem for SON, while QUEST
considers not only resource provisioning (e.g., bandwidth
and CPU), but also various service QoS (e.g., response time
and availability). The OverQoS [14] proposed an architec-
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ture to provide Internet QoS (e.g., statistical bandwidth and
loss rate assurances) using overlay networks. QUEST is
different from OverQoS by providing QoS assurances for
composed services, based on SLA contracts of individual
service components.

7 Conclusion

We have presented a QoS-assured composed service
delivery framework, called QUEST, for a managed service
overlay network (SON). The major contributions of this
paper include: (1) formally define the QoS-assured service
composition problem and prove that it is NP-complete.
We then design efficient approximate optimal algorithms
to compose service paths under multiple QoS constraints.
Moreover, QUEST can achieve sound load balancing in
SON to provide best possible QoS for all SON users;
(2) provide both partial and complete dynamic service re-
composition algorithms, which can quickly recover the
service path from failures or QoS violations. We have
implemented a large-scale simulation test-bed and our ex-
tensive simulation results show that QUEST can provide
both QoS assurances and load balancing for composed
services in SON. The simulation results also indicate that
our partial dynamic service re-composition algorithm can
achieve almost the same level of QoS assurance as the
complete re-composition algorithm, but with much lower
overhead.
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