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QoS-Aware and Energy-Efficient
Resource Management in OFDMA Femtocells

Long Bao Le, Senior Member, IEEE, Dusit Niyato, Member, IEEE, Ekram Hossain, Senior Member, IEEE, Dong

In Kim, Senior Member, IEEE, and Dinh Thai Hoang

Abstract—We consider the joint resource allocation and admis-
sion control problem for Orthogonal Frequency-Division Multi-
ple Access (OFDMA)-based femtocell networks. We assume that
Macrocell User Equipments (MUEs) can establish connections
with Femtocell Base Stations (FBSs) to mitigate the excessive
cross-tier interference and achieve better throughput. A cross-
layer design model is considered where multiband opportunistic
scheduling at the Medium Access Control (MAC) layer and
admission control at the network layer working at different
time-scales are assumed. We assume that both MUEs and
Femtocell User Equipments (FUEs) have minimum average rate
constraints, which depend on their geographical locations and
their application requirements. In addition, blocking probability
constraints are imposed on each FUE so that the connections
from MUEs only result in controllable performance degradation
for FUEs. We present an optimal design for the admission control
problem by using the theory of Semi-Markov Decision Process
(SMDP). Moreover, we devise a novel distributed femtocell power
adaptation algorithm, which converges to the Nash equilibrium of
a corresponding power adaptation game. This power adaptation
algorithm reduces energy consumption for femtocells while still
maintaining individual cell throughput by adapting the FBS
power to the traffic load in the network. Finally, numerical results
are presented to demonstrate the desirable operation of the
optimal admission control solution, the significant performance
gain of the proposed hybrid access strategy with respect to
the closed access counterpart, and the great power saving gain
achieved by the proposed power adaptation algorithm.

Index Terms—Femtocell network, admission control, Markov
decision process, blocking probability, channel assignment.

I. INTRODUCTION

S
MALL cell deployment and inter-cell interference mit-

igation have been recognized as the key techniques to

enhance the capacity of cellular wireless networks [1]. Due to
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minimal installation and operation costs, emerging femtocells

have been shown to be a viable technical solution for broad-

band wireless access in indoor environments [2]. However,

since femtocells may operate on the same frequency spectrum

as macrocells, mitigation of cross-tier interference is a very

significant research issue.

To enable spectrum sharing between macrocells and fem-

tocells in Orthogonal Frequency-Division Multiple Access

(OFDMA)-based two-tier networks, one of the three ac-

cess modes, namely, open, closed and hybrid access, can

be employed [3]-[7]. In the open access mode, the MUEs

are allowed to connect to either their own Macrocell BSs

(MBS) or FBSs. In contrast, in the closed access mode, only

certain users (subscribers) belonging to the so-called Closed

Subscriber Group are allowed to connect to each FBS. The

hybrid access mode balances the strengths and weaknesses of

the closed and open access modes. In a typical hybrid access

mode for OFDMA-based two-tier network, the FUEs can use

all available subchannels when there is no connected MUE.

However, limited spectrum access at each femtocell is granted

for MUEs which wish to establish connections. An efficient

admission control policy is required in this case to coordinate

spectrum sharing and admission control for both types of

users, which should strike a balance between achieving high

spectrum utilization and protecting QoS requirements for

FUEs. In this paper, we develop such a spectrum sharing

and admission control mechanism for OFDMA-based two-tier

networks.

There have been some recent works on resource allocation

and performance analysis of OFDMA-based femtocell net-

works. In [5], a static frequency assignment scheme based on

fractional frequency reuse was proposed considering the hand-

off, coverage, and interference aspects of femtocell networks.

In [8], a randomized frequency allocation strategy called F-

ALOHA was proposed and its area spectral-efficiency was

analyzed for OFDMA-based femtocell networks by using

stochastic geometry. Research studies in [9] suggested that

open access can provide a throughput gain of more than 300%
for CDMA-based femtocell networks whereas the throughput

performance of open and closed access modes for OFDMA

femtocells depends on user density. Moreover, the admission

control and handoff problem for femtocell networks was

studied by using simulations [4].

In [10], a hierarchical resource allocation framework for

OFDMA-based femtocell networks was proposed that includes

three control loops, namely, maximum power setting for FUEs,

1536-1276/13$31.00 c© 2013 IEEE
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target SINR assignment for FUEs, and instantaneous power

control to achieve these target SINR values. In [11], a dis-

tributed power control algorithm was proposed for femtocells

to maximize the sum-rate achieved by FUEs. In [12], to design

resource allocation algorithms, a game model was used, the

equilibria of which were shown to be fair and efficient. In [13],

a frequency scheduling algorithm based on spectrum sensing

was proposed for coexistence of MUEs and FUEs. In [14],

distributed admission control and spectrum allocation algo-

rithms were developed using reinforcement learning, which

are, however, unable to provide performance guarantees for

users of both network tiers.

There are existing works in the literature that investigated

the admission control problem based on Markov Decision Pro-

cess (MDP) and also the power control problem for traditional

one-tier CDMA wireless networks [16], [17], [21]. To the best

of our knowledge, the problem of optimal admission control

with quality-of-service (QoS) guarantee in multi-tier wireless

cellular networks, which is addressed in this paper, has not

been well investigated in the literature. The contributions of

this paper can be summarized as follows:

• We develop a mathematical model for joint resource

allocation and admission control design for dynamic

spectrum sharing in OFDMA-based two-tier femtocell

networks. This model considers the QoS requirements of

MUEs and FUEs in terms of average rates and blocking

probabilities in presence of both co-tier and cross-tier

interferences.

• We devise a cross-layer radio resource management

framework for femtocells with a multiband proportional-

fair scheduling scheme at the MAC layer and an ad-

mission control scheme at the network layer. Then, the

optimal admission control solution is obtained by using

the theory of Semi-Markov Decision Process (SMDP).

• For energy-efficient resource management, we propose a

novel distributed femtocell power adaptation algorithm

by using game theory. We prove that the proposed

femtocell power adaptation algorithm converges to the

Nash equilibrium (NE) of the game.

• We demonstrate the efficacy of the proposed admission

control scheme as well as the significant power saving

gains of the proposed power adaptation algorithm via

numerical studies.

The rest of this paper is organized as follows. In Section

II, we present the system model. The cross-layer resource

allocation and admission control framework is presented in

Section III. We present the distributed femtocell power adap-

tation algorithm in Section IV. Numerical results are presented

in Section V which is followed by conclusion in Section VI.

A summary of key notations is presented in Table I.

II. SYSTEM MODEL

We consider the downlink of a two-tier OFDMA-based

wireless network that employs Frequency-Division Duplexing

(FDD). There are N subchannels shared by MUEs and FUEs

for downlink communications1. It is assumed that there are

1The structure of cross-tier interference in the uplink is quite different from
that in the downlink. Analysis of the uplink scenario is left for our future work.
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Fig. 1. Two-tier femtocell network.

J femtocells sharing these N subchannels with I macrocells.

We further assume that a hybrid access policy is employed

where MUEs can connect to a nearby FBS. This can happen

when MUEs suffer from undue cross-tier interference or they

can achieve better rates if connected with a nearby FBS. The

system model under consideration is illustrated in Fig. 1.

We assume that each subchannel can be assigned to at most

one FUE or MUE connecting to any FBS. Furthermore, we

assume a full spatial reuse where all subchannels are utilized

at each FBS. In addition, subchannels are assumed to be

allocated to macrocells in such a way that interference among

macrocells is properly controlled2. We consider the scenario

where users of both network tiers demand some minimum

average rates which are determined by their underlying appli-

cations and locations in the cell. In fact, location-dependent

QoS constraints can be imposed to balance user throughput

and fairness. For instance, cell-edge users may require a

minimum rate that is smaller than that of cell-center users

so that the total cell throughput is not severely compromised.

We assume that there are C1 classes of FUEs and C2 classes

of MUEs connecting to any FBS. In addition, it is assumed

that class-c MUEs and FUEs require their total average rates

to be at least R
(mc)
min

and R
(fc)
min

, respectively.

To illustrate these QoS constraints, let us assume that long-

term signal attenuation depends on the distance between users

and a BS symmetrically. Note however that this assumption

can be relaxed as long as detailed path-loss information in each

cell is available. The area around each FBS can be divided into

circular areas and users running the same application (e.g.,

voice or video) in each circular area can be imposed the same

minimum average rate requirement. Each such minimum rate

is mapped to one user class. We depict this QoS modeling

in Fig. 2 where the femtocell area is divided into cell-edge

and cell-center regions. In addition, there is a circular region

where MUEs inside that region would request to establish

connections with the underlying FBS (i.e., they switch their

2Examples of subchannel allocation schemes include fractional frequency
reuse and partial frequency reuse [15].
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TABLE I
SUMMARY OF KEY NOTATIONS

Notation Physical meaning

I Number of macrocells
J Number of femtocells
N Number of subchannels
W Bandwidth of one subchannel

C1, C2 Number of FUE/MUE service classes

R
(fc)
min

, R
(mc)
min

Minumum required rate for class-c FUEs/MUEs

g
(fc)
ijk

, g
(fc)
ijk

Channel gain from FBS/MBS j to class-c user k in femtocell i

L(dijk) Path-loss over distance dijk

λ
(f)
ic , λ

(m)
ic Arrival rate of class-c FUEs/MUEs in femtocell i

µ
(f)
ic , µ

(m)
ic Service rate of class-c FUEs/MUEs in femtocell i

pi, p0 Transmission power on each subchannel from FBS/MBS i
βi Transmission power ratio for femtocell i

Pmax

FBS
, Pmax

MBS
Maximum transmission power of FBS/MBS

Γ
(fc)
ik

, Γ
(mc)
ik

SINR of class-c FUE/MUE k in femtocell i

Γ
(fc)
ik , Γ

(mc)
ik Average SINR of class-c FUE/MUE k in femtocell i

U
(f)
ic

, U
(m)
ic

Set of class-c FUEs/MUEs in femtocell i

u
(f)
ic , u

(m)
ic Number of class-c FUEs/MUEs in femtocell i

∆
(f)
ic , ∆

(m)
ic Set of subchannels allocated for class-c FUEs/MUEs in femtocell i

s
(f)
ic , s

(m)
ic Number of subchannels allocated for class-c FUEs/MUEs in femtocell i

s
(f)
ic , s

(m)
ic Required number of subchannels for class-c FUEs/MUEs in femtocell i

y
(fc)
ik

, y
(mc)
ik

Equal Γ
(fc)
ik

/Γ
(fc)
ik and Γ

(mc)
ik

/Γ
(mc)
ik , respectively

f
y
(fc)
ik

(x), F
y
(fc)
ik

(x) Probability density function and probability distribution function for y
(fc)
ik

f
y
(mc)
ik

(x), F
y
(mc)
ik

(x) Probability density function and probability distribution function for y
(mc)
ik

r
(fc)
ik

, r
(mc)
ik

Average rate achieved by class-c FUE/MUE k in femtocell i

r
(fc)
ik

, r
(mc)
ik

Minimum average rate achieved by class-c FUE/MUE k in femtocell i

B
(f)
ic , B

(m)
ic Blocking probability for class-c FUEs/MUEs in femtocell i

P
(fc)
b

, P
(mc)
b

Target blocking probability for class-c FUEs/MUEs in femtocell i

a
(f)
ic

, a
(m)
ic

Control action of class-c FUEs/MUEs in femtocell i
Ax Admissible action space for system state x

τx(a) Expected time until the next decision epoch when action a is taken
zxa Rate of choosing action a in state x

w
(m)
ic , w

(f)
ic Weighting factors defining the cost function of the MDP formulation

Ti, T Throughput of femtocell i and total throughput
σ Standard deviation of shadowing
δ Power scaling factor

Pi, Fi(.) Power and payoff function of femtocell i
pxy(a) Transition probability from state x to state y given action a be taken

connections to the underlying FBS)3.
We assume that the distance from any user connecting with

FBS i to other FBS/MBS j can be well approximated by the

distance from FBS i to FBS/MBS j. This assumption would

be valid because the size of a typical femtocell would be

much smaller than the distance between the BSs of either

tier. Let g
(fc)
ijk and g

(mc)
ijk be the channel gains on a partic-

ular subchannel from FBS j and MBS j, respectively, to a

particular class-c user k of either tier who is associated with

femtocell i. For brevity, the subchannel index is omitted in

these notations. Channel gains are modeled considering path-

loss, shadowing, and Rayleigh fading. Specifically, we can

write g
(xc)
ijk (x stands for f or m) as g

(xc)
ijk � L(dijk)10

η/10ω,

where L(dijk) represents the path-loss over the corresponding

distance dijk , η is a Gaussian-distributed random variable with

zero mean and standard deviation σ, and ω represents the

short-term Rayleigh fading gain. In addition, we assume that

3MUEs typically achieve better average SINRs and higher transmission
rates when they enter this neighborhood and switch their connections to the
underlying FBS.

Switching boundary 

for MUEs

Femtocell 

boundary

Service-class 

boundary for FUEs

FBS

Fig. 2. Location-dependent QoS classes and switching boundary for MUEs.

connection requests of class-c FUEs and MUEs in femtocell

i, which are assumed to follow Poisson processes, arrive with

rate λ
(f)
ic and λ

(m)
ic , respectively. The connection duration is
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Fig. 3. Cross-layer resource management model with time-scale separation.

assumed to be exponentially distributed with mean duration of

1/µ
(f)
ic and 1/µ

(m)
ic for class-c FUEs and MUEs, respectively.

III. CROSS-LAYER RESOURCE ALLOCATION AND

ADMISSION CONTROL FRAMEWORK

We consider a cross-layer joint resource allocation and

admission control framework for femtocells with the following

network functionalities. A distributed opportunistic scheduling

algorithm is assumed to be implemented at each FBS to exploit

the multiuser diversity at a small time-scale. Depending on the

channel dynamics observed by users in two tiers, the size of

a scheduling time slot is assumed to be designed accordingly.

In contrast, the admission controller operates at a larger time-

scale, which captures the system dynamics due to user arrivals

and departures. Also, we design a distributed power adaptation

algorithm that adapts the transmission power of FBSs to the

heterogeneous traffic distribution over the network for QoS-

aware and energy-efficient spectrum sharing between the two

network tiers.

The cross-layer model under consideration is illustrated in

Fig. 3. It is worth noting that we consider a dynamic network

model where users come and leave the network over time.

Therefore, traditional resource allocation algorithms developed

for a static and snapshot network model with fixed network

topology (i.e., fixed number of users with known locations)

cannot be applied to our setting.

We assume that the MBSs have maximum transmission

power of Pmax

MBS
while the maximum allowable power of

FBSs is Pmax

FBS
which is determined from outage probability

constraints for MUEs and will be described in Section III-C.

For simplicity, we assume that the MBSs and FBSs perform

uniform power allocation over the subchannels and FBS j
uses 0 ≤ βj ≤ 1 fraction of its maximum power while

the MBSs use their maximum power for downlink commu-

nications4. These femtocell transmission power ratios βj will

be employed by the distributed power adaptation algorithm

to be presented in Section IV. Therefore, the transmission

power on any subchannel for users connecting to FBS j
is pj = βjP

max

FBS
/N and the transmission power from any

MBS on one subchannel is p0 = Pmax
MBS

/N . Given the power

4We do not consider resource allocation for the macrocell tier in this paper.
However, the proposed algorithms would be able to adapt to the potential
dynamic operations of the macrocells.

allocation for MBSs and FBSs, we present an opportunistic

scheduling algorithm and analyze its throughput performance

in the following.

A. Multi-band Opportunistic Scheduling

The signal-to-interference-plus-noise ratio (SINR) achieved

by class-c FUE k associated with femtocell i on a particular

subchannel can be written as

Γ
(fc)
ik =

pig
(fc)
iik

∑J
j=1,j �=i g

(fc)
ijk pj +

∑I
j=1 g

(mc)
ijk p0 +N0

=
pig

(fc)
iik

∑J
j=1,j �=i g

(fc)
ijk pj + IN

(fc)
ik

(1)

where N0 denotes the noise power and recall that g
(fc)
ijk and

g
(mc)
ijk are the channel gains from FBS j and MBS j to class-c

FUE k in femtocell i, respectively. The first and second terms

in the denominator of (1) represent the total interference due

to other FBSs and MBSs, respectively. In addition, IN
(fc)
ik =

∑I
j=1 g

(mc)
ijk p0+N0 denotes the total interference from MBSs

and the noise power. Similarly, the SINR achieved by class-c
MUE k connecting with FBS i can be written as

Γ
(mc)
ik =

pig
(mc)
iik

∑J
j=1,j �=i g

(fc)
ijk pj +

∑I
j=1,j �=ji

g
(mc)
ijk p0 +N0

=
pig

(mc)
iik

∑J
j=1,j �=i g

(fc)
ijk pj + IN

(mc)
ik

(2)

where IN
(mc)
ik =

∑I
j=1,j �=ji

g
(mc)
ijk p0+N0 and ji is the nearest

MBS of femtocell i. Here, we assume that subchannels allo-

cated to MUEs connected with FBS i are not assigned to other

MUEs connected with the nearest MBS of femtocell i. Hence,

in the second term in the denominator of (2) we exclude

the interference from this MBS in calculating the total noise

and interference power. For brevity, we omit the subchannel

index in the SINR notations Γ
(fc)
ik and Γ

(mc)
ik . We assume that

the SINR-proportional fair opportunistic scheduling algorithm

[20], [22] is employed on each subchannel5. In particular,

time is divided into equal-size time slots and scheduling

decisions are made in each time slot for all subchannels.

Because the time slot interval is very small (e.g., typically

few milliseconds) compared to the user dwelling time, the

opportunistic scheduling algorithm operates over a small time-

scale. Note that a particular user of either tier can be scheduled

to transmit on multiple subchannels in each time slot.

Let U
(m)
ic and U

(f)
ic denote the sets of class-c MUEs and

FUEs in femtocell i and their cardinalities are denoted as

u
(m)
ic = |U (m)

ic | and u
(f)
ic = |U (f)

ic |, respectively. In addition, let

∆
(f)
ic and ∆

(m)
ic be the sets of subchannels allocated for class-c

FUEs and MUEs in femtocell i, respectively. We assume that

these sets are determined to meet the average rate requirements

and they are only updated when the numbers of active users

5Consideration of the proportional fair scheduling in the cross-layer model
would be quite natural given that it has been adopted in practical wireless
standards [20], [22]. Moreover, the framework considered in this paper can
be readily extended to other scheduling schemes.
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u
(m)
ic and u

(f)
ic change. The SINR-proportional fair opportunis-

tic scheduling algorithm operates on a particular subchannel

v ∈ ∆
(f)
ic as follows. FBS i chooses FUE k∗ that achieves

the largest ratio Γ
(fc)
ik (t)/Γ

(fc)

ik for transmission in time slot t

on this subchannel, i.e., k∗ � argmax
k∈U

(f)
ic

Γ
(fc)
ik (t)/Γ

(fc)

ik

where recall that Γ
(fc)
ik (t) and Γ

(fc)

ik are the instantaneous

and average SINR of FUE k on the underlying subchannel,

respectively. Similar operations are applied for subchannels in

∆
(m)
ic to schedule MUEs in the sets U

(m)
ic .

Now, we determine the average rate achieved by a par-

ticular FUE k ∈ U
(f)
ic on one particular subchannel. To-

ward this end, we need to describe the probability distri-

bution of Γ
(fc)
ik (t)/Γ

(fc)

ik . It was shown in [19], [20] that

the composite variability of g
(fc)
ijk due to Rayleigh fading

and lognormal shadowing can be approximated by a single

lognormal distribution. In addition, it is well-known that

a sum of lognormally-distributed random variables can be

represented by a single lognormal distribution [23], [32]. Also,

the ratio of two lognormally-distributed random variables is

lognormally distributed. Therefore, y
(fc)
ik = Γ

(fc)
ik (t)/Γ

(fc)

ik

can be approximated by a lognormally-distributed random

variable whose mean and standard deviation can be calculated

as in [20]. Then, the average rate achieved by FUE k ∈ U
(f)
ic

on a particular subchannel can be written as follows6:

r
(fc)
ik = W

∫ ∞

0

log
(

1 + y
(fc)
ik Γ

(fc)

ik

)

×

⎧

⎪

⎨

⎪

⎩

∏

j∈U
(f)
i,c

,j �=k

F
y
(fc)
ij

(x)

⎫

⎪

⎬

⎪

⎭

f
y
(fc)
ik

(x)dx (3)

where W is the bandwidth of one subchannel; f
y
(fc)
ik

(x) and

F
y
(fc)
ik

(x) represent the probability density function and prob-

ability distribution function of y
(fc)
ik , respectively. Similarly,

the average rate achieved by MUE k ∈ U
(m)
ic on a particular

subchannel can be written as follows:

r
(mc)
ik = W

∫ ∞

0

log
(

1 + y
(mc)
ik Γ

(mc)

ik

)

×

⎧

⎪

⎨

⎪

⎩

∏

j∈U
(m)
ic

,j �=k

F
y
(mc)
ij

(x)

⎫

⎪

⎬

⎪

⎭

f
y
(mc)
ik

(x)dx (4)

where y
(mc)
ik = Γ

(mc)
ik (t)/Γ

(mc)

ik ; f
y
(mc)
ik

(x) and F
y
(mc)
ik

(x)

represent the probability density function and probability

distribution function of y
(mc)
ik , respectively.

B. QoS Constraints

It can be verified that the average rate r
(fc)
ik calculated in (3)

decreases with the path-loss L(diik) for given power allocation

and channel gain parameters. Moreover, r
(fc)
ik decreases with

the number of class-c FUEs u
(f)
ic because the proportional-fair

6Assuming that the long-term channel gains on different subchannels are the
same and the typical user dwelling time is much larger than a scheduling time
slot, the average rates achieved by a particular user on different subchannels
are the same.

scheduling allows equal long-term time-shares among users

[18], [20] and each subchannel in ∆
(f)
ic is shared by u

(f)
ic

FUEs. Recall that class-c MUEs and FUEs require their total

average rates to be at least R
(mc)
min

and R
(fc)
min

, respectively. To

determine the minimum number of subchannels to meet the

minimum rate requirement, we consider the worst user with

minimum L(diik) (or maximum diik) for each service class c
in femtocell i. That is, the femtocell i is located at the edge

of the corresponding service class for symmetric path-loss.

Let r
(fc)
i and r

(mc)
i be the minimum rates achieved by any

class-c FUE and MUE, respectively. These minimum rates can

be calculated by using (3) and (4) for the corresponding worst

users. Let s
(f)
ic = |∆(f)

ic | and s
(m)
ic = |∆(m)

ic | be the numbers of

subchannels allocated for class-c FUEs and MUEs in femtocell

i, respectively. To maintain the rate requirements for FUEs

and MUEs of each service class, we impose the following

constraints7:

R
(fc)
min

≤ s
(f)
ic × r

(fc)
i (u

(f)
ic ) (5)

R
(mc)
min

≤ s
(m)
ic × r

(mc)
i (u

(m)
ic ) (6)

where we explicitly describe the dependence of r
(fc)
i and

r
(mc)
i on u

(f)
ic and u

(m)
ic , respectively. These constraints ensure

that the minimum rate requirements are satisfied by any class-

c user. From these inequalities, we require that the numbers

of subchannels allocated for class-c MUE and FUE satisfy

s
(f)
ic ≥

⌈

R
(fc)
min

r
(fc)
i (u

(f)
ic )

⌉

� s
(f)
ic

(

u
(f)
ic

)

(7)

s
(m)
ic ≥

⌈

R
(mc)
min

r
(mc)
i (u

(m)
ic )

⌉

� s
(m)
ic

(

u
(m)
ic

)

. (8)

Therefore, the rate constraints in (5) and (6) hold if the

following constraints for femtocell i are satisfied:

N ≥
C1
∑

c=1

s
(f)
ic

(

u
(f)
ic

)

+

C2
∑

c=1

s
(m)
ic

(

u
(m)
ic

)

, ∀i = 1, 2, . . . , J.

(9)

This constraint means that the number of available sub-

channels should be large enough to support the required

minimum rates for all service classes. This constraint will be

used for admission control design. Since the MUEs degrade

the performance of the FUEs connecting to the same FBS,

the FUEs must be satisfactorily protected. Toward this end,

we assume that a class-c FUE has the maximum tolerable

blocking probability of P
(fc)
b . Let B

(f)
ic denote the blocking

probability of class-c FUEs in femtocell i. Then, the blocking

probability constraints can be written as follows:

B
(f)
ic ≤ P

(fc)
b , ∀i, c. (10)

The admission control and channel assignment should be

performed in such a way that they can satisfy the channel and

blocking probability constraints in (9) and (10), respectively.

7Since the average rates achieved by any user on different subchannels are
the same, only the number of subchannels allocated to a particular service
class impacts the achievable average rates of its users. Note, however, that we
have exploited the channel dynamics to enhance the user throughput through
employing the proportional fair scheduling.
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C. Maximum Power Constraints Under Closed and Hybrid

Access

Let dMU be the radius of the circular area centered around

each FBS where MUEs inside this region will connect with the

corresponding FBS under the proposed hybrid access scheme.

Also, let dF be the radius of the coverage area of any femtocell.

We consider both closed and hybrid access strategies and

derive the corresponding maximum power constraints for

FBSs so that MUEs which are connected with MBSs and close

to FBSs are protected from excessive cross-tier interference.

Specifically, it is required that the transmission powers of

FBSs must be smaller than some maximum value so that

outage probability of MUEs is smaller than a desirable value.

Toward this end, let us consider a particular MUE k that

connects with a nearby MBS and FBS i is its closest FBS.

Let h
(m)
ik be the channel gain between the considered MUE k

and its connecting MBS. Then, we can express the SINR of

this MUE k as

γ
(m)
ik =

p0h
(m)
ik

∑J
j=1 g

(fc)
ijk pj +

∑I
j=1,j �=ji

g
(mc)
ijk p0 +N0

=
p0h

(m)
ik

∑J
j=1 g

(fc)
ijk pj + IN

(mc)
ik

. (11)

Note that all femtocells including femtocell i create cross-tier

interference for the considered MUE k. In addition, MUEs

are not allowed to connect with nearby FBSs under the closed

access. To calculate the maximum allowable power for FBSs

under the closed access, we impose the outage probability

constraints for the worst MUE k whose distance from FBS

i is exactly dF . Let γ0 be the target SINR of the considered

MUE k then the outage probability constraint can be expressed

as

Pr
{

γ
(m)
ik (dF ) < γ0

}

< P (m)
o (12)

where γ
(m)
ik (dF) denotes the SINR of the MUE whose distance

to the nearest FBS is dF and P
(m)
o represents the target

outage probability. The LHS of this inequality denotes the

outage probability for the considered MUE. Recall that γ
(m)
ik

can be modeled as a lognormally distributed random variable

with mean and standard variation (in dB) of µm and ηm,

respectively, which can be calculated as in [20]. The outage

probability in the left hand side of (12) can be expressed as

[20]

Pr
{

γ
(m)
ik (dF ) < γ0

}

= 1− 1

2
erfc

(

10 log10 γ0 − µm√
2ηm

)

(13)

where erfc(x) denotes the complementary error function,

defined as erfc(x) = 2√
π

∫∞
x exp(−y2)dy. Then, we assume

that the transmission power of any FBS is constrained by

a common maximum value Pmax

FBS
so that outage probability

constraints in (12) are satisfied for neighboring MUEs of all

femtocells. This kind of outage probability constraints has

been considered in several recent works [27], [28]. For the

proposed hybrid access, any MUE whose distance from the

nearest FBS is less than dMU will connect with the FBS.

Therefore, the outage probability constraints in this case can

be expressed as

Pr
{

γ
(m)
ik (dMU) < γ0

}

< P (m)
o . (14)

The outage probability in (14) can be calculated as in (13) with

the corresponding mean and standard deviation values. And

the maximum transmission power Pmax

FBS
of all FBS under the

hybrid access can be calculated so that the outage probability

constraints in (14) are satisfied. The maximum transmission

power Pmax

FBS
under either access scheme is assumed to be

estimated by FBSs during a network startup phase.

D. SMDP-Based Distributed Admission Control in Femtocells

Given the considered physical and network layer models,

admission control is performed at the network layer con-

sidering user dynamics at the call level. It turns out that

admission control can be performed separately in each cell,

which enables distributed implementation. We will present

and analyze the performance of an optimal admission control

scheme for a particular femtocell i. In fact, we can formulate

the admission control problem as an SMDP [33].

We proceed by describing the state and action spaces for

the underlying SMDP. The decision epochs of the underlying

SMDP are arrival and departure instants of either FUE or MUE

in the considered femtocell i. We define a general system state

at decision epoch t as follows:

x(t) �
[

u
(f)
i1 (t), . . . , u

(f)
iC1

(t), u
(m)
i1 (t), . . . , u

(m)
iC2

(t)
]

(15)

where recall that u
(f)
ic (t) and u

(m)
ic (t) are the numbers of class-

c FUEs and MUEs at decision epoch t, respectively. Then, the

state space X is defined as follows:

X � {x : constraint (9) holds} . (16)

At each decision epoch when the system changes its state, an

admission control action is determined for the next decision

epoch. In fact, an admission control action is only taken for

a newly arriving user of either type. At a departure instant of

any connection, state transition occurs and no action is needed.

We define a general action a at decision epoch t as

a(t) �
[

a
(f)
i1 (t), . . . , a

(f)
iC1

(t), a
(m)
i1 (t), . . . , a

(m)
iC2

(t)
]

(17)

where a
(f)
ic (t) and a

(m)
ic (t) denote the admission control ac-

tion when an arrival occurs for class-c FUEs and MUEs in

femtocell i, respectively, which are defined as follows:

a
(f)
ic =

{

1, if a newly arriving FUE is admitted

0, otherwise
(18)

a
(m)
ic =

{

1, if a newly arriving MUE is admitted

0, otherwise.
(19)

The action state space can be defined as A =
{

a : a ∈ {0, 1}C1+C2

}

. Given these system and action state

spaces, we can determine the transition probabilities for the

underlying embedded Markov chains based on which the

optimal solution can be obtained (see Appendix A). Let B
(f)
ic

and B
(m)
ic be the blocking probabilities for class-c FUEs and
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MUEs, respectively, which can be calculated from the SMDP-

based admission control solution presented in Appendix A.

Then, we can calculate the achievable call throughput of

femtocell i as follows:

Ti =

C1
∑

c=1

(1−B
(f)
ic )λ

(f)
ic +

C2
∑

c=1

(1−B
(m)
ic )λ

(m)
ic (20)

where we have taken blocked arrivals into consideration. Fi-

nally, the total network throughput achieved by all femtocells

can be calculated as T =
∑J

i=1 Ti. The admission control

framework developed in this section will be used in the design

of a femtocell power adaptation algorithm in the next section.

IV. DISTRIBUTED POWER ADAPTATION ALGORITHM

High transmission power at an FBS may severely degrade

the performance of other highly-loaded femtocells and macro-

cells because of excessive inter-cell and cross-tier interference.

To address this issue, we develop an efficient power adaption

mechanism by using game theory8. The proposed power

adaptation algorithm aims to adapt transmission powers of

FBSs to spatial traffic load over the network [31]9. Therefore,

it is only activated when the traffic load described by user

arrival rates changes.

Femtocell Power Adaptation Game (FPAG):

• Players: J FBSs.

• Strategies: Each FBS i can select its total transmission

power Pi ∈ [0, Pmax
FBS

] (the transmission power ratio βi

for FBS i is in [0, 1]) to maximize its payoff.

• Payoffs: Fi(Pi, P−i) for each FBS i is Fi(Pi, P−i) =
−Pi, where P−i � [P1, . . . , Pi−1, Pi+1, . . . , PJ ] denotes

a vector containing transmission powers of other FBSs

excluding FBS i.

It is assumed that all FBSs are required to satisfy the

channel and blocking probability constraints in (9) and (10),

respectively, while maximizing their payoffs. In addition, we

require that each FBS i that wishes to reduce its transmission

power must satisfy the following blocking probability con-

straints for their MUEs

B
(m)
ic ≤ P

(mc)
b , 1 ≤ c ≤ C2 (21)

given that these constraints are satisfied when the maximum

power Pmax
FBS

is used. Here P
(mc)
b s are some predetermined

values. These additional constraints ensure that satisfactory

performance in terms of blocking probabilities is achieved for

users of both network tiers while the payoffs of all the FBSs

are maximized.

Remark 1: We assume that only FBSs participate in the power

adaptation game. In general, this formulation can be readily

extended to the scenario where MBSs are also players of

the game. However, MBSs are typically inter-connected by

high-speed links, which enable them to achieve certain global

8In general, femtocell owners would be interested in maximizing their own
benefits while maintaining required QoS for their users. Therefore, use of
non-cooperative game theory in designing the power adaptation algorithm for
femtocells arises quite naturally.

9The related research topics including design of FPGA, power circuitry,
and sleep mode strategies are other aspects of cross-layer design in attaining
the energy efficiency, which are out of the scope of this paper.

objectives. Investigation of power control issues for MBSs are,

therefore, beyond the scope of this paper.

One important concept in game theory is the Nash equilib-

rium (NE), which is defined in the following.

Definition 1: A transmission power vector P∗ is called the NE

of the FPAG if for each FBS i, Fi(P
∗
i , P

∗
−i) ≥ Fi(Pi, P

∗
−i),

∀Pi ∈ [0, Pmax

FBS
].

In the following, we develop a femtocell power adaptation

algorithm that converges to the NE of the FPAG. In particular,

FBSs, whose required blocking probability constraints are still

maintained, decrease their transmission powers by a factor δ <
1 iteratively. Toward this end, we present some preliminary

results that characterize the system behavior under these power

scaling operations.

Proposition 1: Given the channel gains for all users, we have

the following properties:

1) For any FUE and MUE, whose FBS scales down power,

the SINR given in (1) and (2) decreases;

2) For any FUE and MUE, whose FBS does not scale down

power, the SINR given in (1) and (2) increases.

Proof: To prove the first property of this proposition, let

us consider the SINR on any subchannel achieved by a class-c
FUEs associated with FBS i which scales down power by a

factor δ. Let Ω be the set of FBSs which scale down their

transmission powers excluding FBS i in the current iteration.

Then, we can rewrite the SINR of FUE i as follows:

Γ
(fc)
ik =

δp
(p)
i g

(fc)
iik

∑

j∈Ω g
(fc)
ijk δp

(p)
j +

∑

j /∈Ω g
(fc)
ijk p

(p)
j + IN

(fc)
ik

=
p
(p)
i g

(fc)
iik

∑

j∈Ω g
(fc)
ijk p

(p)
j +

∑

j /∈Ω g
(fc)
ijk

p
(p)
j

δ +
IN

(fc)
ik

δ

≤ p
(p)
i g

(fc)
iik

∑

j∈Ω g
(fc)
ijk p

(p)
j +

∑

j /∈Ω g
(fc)
ijk p

(p)
j + IN

(fc)
ik

(22)

where p
(p)
j = βjP

max

FBS
/N is the transmission power on any

subchannel in femtocell j in the previous iteration. The last

inequality in (22) holds because δ < 1. It can be observed that

the quantity in the right hand side of (22) is indeed the SINR of

class-c FUEs in femtocell i in the previous iteration. Similarly,

we can prove the decrease of SINR of MUEs. Therefore, the

first property stated in the proposition holds.

The second property in the proposition can be proved

similarly. In particular, for any FBS which does not scale

down power, the received powers of its FUEs remain the same.

However, the total received interference can only decrease due

to the decreases in transmission powers of some other FBSs.

The results in Proposition 1 describe how the power

updates of FBSs impact the SINRs of users in the network.

We now state further results on the average rates achieved by

the opportunistic scheduling scheme under power adaptation.

Proposition 2: We have the following results for the aver-

age rates achieved by the SINR-proportional fair scheduling

scheme:

1) For any FUE and MUE whose FBS scales down power,

the average rate given in (3) and (4) decreases;



LE et al.: QOS-AWARE AND ENERGY-EFFICIENT RESOURCE MANAGEMENT IN OFDMA FEMTOCELLS 187

2) For any FUE and MUE whose FBS does not scale down

power, the average rate given in (3) and (4) increases.

Proof: From Proposition 1, for any FUE and MUE

whose connecting FBS scales down the transmission power,

its average SINR and rate in each scheduled slot decreases.

In addition, one important principle of the proportional fair

scheduling is that it allows equal long-term time shares among

competing users on each subchannel [18], [20]. Therefore, for

the fixed number of users of either type (i.e., FUEs or MUEs)

in a particular service class, each user is asymptotically

scheduled for the same fraction of time. Since the average

rate of each user in each scheduled slot decreases with the

decreasing FBS transmission power, its long-term average rate

decreases. Therefore, the first property in Proposition 2 holds.

The second property can be proved similarly by using the fact

that the average SINR and rate achieved by any FUE or MUE

in each scheduled slot increases in this case.
According to (7) and (8), the number of subchannels

required to support certain target minimum rates can increase

or decrease if the average rates of the corresponding user class

decrease or increase, respectively. In turn, the channel require-

ments for different user classes impact the channel constraint

in (9) and the corresponding admission control performance.

Because we are interested in the throughput performance at

the network layer, the impacts of power adaptation on the

admission control performance must be characterized. Let

ui =
[

u
(f)
i1 , . . . , u

(f)
iC1

, u
(m)
i1 , . . . , u

(m)
iC2

]

be the vector whose

elements represent the number of users of different classes

and let si =
[

s
(f)
i1 , . . . , s

(f)
iC1

, s
(m)
i1 , . . . , s

(m)
iC2

]

be the required

numbers of subchannels to support the minimum rate require-

ments in (7) and (8), respectively.

Definition 2: A vector si is said to dominate another vector

s
′

i written as si ≻ s
′

i if we have s
(f)
ic ≥ s

′(f)
ic , c = 1, . . . , C1,

s
(m)
ic ≥ s

′(m)
ic , c = 1, . . . , C2, and there is at least one strict

inequality in these inequalities.

We are ready to state an important result that describes the

interaction of the physical and network layer performance of

the proposed cross-layer design model.

Proposition 3: Consider the performance of the SMDP-

based optimal admission control described in Section III.C

under two different channel requirement vectors si and s
′

i

where si ≻ s
′

i. Let B
(f)
ic , B

(m)
ic and B

′(f)
ic , B

′(m)
ic be the

optimal blocking probabilities that are attained with the two

different channel requirement vectors si and s
′

i, respectively.

Suppose that arrival rates are sufficiently high so that B
(f)
ic =

B
′(f)
ic = P

(fc)
b , 1 ≤ c ≤ C1 under the SMDP-based admission

control10. Then, we have B
′(m)
ic ≤ B

(m)
ic .

Proof: Let us rewrite the cost function Fπ in (29) for a

particular stationary policy π as

Fπ =

C1
∑

c=1

w
(f)
ic B

(f)
ic +

C2
∑

c=1

w
(m)
ic B

(m)
ic (23)

where recall that B
(f)
ic and B

(m)
ic denote the blocking proba-

bilities of class-c FUEs and MUEs, respectively.

10As will be seen in the numerical results, these probability constraints for
FUEs are met with equality for sufficiently large arrival rates.

Let π∗ denote the optimal policy of the system with the

channel requirement vector si and let B
(f)
ic and B

(m)
ic be

the optimal blocking probabilities achieved by this optimal

policy for FUEs and MUEs, respectively. Refer to Appendix

A for further details on how to calculate the optimal ad-

mission control solution for a given channel requirement

vector. Suppose we apply this policy π∗ for another system

with the channel requirement vector s
′

i. Since we assume

si ≻ s
′

i, such policy utilization can maintain the subchannel

constraint in (9) and the achievable blocking probabilities

satisfy B
′′(f)
ic = B

(f)
ic = P

(fc)
b (the second equality holds due

to the assumption of the proposition) and B
′′(m)
ic = B

(m)
ic .

Now, let us compare the blocking probabilities B
′′(m)
ic

obtained above with the blocking probabilities B
′(m)
ic attained

by the optimal solution for the system with the channel

requirement vector s
′

i. We must have B
′(m)
ic ≤ B

′′(m)
ic since

B
′(m)
ic is due to the optimal policy for the system with the

channel requirement vector s
′

i. Therefore, we have B
′(m)
ic ≤

B
′′(m)
ic = B

(m)
ic . This completes the proof of the proposition.

The results in Proposition 2 and Proposition 3 establish

the foundation to develop the power adaptation algorithm.

Specifically, we can allow lightly-loaded FBSs to reduce their

transmission powers, which in turn increases the blocking

probabilities of their users as long as the resulting blocking

probabilities satisfy the constraints in (10) and (21). The

reduction of transmission powers in lightly-loaded FBSs will

increase transmission rates for femtocells with high traffic

load. This can potentially decrease channel requirement vector

si for other highly-loaded femtocell i. This can result in an

improvement in blocking probabilities and the total throughput

in these highly-loaded femtocells.

The proposed power adaptation algorithm is described in

details in Algorithm 1. In steps 3-5, each FBS in set Af

attempts to reduce its transmission power by a factor δ. Param-

eter P
(mc)
b in (21) is introduced to maintain the performance

of MUEs connecting with lightly-loaded FBSs. When multiple

femtocells scale down their powers at the same time there

may be a subset of these femtocells failing to maintain their

blocking probability requirements (i.e., constraints (10) and

(21)). In steps 7-9 of Algorithm 1, the femtocells which fail to

maintain their blocking probability requirements scale up their

powers by a factor 1/δ to do so. There are subtle interactions

among femtocells after step 9. Specifically, the power scale-

up of femtocells in steps 7-9 may make other femtocells

violate their blocking probability requirements. This is because

a larger transmission power of any femtocell results in higher

interference and therefore lower transmission rates for users in

other femtocells. In steps 10-15 of Algorithm 1, any violating

femtocell scales up its transmission power to maintain its

blocking probability requirement. This is performed until

the blocking probability requirements in all femtocells are

satisfied.

The proposed algorithm can be implemented in a distributed

fashion because each FBS only needs to know the average

rates achieved by its FUEs and MUEs of different classes.

This can be attained by letting FUEs and MUEs of all classes
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Algorithm 1 FEMTOCELL POWER ADAPTATION

1: Initialization: Each FBS uses its maximum power for

downlink communications. Moreover, each FBS calculates

its admission control performance using the analytical

model presented in Section III.C.

2: Let Af be the set of active femtocells who can maintain

its blocking probability requirements in (10) and (21).

3: for each FBS i in Af do

4: FBS i scales down its transmission power by a factor

δ < 1 (i.e., FBS i performs the following update: βi :=
δβi and transmits with power βiP

max
FBS

).

5: end for

6: Each FBS re-calculates its admission control solution

based on the current perceived SINRs of its user classes

where additional constraints (33) are imposed for each

FBS i if constraints in (21) for FBS i hold in the previous

iteration.

7: for each FBS j which scales down its transmission power

in the current iteration and cannot maintain the blocking

probability constraints in (10) or (21) do

8: FBS j scales up the transmission power by a factor 1/δ
(i.e., go back to the previous power level).

9: end for

10: while there are any femtocells which scale up their

transmission power do

11: Each FBS re-calculates its admission control solution

based on the current perceived SINRs of its user classes

where additional constraints in (33) are imposed for

each FBS i if constraints in (21) for FBS i hold in the

previous iteration.

12: for each FBS j which scales down its transmission

power in the current iteration and cannot maintain the

blocking probability constraints in (10) or (21) do

13: FBS j scales up the transmission power by a factor

1/δ (i.e., go back to the previous power level).

14: end for

15: end while

16: Update the set Af to contain all femtocells who suc-

cessfully maintain their blocking probability requirements

in (10) and (21) after power scale-down in the current

iteration or those that fail to do so K iterations before

where K is a predetermined number.

17: Go to step 2 until convergence.

to feedback the estimated mean and standard variation of the

lognormally distributed variables representing their SINRs to

each FBS i, which are used to calculate the average rates and

channel requirement vector si. The channel requirement vec-

tors are used to calculate the admission control performance

for users of both tiers in each femtocell. The convergence of

Algorithm 1 is stated in the following theorem.

Theorem 4: We have the following results for Algorithm 1:

1) The blocking probability requirements in (10) and (21)

are satisfied at the end of each iteration.

2) Algorithm 1 converges to an equilibrium.

3) If δ is sufficiently close to 1 then the achieved equilib-

rium tends to the NE of the FPAG.

Proof: Note that the interference received by any FUEs

and MUEs does not increase over iterations; therefore, if a

femtocell goes back to its power level in the previous iteration

their blocking probability constraints must be satisfied. Also,

since the blocking probability requirements of all lightly-

loaded femtocells are satisfied in the first iteration and there is

a finite number of femtocells, the inner loop corresponding to

steps 10-15 of Algorithm 1 must terminate in a finite number

of sub-iterations (bounded by the number of femtocells).

Therefore, the blocking probability requirements in (10) and

(21) for all femtocells are satisfied at the end of each iteration

(i.e., after step 15). Hence, we have completed the proof for

the first property of this theorem.

We now prove the convergence of Algorithm 1. In each

iteration, each femtocell either utilizes the same power level

as in the previous iteration or scales down its power by

a factor δ < 1 in Algorithm 1. Recall that the power

adaptation operations performed in Algorithm 1 can maintain

the blocking probability constraints (10) and (21) for all

femtocells in any iteration (the first property of the theorem).

In order to maintain these constraints, the average achieved

rates of associated users must be strictly larger than zero (since

the blocking probabilities of any user class tend to one if the

average achieved rate of that user class tends to zero (i.e.,

zero service rate)). Since each FUE and MUE receive non-

zero total noise and interference power from other MBSs,

the transmission power of any FBS must be strictly larger

than zero to achieve non-zero average rates for its associated

users. This implies that Algorithm 1 must converge to an

equilibrium at which no femtocell can scale down its power

further.

Finally, we prove that the achieved equilibrium tends to the

NE of the FPAG for δ sufficiently close to 1 by contradiction.

Specifically, suppose that the achieved equilibrium is not

a NE. Then there must exist an FBS which can increase

its payoff or slightly decrease its transmission power while

still maintaining the constraints in (10) and (21) given the

transmission powers of other FBSs. However, this contradicts

to the fact that Algorithm 1 cannot decrease the transmission

power of any FBS further at the equilibrium. Therefore, the

achieved equilibrium must be close to the NE of the FPAG if

δ is sufficiently close to 1.

Let β∗
i , i = 1, . . . , J be the femtocell transmission power

ratios obtained by Algorithm 1 at convergence. Then, we

can calculate the power saving with respect to the maximum

allowed transmission power as follows:

Sp = 100× JPmax
FBS

−∑J
i=1 β

∗
i P

max
FBS

JPmax

FBS

= 100× J −∑J
i=1 β

∗
i

J
.

(24)

One may want to compare the admission control performance

at the equilibrium attained by Algorithm 1 with that achieved

by using the maximum power. We characterize these results

in the following theorem.

Theorem 5: We have the following results for the equilibrium

achieved by Algorithm 1.

1) Throughput reduction ∆Ti of a lightly-loaded fem-

tocell i, which scales down its transmission power,

can be upper-bounded as ∆Ti ≤ ∑C1

c=1 P
(fc)
b λ

(f)
ic +
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∑C2

c=1 P
(mc)
b λ

(m)
ic .

2) Let si and s
′

i be channel requirement vectors of a

particular highly-loaded femtocell i under maximum

power and at the equilibrium attained by Algorithm 1.

Suppose the arrival rates of the considered femtocell are

sufficiently large such that the constraints in (10) are

met with equality when the maximum power is used. In

addition, assume that we have s
′

i ≺ si. Then, Algorithm

1 results in better throughput for the considered femto-

cell i compared to that achieved by using the maximum

power.

Proof: The first result of this theorem can be proved

by noting that a lightly-loaded femtocell i only decreases

its transmission power as long as the blocking probability

constraints in (10) and (21) are still satisfied. Using the fact

that the blocking probabilities for FUEs and MUEs are upper-

bounded by P
(fc)
b and P

(mc)
b , respectively, the upper-bound

in throughput reduction can be obtained by consulting the

throughput formula in (20).
The second result of this theorem can be proved by using

the results in Proposition 3. In particular, the blocking prob-

abilities for FUEs and MUEs decrease under Algorithm 1

because we have s
′

i ≺ si. Therefore, the second result follows

by using these results and the throughput formula in (20).

Remark 2: The power adaptation operations can be imple-

mented asynchronously without impacting its convergence. In

fact, in the arguments employed to prove the convergence

of Algorithm 1 we do not impose any restriction on the

number of femtocells that scale down transmission powers

in any iteration. Therefore, the convergence holds for both

synchronous and asynchronous power updates. Moreover, the

choice of parameter δ in Algorithm 1 impacts the tradeoff

between convergence speed and the transmission powers at

the equilibrium. In particular, fast convergence can be achieved

by smaller δ at the cost of larger transmission powers at the

equilibrium.

Remark 3: Let us define λtot =
∑C1

c=1 λ
(f)
ic +

∑C2

c=1 λ
(m)
ic .

Suppose we choose P
(fc)
b = P

(mc)
b = Pb; then, the throughput

loss of a lightly-loaded femtocell i presented in Theorem 5

can be rewritten as ∆Ti ≤ Pbλtot. Since λtot is bounded

in stable systems we can achieve any desirable throughput

loss by choosing Pb sufficiently small. This implies that the

NE achieved by Algorithm 1 indeed results in better energy

efficiency for the femtocell network with improved throughput

for highly-loaded femtocells and negligible throughput loss

for lightly-loaded femtocells. Therefore, the achieved NE is a

desirable operating point.

Remark 4: Although the NE may not be very efficient

compared to certain globally optimal solution, choosing NE

as an operating point for the femtocells can be justified

by the following facts. Firstly, femtocells’ owners would

be typically selfish and only interested in optimizing their

own benefits. Hence, NE would be an appropriate solution

concept that enables us to realize this expectation. Secondly,

the proposed power adaptation algorithm (i.e., Algorithm 1),

which converges to the NE of the underlying game, can be

implemented in a distributed manner. This is very desirable

as backhaul links over which signaling information can be ex-

changed typically have limited capacity. Thirdly, development

of a distributed algorithm to reach a certain globally optimal

solution for the considered multi-layer resource allocation and

admission control problem seems to be non-tractable. In fact,

it has been well-known that the utility maximization problem

for multicell OFDMA setting even under the static scenario

(i.e., fixed number of users without dynamic user arrival

and departure) is NP-hard and very complex to solve up to

optimality [29]. Therefore, formulating the power adaption as

a game where we can reach the NE in a distributed manner

would be a natural design approach for the femtocell network.

Remark 5: We can calculate the energy efficiency for the

proposed hybrid access scheme in terms of energy per bit [24],

[25], [26]. Assume that users of each service class transmit

data at the required minimum rates, i.e., class-c MUEs and

FUEs transmit at rates R
(mc)
min

and R
(fc)
min

, respectively. Let

N
(fc)

i and N
(mc)

i be the average numbers of class-c FUEs

and MUEs connected with FBS i. Then, we can calculate the

average numbers of bits transmitted by FBS i in one second

as

Si =

C1
∑

c=1

N
(fc)

i R
(mc)
min

+

C2
∑

c=1

N
(mc)

i R
(fc)
min

. (25)

Recall that FBS i transmits at the power level Pi = βiP
max

FBS
.

Therefore, we can calculate the overall energy efficiency of

all femtocells as

E =

∑J
i=1 Pi

∑J
i=1 Si

=

∑J
i=1 βiP

max
FBS

∑J
i=1

(

∑C1

c=1 N
(fc)

i R
(mc)
min

+
∑C2

c=1 N
(mc)

i R
(fc)
min

) .

This implies that we can calculate the energy efficiency if

we can calculate N
(fc)

i and N
(mc)

i for a given power usage

profile of all femtocells (i.e., βi for all femtocells i = 1, . . . , J)

and an admission control policy. Unfortunately, it seems non-

tractable to find closed-form expressions of N
(fc)

i and N
(mc)

i

for the proposed optimal admission control policy. However,

we can quantify the performance gain of the proposed power

adaptation algorithm (i.e., Algorithm 1) in terms of energy

efficiency with respect to the scenario where the maximum

transmission power Pmax

FBS
is used if we can calculate the ratio

of Stot =
∑J

i=1

(

∑C1

c=1N
(fc)

i R
(mc)
min

+
∑C2

c=1 N
(mc)

i R
(fc)
min

)

under these two power usage profiles (i.e., S1
tot/S

2
tot where

S1
tot and S2

tot denote the values of Stot under the two power

usage profiles, respectively).

We can argue that the values of Stot are approximately the

same under these two power usage profiles. In fact, Algorithm

1 only scales down powers of lightly-loaded femtocells to the

extent that the blocking probabilities of all associated MUEs

and FUEs are below the predetermined small target block-

ing probabilities. In addition, any femtocell having higher

average service rate compared to other femtocells reduces its

transmission power. Since the interference decreases with the

transmission power, all femtocells would have roughly the

same “service rates” under both power usage profiles. Since

the energy efficiency given in (26) is inversely proportional to

Stot, which is approximately the same under both power usage
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profiles, the performance gains in terms of power saving and

energy efficiency are approximately the same.

V. NUMERICAL RESULTS

We present numerical results to illustrate the performance

of the proposed admission control and power adaptation

algorithms. The network setting is shown in Fig. 1 where there

are 9 femtocells located at the edge of the central macrocell in

a cluster of macrocells. The distance between two neighboring

femtocells is 120m. We assume there are 2 classes of FUEs

in each femtocell where class-one and class-two FUEs are

located in the inner and outer circular regions whose radii

from the corresponding FBS are 15m and 30m, respectively.

To calculate the required number of subchannels for FUEs of

each class (i.e., s
(f)
i,c in (7)), we consider the worst case where

FUEs are located on the boundary of the corresponding inner

and outer regions (i.e., distances from these worst class-1 and

class-2 FUEs to their FBS are 15m and 30m, respectively).

Moreover, we assume that MUEs will attempt to connect

with a nearest FBS when they enter a circular area whose

radius is 40m from the underlying FBS. To calculate the rate

requirements for MUEs in (8), we also assume the worst case

where MUEs are located on the boundary of this circular area.

We calculate the long-term channel gains based on the

corresponding distance. We assume that the distance dij from

BS j to MUEs or FUEs associated with femtocell i can be

approximated by the distance from BS j to FBS i. Also, the

path-loss in dB corresponding to dijk is calculated as [15]:

L(dijk) = [44.9− 6.55 log10 (hBS)] log10 (dijk) + 34.46

+5.83 log10 (hBS) + 23 log10 (fc/5) + nijkWijk

where hBS is the BS height, which is chosen to be 25m and

10m for MBSs and FBSs, respectively (i.e., depending on

whether BS j in this loss calculation corresponds to MBSs

or FBSs); fc is the carrier frequency in GHz which is set to

2 GHz. In addition, Wijk is the wall loss, and nijk denotes

the number of walls. For communications from an FBS to its

associated FUEs, we choose Wijk = 5dB (i.e., indoor light

walls) and nijk = 1; for communications from an FBS to

an indoor FUE connected with a different FBS, we assume

Wijk = 12dB and nijk = 2; for other cases we assume

Wijk = 12dB and nijk = 1. The path loss in the linear scale

corresponding to L(dijk) in dB is 10L(dijk)/10.

Other system parameters are set as follows: FUEs’ and

MUEs’ average service time µ
(f)
i,c = µ

(m)
i,c = 1 minute,

∀i, c; arrival rates for all FUEs and MUEs are chosen to

be the same (i.e., λ
(f)
i,c = λ

(m)
i,c , ∀i, c); maximum power

of an MBS Pmax
MBS

= 80W; weighting factors in (29) are

w
(m)
i,c = w

(f)
i,c = 1 (∀i, c); standard deviation of shadowing

σ = 8dB; power scaling factor for Algorithm 1 δ = 0.9; total

number of available subchannels N = 6; and parameter K in

step 16 of Algorithm 1 is chosen as K = 3. Moreover, the

minimum required rate for MUEs is R
(m1)
min

/W = 6 b/s/Hz;

the minimum required rates for class-1 and class-2 FUEs are

R
(f1)
min

/W = 10 b/s/Hz and R
(f2)
min

/W = 4 b/s/Hz, respectively.

The target blocking probabilities used in Algorithm 1 are

chosen as P
(mc)
b = P

(fc)
b = 0.05, ∀c; target SINR of MUEs is

γ0 = 3dB; and target outage probability for MUEs in (12) is
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Fig. 4. Blocking probabilities in femtocell 1 when all FBSs use their
maximum allowed power.
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Fig. 5. Blocking probabilities in femtocell 2 when all FBSs use their
maximum allowed power.

P
(m)
o = 0.15. We assume that the noise power and interference

power from MBSs except the closest MBS of femtocell i for

SINR calculations in (1) and (2) are negligible compared to the

interference powers from femtocells and the closest MBS. By

using the techniques presented in Section III.C, the maximum

allowable powers of each FBS for which we can still maintain

the target outage probability of the MUEs P
(m)
o = 0.15 are

Pmax
FBS

= 3.5mW and Pmax
FBS

= 1.5mW for the hybrid and closed

access strategies, respectively.

Fig. 4 and Fig. 5 show the blocking probabilities achieved

by the optimal admission control versus arrival rates in femto-

cells 1 and 2, respectively, as all FBSs use their maximum al-

lowable transmission power under the hybrid access, which is

equal to Pmax

FBS
= 3.5mW to meet the target outage probability

P
(m)
o = 0.15. These figures confirm that the QoS requirements

of FUEs in terms of blocking probabilities are always satisfied.

As the network becomes congested, blocking probabilities of

FUEs reach the target values (i.e., P
(fc)
b = 0.05) while the

blocking probability of MUEs increases slowly, and then it

increases sharply before the system becomes unstable (i.e.,

it is not possible to support the target blocking probabilities

of FUEs). In addition, the blocking probability of MUEs in

Fig. 4 is much larger than that in Fig. 5 since users connecting
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Fig. 7. Call throughput of FUEs and MUEs in femtocell 2 under different
minimum rate constraints.

with FBS 1 receive relatively stronger interference from the

nearest MBS compared to users connecting with FBS 2. This

confirms the results in Proposition 3.

In Fig. 6, we plot the average call throughput achieved by

all FUEs in femtocell 2 versus the arrival rate under the closed

and proposed hybrid access strategies. This figure shows that

the proposed hybrid access strategy achieves significantly

higher call throughput than that due to the closed access

strategy when the arrival rate is high. This performance gain

comes from the fact that the maximum allowable transmission

power of FBSs under the hybrid access is considerably larger

than that under the closed access (Pmax
FBS

= 3.5mW and

Pmax

FBS
= 1.5mW, respectively). Hence, even though FBSs

must reserve some bandwidth for connecting MUEs under the

hybrid access, the overall throughput achieved by FUEs is still

higher than that under the closed access. The proposed hybrid

access is, therefore, the win-win strategy for users of both

network tiers.

To demonstrate the impacts of minimum rate requirements

on the spectrum sharing between users of both tiers, we show

the call throughputs achieved by FUEs and MUEs versus the

arrival rate for femtocell 2 in Fig. 7 for R
(f2)
min

/W = 4 b/s/Hz

and R
(f2)
min

/W = 6 b/s/Hz while rate requirements for other
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Fig. 8. Convergence of transmission power ratios under Algorithm 1.
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Fig. 9. Average throughput per femtocell with and without power adaptation.

user classes are R
(m1)
min

/W = 6 b/s/Hz and R
(f1)
min

/W = 10
b/s/Hz. As is evident from this figure, while the call throughput

achieved by FUEs remains almost the same, the call through-

put of MUEs becomes much smaller in the high arrival rate

regime as R
(f2)
min

/W increases from 4 b/s/Hz to 6 b/s/Hz. This

means the proposed hybrid access strategy enables MUEs

to appropriately exploit the radio resources beyond what is

needed to support the required QoSs of FUEs.

We show the evolutions of the femtocell transmission

power ratios βi for different femtocells under the synchronous

power updates which demonstrate the convergence of Al-

gorithm 1 in Fig. 8. There are NL = 6 lowly-loaded

femtocells (femtocells 1 to 6) with λ
(f)
i,c = λ

(m)
i,c = 0.2

users/min and the arrival rates of the remaining 3 highly-

loaded femtocells are
[

λ
(f)
7,c , λ

(f)
8,c , λ

(f)
9,c

]

= [λ0, 3λ0, 4.5λ0]

where λ0 = 0.3 users/min. To keep the figure readable,

we only show the transmission power ratios for 6 femto-

cells. In Fig. 9, we illustrate the average call throughput

per femtocell achieved by the optimal admission control

scheme with and without the power adaptation algorithm (i.e.,

Algorithm 1) where the arrival rates of NL lowly-loaded

femtocells (femtocells 1 to NL) are fixed at λ
(f)
i,c = λ

(m)
i,c

= 0.2 users/min and the arrival rates of the remaining highly-

loaded femtocells are varied by using a parameter λ0. Here,

the arrival rates of highly-loaded femtocells are chosen as
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Fig. 10. Power saving due to femtocell power adaptation.

[

λ
(f)
4,c , λ

(f)
5,c , . . . , λ

(f)
9,c

]

= [λ0, 3λ0, 4.5λ0, λ0, 3λ0, 4.5λ0] and
[

λ
(f)
4,c , λ

(f)
5,c , λ

(f)
6,c

]

= [λ0, 3λ0, 4.5λ0] for NL = 3, 6, respec-

tively. This figure shows that the proposed power adaptation

algorithm can indeed maintain the average throughput for

different values of arrival rates in the highly-loaded femtocells.

In fact, Algorithm 1 slightly increases the average throughput

for some values of arrival rates. The increase of throughput

in highly-loaded femtocells is offset by slight decrease of

throughput in other lightly-loaded femtocells. Therefore, the

average throughput per femtocell remains almost the same for

different values of arrival rates.

Finally, we present the power saving achieved by Algo-

rithm 1 with the parameter λ0 in Fig. 10 when the numbers

of lowly-loaded femtocells are NL = 3 and 6. This figure

confirms that significant power saving can be achieved by the

proposed power adaptation algorithm when λ0 is small, which

are about 50% and 60% for λ0 = 0.2 users/min and NL = 3

and 6, respectively. Moreover, when the arrival rates of highly-

loaded femtocells become larger, the power saving drops to

about 22% and 41% for NL = 3 and NL = 6, respectively.

In fact, the power saving for NL = 6 is larger than that for

NL = 3 with high arrival rates because most of the power

saving comes from the reduction in transmission powers of

lightly-loaded femtocells.

VI. CONCLUSION

We have considered the cross-layer resource allocation

and admission control problem for OFDMA-based femtocell

networks. Specifically, we have developed a unified model

that captures co-tier and cross-tier interference as well as rate

and blocking probability requirements for users of both tiers.

Moreover, we have presented a novel distributed power adap-

tation algorithm, which has been proved to converge to the NE

of the corresponding power adaptation game. Via numerical

studies, we have demonstrated the desirable performance of

the optimal admission control scheme in maintaining the QoS

requirements for FUEs and optimally using the spectrum

resources. Finally, it has been confirmed that a significant

power saving can be achieved by the proposed joint admission

control and power adaptation algorithm.

APPENDIX A

SMDP-BASED ADMISSION CONTROL

Given the system and action state spaces described in

Section III.C, we are particularly interested in the admissible

action space Ax for a given system state x. In fact, Ax

comprises all possible actions that do not result in transition

into a state that is not allowed (i.e., not in allowable state

space X in (16)). In addition, if x = 0, then it is required that

action a = 0 is excluded from Ax to prevent the system to be

trapped in the zero state forever. Let e
(f)
ic (e

(m)
ic ) be a vector

of dimension C1 + C2, which is of the same size as that of

the general state vector x(t) having all zeros except the one at

the same position of x
(f)
ic (x

(m)
ic ) in (15). Then, we can write

Ax as follows:

Ax �

{

a ∈ A : a
(f)
ic = 0 if x+ e

(f)
ic /∈ X ;

a
(m)
ic = 0 if x+ e

(m)
ic /∈ X ; and a 	= 0 if x = 0

}

. (26)

We now analyze the dynamics of this SMDP, which is charac-

terized by the state transition probabilities of the Markov chain

obtained by embedding the system at arrival and departure

instants. Specifically, we will determine transition probability

pxy(a) from state x to state y when action a is taken. Toward

this end, let τx(a) denote the expected time until the next

decision epoch after action a is taken at system state x. Then,

τx(a) can be calculated as the inverse of the cumulative arrival

and departure rate with blocked arrivals taken into account. In

particular, τx(a) can be calculated as follows [16], [33]:

τx(a) =

[

C1
∑

c=1

λ
(f)
ic a

(f)
ic +

C1
∑

c=1

µ
(f)
ic u

(f)
ic +

C2
∑

c=1

λ
(m)
ic a

(m)
ic

+

C2
∑

c=1

µ
(m)
ic u

(m)
ic

]−1

(27)

for a ∈ Ax. We are now ready to calculate transition

probability pxy(a) of the underlying embedded Markov chain.

This can be done by noting that the probability of a certain

event (e.g., connection arrival and departure) is equal to the

ratio between the rate of that event and the total cumulative

event rate 1/τx(a). Therefore, the transition probability pxy(a)
can be determined as follows:

pxy(a) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

λ
(f)
ic a

(f)
ic τx(a), if y = x+ e

(f)
ic

λ
(m)
ic a

(m)
ic τx(a), if y = x+ e

(m)
ic

µ
(f)
ic u

(f)
ic τx(a), if y = x− e

(f)
ic

µ
(m)
ic u

(m)
ic τx(a), if y = x− e

(m)
ic

0, otherwise

(28)

where for simplicity we omit user index i in both τx(a) and

pxy(a). In the following, we formulate the optimal admission

control problem using the above description of the underlying

SMDP.

We formulate the admission control problem by defining a

cost function as the weighted sum of blocking probabilities.

In particular, we are interested in minimizing the following
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cost function:

min
zxa≥0

C1
∑

c=1

w
(f)
ic

∑

x∈X

∑

a∈Ax

(1− a
(f)
i,c )zxaτx(a)

+

C2
∑

c=1

w
(m)
ic

∑

x∈X

∑

a∈Ax

(1− a
(m)
ic )zxaτx(a) (29)

where zxa denotes the rate of choosing action a in state

x; w
(m)
ic > 0 and w

(f)
ic > 0 are weighting factors control-

ling the desired performance tradeoff. In this cost function,

B
(f)
ic =

∑

x∈X

∑

a∈Ax
(1 − a

(f)
ic )zxaτx(a) and B

(m)
ic =

∑

x∈X

∑

a∈Ax
(1− a

(m)
ic )zxaτx(a) express the blocking prob-

abilities of class-c FUEs and MUEs, respectively, where

zxaτx(a) represents the probability that action a is taken for

a given system state x.

In addition, we impose blocking probability constraints for

FUEs as follows:

B
(f)
ic =

∑

x∈X

∑

a∈Ax

(1− a
(f)
ic )zxaτx(a) ≤ P

(fc)
b , 1 ≤ c ≤ C1. (30)

Moreover, we impose other standard constraints for an MDP

as follows [33]:
∑

a∈Ay

zya −
∑

x∈X

∑

a∈Ax

pxy(a)zx,a = 0, ∀y ∈ X (31)

∑

x∈X

∑

a∈Ax

zxaτx(a) = 1 (32)

which describe the balance equation and the normalization

condition, respectively [33]. The optimal admission control

policy can be obtained as follows. We calculate optimal z∗xa by

solving the linear program (29)-(32). Then, we can determine

an optimal randomized admission control policy as follows:

for each system state x the probability of choosing action

a ∈ Ax can be calculated as θx(a) = z∗xaτx(a)/
∑

a z
∗
xaτx(a).

These probabilities can be calculated offline and applied

for online admission control for different system states. In

the above model, we do not impose blocking probability

constraints for MUEs. However, these additional constraints

can be easily added to the model. Specifically, if P
(mc)
b is the

maximum tolerable blocking probability for class-c MUEs,

then additional blocking probability constraints can be written

as

B
(m)
ic =

∑

x∈X

∑

a∈Ax

(1 − a
(m)
ic )zxaτx(a) ≤ P

(mc)
b ,

1 ≤ c ≤ C2. (33)

Then, we can calculate optimal z∗xa by solving the linear pro-

gram (29)-(32), (33), and find the optimal admission solution

accordingly. This calculation is indeed used in Algorithm 1.
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