
QoS-Aware Service Composition
in Dynamic Service Oriented Environments

Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova,
Nikolaos Georgantas, and Valérie Issarny

INRIA Paris-Rocquencourt, France
{nebil.benmabrouk,sandrine.beauche,elena.kuznetsova}@inria.fr,

{nikolaos.georgantas,valerie.issarny}@inria.fr

Abstract. QoS-aware service composition is a key requirement in Ser-
vice Oriented Computing (SOC) since it enables fulfilling complex user
tasks while meeting Quality of Service (QoS) constraints. A challenging
issue towards this purpose is the selection of the best set of services to
compose, meeting global QoS constraints imposed by the user, which
is known to be a NP-hard problem. This challenge becomes even more
relevant when it is considered in the context of dynamic service environ-
ments. Indeed, two specific issues arise. First, required tasks are fulfilled
on the fly, thus the time available for services’ selection and composi-
tion is limited. Second, service compositions have to be adaptive so that
they can cope with changing conditions of the environment. In this pa-
per, we present an efficient service selection algorithm that provides the
appropriate ground for QoS-aware composition in dynamic service envi-
ronments. Our algorithm is formed as a guided heuristic. The paper also
presents a set of experiments conducted to evaluate the efficiency of our
algorithm, which shows its timeliness and optimality.

1 Introduction

Service Oriented Computing (SOC) and its underlying technologies such as Web
Services have emerged as a powerful concept for building software systems [1].
An interesting feature of SOC is that it provides a flexible framework for reusing
and composing existing software services in order to build value-added service
compositions able to fulfill complex tasks required by users. A key requirement
in services’ composition is to enable these tasks while meeting Quality of Service
(QoS) constraints set by users.

QoS-aware service composition underpins this purpose since it allows for com-
posing services able to fulfill user required tasks while meeting QoS constraints.
Assuming the availability of multiple resources in service environments, a large
number of services can be found for realizing every sub-task part of a complex
task. A specific issue emerges to this regard, which is about selecting the best
set of services (i.e., in terms of QoS) to participate in the composition, meeting
user’s global QoS requirements.

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 123–142, 2009.
c© IFIP International Federation for Information Processing 2009



124 N.B. Mabrouk et al.

QoS-aware composition becomes even more challenging when it is considered
in the context of dynamic service environments characterized with changing con-
ditions. The dynamics of service environments bring about two specific problems
in service selection. First, as dynamic environments call for fulfilling user requests
on the fly (i.e., at run-time) and as services’ availability cannot be known a pri-
ori, service selection and composition must be performed at runtime. Hence, the
execution time of service selection algorithms is heavily constrained, whereas the
computational complexity of the problem is NP-hard. The second issue is about
the fluctuation of QoS conditions due to the dynamics of such environments.
This problem arises for example when one or more services that make part of
a service composition are no longer available or their QoS decreases (e.g., due
to network disconnection or weak network connectivity) during the execution of
the composition. Thus, a service selected to participate in a composition based
on its QoS may no longer provide the same QoS when the time comes to be
actually invoked. The overall question asked to this regard is: how to cope with
the dynamics of service environments during the selection, the composition and
the execution of services?

In this paper, we present a service selection algorithm that copes with the
above issues. Our algorithm is designed in the context of the SemEUsE research
project1, which targets semantic QoS-aware middleware for dynamic service
oriented environments. The middleware architecture presented in SemEUsE is
centered on dynamic binding [2,3] of services, i.e., binding one out of multiple
possible services just-in-time before its invocation according to its QoS measured
at runtime (hereafter referred to as runtime QoS ). Our selection algorithm un-
derpins this purpose since it selects multiple services for every sub-task part of
a complex task required by users, based on their nominal QoS (hereafter re-
ferred to as advertised QoS ). Our algorithm consists in a guided heuristic. Our
choice of a heuristic-based approach addresses the two issues stated above for
dynamic environments. First, since the time available for service selection is
limited, brute-force-like algorithms are inappropriate for such purpose, as they
target determining the optimal composition, which is NP-hard. Second, finding
the optimal composition may prove useless in the end since, due to dynamics,
there is no guarantee that the selected composition will be possible at runtime
or that its runtime QoS will not decrease with respect to the advertised one.
To this regard, our algorithm aims at determining a set of near-optimal service
compositions, i.e., compositions that: (i) respect global QoS constraints imposed
by the user on the whole composition, and (ii) maximize a QoS utility function.
At runtime, if a specific service composition is no longer possible or its QoS de-
creases, an alternative composition will be executed. To give a concrete example
where our approach can be applied, we present the following scenario.

Motivating Scenario. An important use case where our solution can take
place is the management of medical visits in large hospitals. Traditionally the
management of medical visits in hospitals is static with predetermined

1 SemEUsE project: http://www.semeuse.org



QoS-Aware Service Composition in Dynamic Service Oriented Environments 125

allocation of visits to doctors. Nevertheless, the availability of doctors can change
with respect to some conditions. For instance, one or more doctors may be ab-
sent or they may be overloaded with new visits (e.g., due to some emergency
cases unforeseen during the scheduling of visits). Human-based re-scheduling of
medical visits is a time-consuming process entailing negotiations with doctors
with respect to their specialties and agreements on the number of additional
visits to be taken in charge.

A second issue concerns the process (i.e., the different activities) entailed by
medical visits. Related to this, patients need to move between different points
in the hospital in order to fulfill their visits. Ordinarily, they have to register, to
pay for the visit, to meet the doctor and then to go to the pharmacy for buying
medicines, which is a long and hard process especially for patients.

To avoid such complicated situations and to prevent patients unnecessarily
moving between different points, hospitals need to manage their medical visits as
a single request by composing the aforementioned activities in a unique process.
Moreover, they need to dynamically handle these processes in order to cope with
changing conditions in the hospital.

The SOC paradigm offers a flexible framework for managing the medical visits
by reusing and composing existing software services of the hospital. Medical
visits will be thus formed as processes (e.g., BPEL processes) underpinned by
Web Services (e.g., registration, payment, doctor’s service, chemist’s service).

Let us consider a scenario where patients use the terminals available in the
waiting room of the hospital to submit their medical visit requests. Using our so-
lution, the hospital software system will be able to discover, select and compose
the medical visit services (e.g., registration, payment, doctor’s service, chemist’s
service) on-the-fly with respect to their QoS. Our solution considers common
QoS features (e.g., response time) and domain-specific QoS features (e.g., doc-
tors’ specialties). Additionally, if the doctor’s availability changes in-between, the
hospital system will be able to dynamically update the composition by affecting
the visit to another available doctor having the same specialty.

The remainder of this paper is structured as follows. In Section 2, we give
an overview of related work. In Section 3, we present our service composition
approach and we define the QoS model and the composition model underpinning
this approach. In Section 4, we give the details of our selection algorithm, and we
conduct a set of experiments to evaluate its timeliness and optimality in Section
5. Finally, in Section 6, we conclude with a summary of our contributions and
the future perspectives of this work.

2 Related Work

Several selection algorithms have been proposed to select service compositions
with different composition structures and various QoS constraints. A taxonomy
of these solutions may be produced based on their objectives and the way they
proceed. According to this, a first class of approaches aim at determining the
optimal service composition (i.e., composition with the highest QoS utility) using



126 N.B. Mabrouk et al.

brute-force-like algorithms (e.g., Global Planning [4], BBLP, MCSP, WS-IP [5]).
These solutions have high computational cost and they can not provide a solution
in a satisfying amount of time, thus they are inappropriate to be used in the
context of dynamic service environments.

To cope with this issue, other approaches propose heuristic-based solutions
(e.g., WS-HEU and WFlow [5], Genetic algorithm [8,9,6,7,10,11,12]) aiming to
find near-optimal compositions, i.e., compositions that respect global QoS con-
straints and maximize a QoS utility function. Yu et al. [5] present two heuris-
tics, WS-HEU and WFlow, for the service selection problem. WS-HEU is specific
heuristic applied to sequential workflows (i.e., workflows structured as a sequence
of activities), whereas WFlow is designed for general workflow structures (i.e.,
sequential, conditional, parallel). The main idea of WFLow is to decompose
workflows into multiple execution routes. WFlow considers a parameter ξi for
every route indicating its probability to be executed. Therefore, it focuses on
the route with the highest probability, whereas in our approach we aim at giving
feasible service compositions regardless of the way the workflow will be executed.

Other approaches [8,9,6,7,10,11,12] present heuristics based on a genetic algo-
rithm. The application of such algorithm to the service selection problem presents
two main drawbacks: first, the order in which service candidates are checked is
randomly chosen (e.g., Crossing [6]), whereas in our approach we aim at check-
ing services in an ordered way to optimize the timeliness and the optimality
of our algorithm. Second, as the genetic algorithm can run endlessly, the users
have to define a constant number of iterations fixed a priori. However, fixing a
high number of iterations does not give any guarantee about the quality of the
result. Therefore, the genetic algorithm is deemed non useful for our purpose
(i.e., selecting near-optimal compositions).

More recently, Alrifai et al. [13] presented a novel approach that combines local
and global optimization techniques. This approach starts from the global level
and resolves the selection problem at the local level. It proceeds by decomposing
global QoS constraints (i.e., imposed by the user on the whole composition) into
a set of local constraints (i.e., for individual sub-tasks, part of the composition).
To do so, it uses MILP (mixed integer linear programming) techniques to find
the best decomposition of QoS constraints. The main drawback of this approach
is that it represents a greedy selection method, since it selects services at the
local level and does not ensure that the global QoS constraints are respected.

3 Composition Approach Overview

Our approach starts from the assumption that the user (e.g., the patient in our
scenario) uses a Graphical User Interface (e.g., terminals available in the waiting
room of the hospital) to submit his/her request (e.g., medical visit). The interface
guides the user to express his request in terms of functional and QoS require-
ments, and then it formulates these requirements as a machine-understandable
specification.



QoS-Aware Service Composition in Dynamic Service Oriented Environments 127

User functional requirements are formulated as an abstract task (hereafter
referred to as abstract service composition) brought about by the composition of
a set of abstract sub-tasks (hereafter referred to as activities) (e.g., registration,
payment, doctor’s service, chemist’s service). These activities are described with
abstract information (i.e., function, I/O description). Abstract service compo-
sitions are later transformed into concrete service compositions by assigning a
concrete service to every activity in the composition. Considering the multiple
resources available in service environments, it is common that several concrete
services are found for every activity; we refer to these services as service candi-
dates of the considered activity.

Concerning user QoS requirements, they are formulated as a set of constraints
(hereafter referred to as global QoS constraints) on the whole composition. These
constraints cover several QoS attributes specified by the user. Further details
about QoS attributes are given in Section 3.1, where we present the QoS model
underpinning our approach.

Once user requirements are specified, we proceed by automatically building
executable service compositions with respect to user requirements and the dy-
namics of the service environment. Building executable compositions consists
of: (i) discovering, (ii) selecting, and (iii) composing services on-the-fly (i.e., at
runtime).

Concerning services’ discovery, we adopt a semantic-based approach intro-
duced by Ben Mokhtar et al. [14,15]. This approach uses domain-specific and
QoS ontologies to match user functional and QoS requirements to services avail-
able in the environment. The matching is based on an efficient semantic reasoning
performed at runtime. For every activity in the composition, the discovery phase
gives the set of service candidates able to fulfill the activity (i.e., functional as-
pect) and to respect user QoS requirements. Services’ discovery uses advertised
QoS of services to perform a preliminary filtering ensuring that individual service
candidates respect user QoS requirements.

Refining the first filtering, the selection phase ensures user QoS requirements
at the global level (i.e., for the whole composition) based on the advertised QoS
of services. That is, it selects a set of service candidates for each abstract ac-
tivity that, when composed together, meet global QoS constraints. To achieve
this, we introduce a heuristic algorithm based on clustering techniques, notably
K-Means [16]. Clustering techniques, applied to our purpose, allow for grouping
services with respect to their QoS into a set of clusters, to which we refer as
QoS levels. Further, we use the resulting QoS levels to determine the utility of
service candidates regarding our objective, i.e., selecting near-optimal composi-
tions. More specifically, our heuristic algorithm deals with the service selection
problem in two phases: (1) a local classification phase, which aims at determin-
ing the utilities of service candidates using clustering; this phase is performed
for every activity in the composition; (2) a global selection phase which uses the
obtained utilities to guide the selection of near-optimal compositions.

Once the global selection is fulfilled, the composition phase uses the selected
services to define an executable service composition, by replacing every abstract



128 N.B. Mabrouk et al.

activity in the composition with a ‘dynamic binding’ activity that takes as input
the set of selected candidate services for this activity. At runtime, a unique service
is selected and enacted among the provided ones with respect to its runtime QoS.

3.1 QoS Model

We consider a generic QoS model based on our previous work [17], in which
we introduced a semantic QoS model formulated as a set of ontologies for QoS
specification in dynamic service environments. This model allows for specifying
cross-domain QoS attributes like response time, availability, reliability, through-
put as well as domain-specific QoS attributes, e.g., medical visit price with re-
spect to our scenario. Our model provides a detailed taxonomy of QoS which is
flexible and easily extendible. Herein, we introduce an extension that concerns a
particular classification of QoS attributes needed for our composition approach.
QoS attributes can be divided into two groups: quantitative attributes (e.g., re-
sponse time, availability, reliability, throughput) and qualitative attributes (e.g.,
security, privacy of medical information in our scenario). The former attributes
are quantitatively measured using metrics, whereas the latter attributes can not
be measured, they are rather evaluated in a boolean manner (i.e., they are ei-
ther satisfied or not). For the sake of simplicity and without loss of generality,
in this work we will consider only quantitative QoS attributes, since qualitative
attributes can be represented as quantitative attributes determined by boolean
metrics (i.e., 0 and 1).

Quantitative QoS attributes are in turn divided into two classes: negative
attributes (e.g., response time, medical visit price) and positive attributes (e.g.,
availability, reliability, throughput). The first class of attributes has a negative
effect on QoS, (i.e., the higher their values, the lower the QoS), hence they need to
be minimized. On the contrary, positive QoS attributes need to be maximized,
since they increase the overall QoS (i.e., the higher their values, the higher
the QoS).

On the other hand, QoS attributes’ values are determined in two ways: Dur-
ing the selection of services, these values are given by service providers (e.g.,
based on previous executions of services or using users’ feedback). As already
stated, we refer to these values as advertised QoS, which is specified in services’
descriptions. At runtime, QoS values are provided by a monitoring component
to enable further dynamic evaluation of services. As already stated, we refer to
these values as runtime QoS.

3.2 Composition Model

Our algorithm aims at determining a set of near-optimal compositions. Such
purpose requires evaluating the QoS of possible service compositions with respect
to their structure and the way QoS is aggregated. That is, the evaluation of QoS
depends on the structuring elements used to build the composition, to which we
refer as composition patterns, and also QoS aggregation formulas associated with
each pattern. Next, we describe the composition patterns on which our approach



QoS-Aware Service Composition in Dynamic Service Oriented Environments 129

is based and we give the aggregation formulas associated with QoS attributes
and composition patterns.

Composition Patterns. We consider a set of patterns commonly used by
composition approaches [4,5], which cover most of the structures specified by
composition languages (such as BPEL) [18,19]:

- Sequence: sequential execution of activities
- AND: parallel execution of activities
- XOR: conditional execution of activities
- Loop: iterative execution of activities

Computing the QoS of Composite Services. For every activity in the ab-
stract service composition, we represent the QoS of a single candidate service
Si by using a vector QoSSi = 〈qi,1, ..., qi,n〉, where n represents the number of
QoS attributes required by the user and qi,j represents the value of the QoS
attribute j (1 ≤ j ≤ n). The QoS of a service composition is evaluated based on
the QoS vectors of its constituent services while taking into account the com-
position patterns. Regarding QoS associated with AND and XOR, we adopt a
pessimistic approach that considers worst-case QoS values. That is, to deter-
mine the values of the QoS attributes of a service composition, we consider the
worst QoS values of all the possible executions of the composition. For instance,
to determine the response time of parallel activities (i.e., AND), we consider
the activity with the longest response time. Concerning the particular case of
iterative activities (i.e., structured as a loop), we adopt a history-based estima-
tion that considers the maximum number of loops (i.e., pessimistic approach).
This number is determined from previous executions of the activity. In Table
1, we show examples of QoS computation with respect to QoS attributes and
composition patterns. These examples can be classified as cross-domain QoS
attributes (e.g., response time, reliability, availability, throughput) and domain-
specific QoS attributes (e.g., medical visit price), but also as negative attributes

Table 1. QoS computation examples: rti, rei, avi, thi, pi represent respectively,
response time, reliability, availability, throughput and the medical visit price of
services candidates structured with respect the composition patterns, whereas
RT, RE,AV, TH,P represent the aggregated values of response time, reliability, avail-
ability, throughput and the medical visit price, respectively

QoS Composition Patterns

attributes Sequence AND XOR Loop

Response time (RT )
∑n

i=1
rti max(rti) max(rti) rt × k

Reliability (RE)
∏

n

i=1
rei

∏
n

i=1
rei min(rei) rek

Availability (AV )
∏n

i=1
avi

∏n

i=1
avi min(avi) avk

Throughput (TH) min(thi) min(thi) min(thi) th

Medical visit price (P )
∑

n

i=1
pi

∑
n

i=1
pi max(pi) p × k



130 N.B. Mabrouk et al.

(e.g., response time, medical visit price) and positive attributes (e.g., reliability,
availability, throughput). Let us consider for example, the QoS computation of
the medical visit price. Concerning the Sequence and AND patterns, the price
is the sum of pi values associated with the involved services (e.g., meeting doc-
tors, buying medicines). For the XOR pattern (e.g., meeting two doctors with
different specialties in an exclusive manner decided based on pre-diagnosis) the
price is the maximum among pi values of the involved services. Finally, for the
iterative pattern (i.e., loop), the aggregated price is the value p of the repeated
service multiplied by the number of loops k.

Notations. To state the problem that we are addressing in a formal way, we
use the following notations:

- AC = {A1, ..., Ax} is an abstract service composition with x activities.
- CC = {S1, ..., Sx} is a concrete service composition with x service can-

didates, every service candidate Si is bound to an abstract activity Ai

(1 ≤ i ≤ x).
- U = {U1, ..., Un} is a set of global QoS constraints imposed by the user on

n QoS attributes.
- QoS of a service candidate Si is represented as a vector QoSSi = 〈qi,1, ..., qi,n〉

where qi,j is the advertised value of QoS attribute j (1 ≤ j ≤ n).
- QoS of a concrete service composition CC is represented as a vector

QoSCC = 〈Q1, ..., Qn〉 where Qj is the aggregated value of QoS attribute j
(1 ≤ j ≤ n).

- Each service candidate Si has an associated utility function fi.
- Each concrete service composition CC has an associated utility function F .

4 Service Selection Algorithm

In the literature, service selection algorithms fall under two general approaches:
(i) local [4] and (ii) global selection [5]. The former proceeds by selecting the
best services (in terms of QoS) for every abstract activity individually. This
approach has a low computational cost but it does not guarantee meeting global
QoS constraints imposed by the user. For instance, regarding our scenario, this
approach proceeds by selecting services offering the best trade-off between the
required QoS attributes (e.g., response time, availability, reliability, throughput
and medical visit price) for every activity apart. Thus, it cannot handle, for
example, the global response time of the whole composition.

Conversely, global selection ensures meeting global QoS constraints since it
selects the optimal service composition, i.e, a composition which respects global
QoS constraints and has the highest QoS. This approach considers all possible
compositions of services and selects the optimal one.

Nevertheless, the computational cost of global selection is NP-hard. To meet
global QoS constraints in a timely manner, we present a heuristic algorithm



QoS-Aware Service Composition in Dynamic Service Oriented Environments 131

that combines local and global selection techniques. Starting from the assump-
tion that service candidates (for every activity in the abstract process) are al-
ready given by the semantic discovery phase, our algorithm proceeds through
the following phases:

1. Scaling phase, which is a pre-processing phase aiming to normalize QoS
values associated with negative and positive QoS attributes;

2. Local classification, which aims at classifying candidate services (for every
activity in the abstract process) according to different QoS levels; this clas-
sification is further used to determine the utilities of every service candidate
regarding our purpose;

3. Global selection, which aims at using the obtained utilities to guide the
selection of near-optimal compositions.

4.1 Scaling Phase

As already mentioned, QoS attributes can be either negative or positive, thus
some QoS values need to be minimized whereas other values have to be maxi-
mized. To cope with this issue, the scaling phase normalizes every QoS attribute
value by transforming it into a value between 0 and 1 with respect to the formulas
below [4].

Negative attributes : q′i,j =

{
qmax
j −qi,j

qmax
j

−qmin
j

if qmax
j − qmin

j �= 0

1 else
(1)

Positive attributes : q′i,j =

{
qi,j−qmin

i

qmax
j

−qmin
j

if qmax
j − qmin

j �= 0

1 else
(2)

where q′i,j denotes the normalized value of QoS attribute j associated with service
candidate Si. It is computed using the current value qi,j and also qmax

j and qmin
j ,

which refer respectively to the maximum and minimum values of QoS attribute
j among all service candidates.

The same formulas are also used to normalize the aggregated QoS values of
concrete service compositions. Each composition CC is represented by a vector
QoSCC = 〈Q1, ..., Qn〉 with n QoS attributes. The normalization produces a QoS
vector QoSCC = 〈Q′

1, ..., Q
′
n〉. The values of Q′

j (1 ≤ j ≤ n) are computed based
on the current value Qj, and also Qmax

j and Qmin
j , which refer respectively to the

maximum and minimum values of Qj among all concrete service compositions.

4.2 Local Classification

Local classification is performed locally for every activity in the abstract service
composition. It aims at classifying service candidates associated with a given
activity into multiple QoS levels (i.e., clusters) with respect to their QoS. Each
level contains the set of service candidates having roughly the same QoS. This
classification is further used to determine the relative importance of service can-
didates regarding our objective (i.e., selecting near-optimal compositions). To
do so, we use clustering techniques, notably the K-means [16] algorithm.



132 N.B. Mabrouk et al.

Classification Overview. K-means provides a simple and efficient way to
classify a set of data points into a fixed number of clusters. These data points
are characterized by their N-dimensional coordinates 〈x1, x2, .., xn〉. The main
idea of K-means is to define a centroid c = 〈xc,1, xc,2, .., xc,n〉 for every cluster
and to associate each data point dpi = 〈xi,1, xi,2, .., xi,n〉 to the appropriate
cluster by computing the shortest N-dimensional Euclidian distance D between
the data point and each centroid:

D(c,dpi) =

√√√√ n∑
j=1

(xc,j − xi,j)2 (3)

Further, the values of centroids are updated by computing the average of their
associated data points. The clustering iterates by alternating these two steps
(i.e., updating centroids, clustering data points) continuously until reaching a
fixpoint (i.e., centroids’ values do not change any more). The result of K-means
will be the set of final clusters and their associated data points. It is worth noting
that K-means has a polynomial computational cost in function of the number of
iterations [20].

Fig. 1. Example of K-means with 2 dimensions (x, y) and 3 clusters: min, middle and
max

In our context, we use K-means to group service candidates of every activity
in the abstract service composition into multiple QoS levels. QoS levels are thus
represented as clusters and service candidates are considered as data points
determined by the QoS vectors QoSSi = 〈qi,1, ..., qi,n〉.

QoS Levels Computation. To cluster service candidates, we need first to
determine the initial values of QoS levels (i.e., centroids). For this matter, we



QoS-Aware Service Composition in Dynamic Service Oriented Environments 133

define m QoS levels (i.e., QLl, (1 ≤ l ≤ m)), where m is a constant number
fixed a priori (Fig. 2). The value of m differs from an activity to another and it
is supposed to be given by domain experts with respect to the service density[17]
of the considered activity. For instance, in our medical visit scenario, the number
of QoS levels related to the doctors’ activity is fixed by the hospital system
administrator with respect to the number of doctors in the hospital. Once the
number of QoS levels is fixed, the value of each level is determined by dividing
the range of the n QoS attributes (fixed by the global QoS constraints) into m
equal quality ranges qr with respect to the following formula:

qrl
j = qmin

j +
l − 1
m − 1

∗ (qmax
j − qmin

j ) 1 ≤ l ≤ m (4)

where qrl
j denotes the quality range l of QoS attribute j with (1 ≤ j ≤ n),

whereas qmax
j and qmin

j refer to the maximum and minimum values of the at-
tribute j, respectively. The initial value of each QoS level is then:
QLl = 〈qrl

1, ..., qr
l
n〉 with 1 ≤ l ≤ m.

Once the initial values of QoS levels are determined, we perform the clustering
of service candidates, and then we obtain the final set of QoS levels which is used
to determine the utility of service candidates.

Fig. 2. Computation of Quality Levels

Service Utility Computation. The objective of our algorithm is selecting
near-optimal compositions, but also obtaining a number of near-optimal compo-
sitions as large as possible. Indeed, the larger the number of selected compositions
is, the larger is the choice of services allowed during dynamic binding. Addition-
ally, providing a large number of compositions helps preventing the starvation
problem during dynamic binding of services. This problem arises when, e.g., a
few number of services are selected for dynamic binding but none of them is
available at runtime.

For this matter, we consider a utility function fi which characterizes the
relative importance of a service candidate Si regarding the objective above. The
utility fi is calculated based on two parameters: (i) QoS of Si and, (ii) the number



134 N.B. Mabrouk et al.

of services in the QoS level to which Si belongs. The first parameter is interpreted
as follows: the higher QoS of Si, the higher its ability to be part of feasible
compositions. Concerning the second parameter, it represents the importance of
the QoS level QLl to which Si belongs, i.e., if the number of service candidates
associated with QLl is large, this means that using QLl would eventually lead
to finding more feasible compositions. Therefore, fi is computed as follows:

fi = (r/t) ∗ qosi where qosi = (
n∑

j=1

q′i,j)/n (5)

where r is the number of services in the QoS level QLl to which Si pertains, t is
the total number of service candidates for the activity, and qosi is the QoS utility
of service Si. It is computed as the average of the normalized QoS attributes’
values q′i,j . As the values (r/t) and qosi are comprised between 0 and 1 (i.e.,
since r ≤ t and 0 ≤ qi,j ≤ 1, respectively), the value of fi is also comprised
between 0 and 1.

4.3 Global Selection

Global selection aims at selecting near optimal compositions, i.e., compositions
that (i) respect global QoS constraints and (ii) maximize the utility function
F . The utility function F of a concrete service composition CC with QoSCC =
〈Q′

1, ..., Q
′
n〉 is defined as the average of its normalized QoS values Q′

j:

F = (
n∑

j=1

Q′
j)/n (6)

Therefore, the problem that we are addressing can be stated as finding concrete
service compositions that fulfill these two conditions:

1. For every QoS attribute j (1 ≤ j ≤ n),
- Qj ≤ Uj for negative attributes;
- Qj ≥ Uj for positive attributes;

2. The QoS utility F is maximized.

Heuristic Overview. The goal of our heuristic is to use the utilities fi resulting
from the local classification phase to select near-optimal compositions without
considering all possible combinations of services. Towards this purpose, we fix
a utility threshold T that allows for considering only service candidates with a
utility value fi ≥ T , thus enabling to focus on the most eligible services (i.e.,
services with the highest fi values).

The choice of the threshold T is of great importance in our algorithm since it
allows for tuning the trade-off between the number of resulting compositions and
the timeliness of the algorithm. Indeed, if T increases, the number of considered
services possibly decreases and consequently so will the number of compositions
to check. Hence, the execution time of the algorithm decreases, but the number of



QoS-Aware Service Composition in Dynamic Service Oriented Environments 135

resulting near-optimal compositions decreases as well. Conversely, if T decreases,
the number of services to consider possibly increases and hence, the number of
obtained compositions possibly increases, too. However, the execution time of
the algorithm increases as well.

The latter point leads to another important result, which is about the ap-
plication of our algorithm. Indeed, tuning T makes our algorithm generic and
flexible, so that it can be applied to multiple dynamic service environments ac-
cording to their characteristics, particularly their service density [17] and also
time constraints in such environments. For instance, if a service environment has
a high service density, the system can tune T so that the algorithm will be more
selective and give a satisfying number of service compositions. By the same, if
the execution time in dynamic service environments is heavily constrained (e.g.,
highly dynamic environments), the system can also tune T to make the algo-
rithm check a limited number of service compositions, thus enabling to respect
timeliness constraints of such environments.

Pruning the Search Tree. Our algorithm proceeds by exploring a combina-
torial search tree built from candidate services according to the following rules:

- Every service candidate Si having fi ≥ T is a node in the search tree;
- If there is a link (i.e., control flow) from activity Ax to activity Ay in the

abstract service composition, then the candidate services of Ax will be the
child nodes of every service candidate in Ay ;

- Child nodes (i.e., services associated with an activity Ai) are sorted from
left to right according to their utility values fi. Services with higher values
of fi are on the left and those with lower values are on the right.

- Add a virtual root node to all the nodes without incoming links.

Once the search tree is built, our heuristic algorithm ensures that its constituent
service compositions meet user QoS requirements. Towards this purpose, it first
generates a global QoS aggregation formula (i.e., for the whole composition) for
every QoS attribute by exploring the structure of the composition. Then it uses
the generated formulas to compute the aggregated QoS value of each attribute
and the QoS utility of service compositions. The algorithm further checks the
feasibility of these compositions by setting the global QoS constraints given by
the user as upper bounds for the aggregated QoS values. The above step in
performed along with the following optimizations aiming to prune the search
tree of our algorithm.

– Pruning using incremental computation. As our algorithm traverses
down the search tree from the root node to the leaf nodes, the aggregated
QoS values increase along with the traversal of the tree. Consequently, if the
aggregated QoS values calculated at any non-leaf node in the traversal of
the tree, does not respect QoS constraints, then all the sub-tree under the
non-leaf node will be pruned. This optimization is useful when we deal with
long running processes having a large number of activities.



136 N.B. Mabrouk et al.

– Pruning using utility values approximation. This idea concerns an
approximation rather than an exact optimization. It utilizes the fact that our
algorithm explores the search tree in an ordered way, i.e., it checks services
with higher fi values first. Therefore, if a service candidate Si does not lead
to any feasible composition, all its following nodes (i.e., service candidates
of the same activity but with lower fi values) will be not considered for
the rest of the computation, which reduces the number of services to check.
This approximation is convenient when we have a large number of candidate
services per activity.

Our algorithm uses the above optimizations together, along with an additional
improvement allowing to enhance the timeliness of the algorithm. Indeed, to
reduce the time needed for computing the aggregated QoS values of service
compositions, we ensure that only one service candidate changes when the algo-
rithm switches from a composition to another. That is, the difference between
two consecutive compositions CCv and CCw is that a service candidate Si in
the first composition will be replaced by a service Sj in the second one. Thus,
instead of computing the whole aggregated QoS values of CCw , the algorithm
updates the aggregated QoS values of CCv with respect to QoSSi and QoSSj .

Finally, our algorithm produces as output the set of near-optimal compositions
ranked according to their utilities F . The obtained compositions are then used
for the generation of an executable service composition underpinning dynamic
binding of services.

5 Experimental Evaluation

5.1 Experimental Setup

We conducted a set of experiments to evaluate the quality of our algorithm.
These experiments were conducted on a Dell machine with two AMD Athlon
1.80GHz processors and 1.8 GB RAM. The machine is running under Windows
XP operating system and Java 1.6. In these experiments, we focus on two metrics:

– Execution time. This metric measures the response time of our algorithm
with respect to the size of the problem in terms of the number of activities
and the number of services per activity. In these experiments, we measure
separately the execution time of local classification and global selection.

– Optimality. This metric measures how close the utility of the best com-
position given by our algorithm to the utility of the optimal composition
given by the brute-force algorithm. The optimality metric is then given by
the following formula:

Optimality = F/Fopt (7)

where F is the utility of the best composition given by our heuristic algorithm
and Fopt is the utility of the optimal composition given by the brute force
algorithm.



QoS-Aware Service Composition in Dynamic Service Oriented Environments 137

In our experiments, we use the data given by previous studies about Web Ser-
vices’ QoS [21,22]. In these studies, the authors provide a set of QoS metrics
(i.e., response time, throughput, availability, validation accuracy, cost) related
to current email validation Web services (Table 2). We use these metrics as a
sample input data for our algorithm. Nevertheless, the number of Web services
considered in these studies is too limited compared to the number of services
that we need to assess the scalability of our algorithm. To this regard, we devel-
oped a Data Generator that randomly generates input data for our algorithm
between the minimmum and maximum values of the QoS metrics given in Table
2. Further, we developed a Process Generator that randomly generates abstract

Table 2. QoS metrics for email validation Web Services

Service Response Throughput Availability Validation Accuracy Cost

Provider Time (ms) (req./min) (%) (%) (cents/invoke)

XMLLogic 720 6.00 85 87 1.2

XWebservices 1100 1.74 81 79 1

StrikeIron 912 10.00 96 94 7

CDYNE 910 11.00 90 91 2

Webservicex 1232 4.00 87 83 0

ServiceObjects 391 9.00 99 90 5

processes to use as input for experimenting with our algorithm. The Process
Generator takes as arguments the number of activities and the number of can-
didate services per activity, and it yields as output a process by structuring the
activities with respect to randomly chosen composition patterns. The Process
Generator uses the Data Generator to provide the QoS values associated with
service candidates of each activity in the process.

For the purpose of these experiments, we vary the number of activities and
the number of services per activity between 10 and 50. Concerning the number
of QoS constraints, it is comprised between 2 and 5 constraints. Finally, for the
sake of precision we execute each experiment 20 times and we calculate the mean
value of the obtained results.

Once data input is generated, we need to fix the values of the following pa-
rameters before launching the experiments:

– We set the values of global constraints given by the user to the mean value
m of every QoS attribute aggregated with respect to the structure of the
generated process composition.

– We use the method of computing QoS levels described in Section 3.2 to
cluster service candidates according to 3 clusters: Min, Middle and Max.

– Concerning the computation of the utility threshold T , we fix it to (m + σ)
where m and σ denote respectively, the mean value and standard deviation
of fi utilities of all service candidates. As we have a large number of service



138 N.B. Mabrouk et al.

candidates, we assume that the values of fi are normally distributed. Ac-
cording to this, the central limit theorem[23] states that the value (m + σ)
allows for discarding approximately 74% of service candidates.

5.2 Experimental Results

During the experiments, we aimed to compare the execution time of our algo-
rithm to the execution time of a brute-force algorithm that we developed for
the purpose of these experiments. Nevertheless, the latter algorithm takes a long
time to execute (i.e., several hours) for a number of activities more than 20.
Hence, we are not going to present the execution time of both algorithms, we
will rather present the measurements obtained for our algorithm.

Fig. 3. Execution time of the local
classification phase (for a fixed number
of QoS constraints)

Fig. 4. Execution time of the global
selection phase (for a fixed number
of QoS constraints)

Figures 3 and 4 show the execution time of local classification and global
selection, respectively. These measurements are obtained by fixing the number
of QoS constraints to 5 and varying the number of activities and the number of
service candidates per activity between 10 and 50. The obtained measurements
show that the execution time of our algorithm increases along with the number
of activities and the number of services per activity, which is an expected result.
Conversely, in Figures 5 and 6, we measure the execution time of our algorithm
while fixing the number of service candidates per activity to 50, and varying
the number of activities between 10 and 50 and the number of QoS constraints
between 2 and 5. These figures show that the execution time of our algorithm also
increases along with the number of activities and the number of QoS constraints.

Additionally, it is worth noting that the execution time of the local classifi-
cation phase is approximately negligible compared to the execution time of the
global selection phase (i.e., 45ms � 0.8s), which is an expected result given
that K-Means is a simple algorithm with a polynomial computational cost[20].
Overall, in almost all cases our algorithm is executed in a reasonable amount of



QoS-Aware Service Composition in Dynamic Service Oriented Environments 139

Fig. 5. Execution time of the local
classification phase (for a fixed number
of services)

Fig. 6. Execution time of the global
selection phase (for a fixed number
of services)

time (i.e., less than 0.9s) if we compare it, e.g., to the response time of the email
validation Web services described in Table 2.

Concerning the optimality of our algorithm, we measure it while fixing the
number of QoS constraints to 5, and varying the number of activities and the
number of services per activity between 10 and 50. Figure 7 shows that the
optimality of our algorithm increases along with the number of activities and
the number of services per activity. This means that, when it deals a large
number of compositions, our algorithm finds more feasible compositions that
may provide a better utility. This is explained by the fact that the utility of
the best composition increases along with the probability to find services with
QoS values close to the optimal QoS (i.e., near-optimal QoS values). As the
service candidates are randomly generated, this probability increases along with
the number of generated services and also with the number of activities, thus
increasing the utility of the overall composition.

Fig. 7. Optimality of our algorithm



140 N.B. Mabrouk et al.

In general, our algorithm produces a satisfying optimality (i.e., more than
62%). However, this metric can be further enhanced by tuning the utility thresh-
old T with respect to the trad-off between the desired optimality and the time-
liness of the algorithm.

6 Conclusion

The objective of this work has been to address services’ selection and composition
in the context of a QoS-aware middleware for dynamic service environments. For
this purpose, we have proposed an efficient QoS-based selection algorithm. The
importance of our algorithm is three-fold. First, it introduces a novel approach
based on clustering techniques. Applying such techniques for services’ selection
brings new ideas in this research area. Second, by producing not a single but
multiple service compositions satisfying the QoS constraints, our algorithm un-
derpins the concept of dynamic binding of services, which allows for coping with
changing conditions in dynamic environements. Third and most importantly,
our algorithm shows a satisfying efficiency in terms of timeliness and optimality,
which makes it appropriate for on-the-fly service composition in dynamic service
environments.

The presented work makes part of our ongoing research addressing QoS-aware
middleware for pervasive environments. Our next steps concern further inversti-
gating clustering techniques for improving our heuristic algorithm, and consider-
ing in our QoS model network-level QoS and middleware-based QoS enhancement
for service compositions.

Acknowledgement

This research is partially supported by the SemEUsE project2 funded by the
french National Research Agency (ANR).

References

1. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the Art and Research Challenges. Computer 40(11), 38–45 (2007)

2. Pautasso, C., Alonso, G.: Flexible Binding for Reusable Composition of Web
Services. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS,
vol. 3628, pp. 151–166. Springer, Heidelberg (2005)

3. Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Di Nitto, E.:
WS Binder: a framework to enable dynamic binding of composite web services. In:
SOSE 2006: Proceedings of the 2006 international workshop on Service-oriented
software engineering, pp. 74–80. ACM, New York (2006)

4. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

2 SemEUsE project: http://www.semeuse.org



QoS-Aware Service Composition in Dynamic Service Oriented Environments 141

5. Yu, T., Zhang, Y., Lin, K.-J.: Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints. ACM Trans. Web 1(1), 6 (2007)

6. Jaeger, M.C., Mühl, G.: QoS-based Selection of Services: The Implementation of a
Genetic Algorithm. In: Braun, T., Carle, G., Stiller, B. (eds.) Kommunikation in
Verteilten Systemen (KiVS 2007) Industriebeträge, Kurzbeiträge und Workshops,
Bern, Switzerland, March 2007, pp. 350–359. VDE Verlag, Berlin und Offenbach
(2007)

7. Kobti, Z., Zhiyang, W.: An Adaptive Approach for QoS-Aware Web Service Com-
position Using Cultural Algorithms. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 140–149. Springer, Heidelberg (2007)

8. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO 2005: Proceedings
of the 2005 conference on Genetic and evolutionary computation, pp. 1069–1075.
ACM, New York (2005)

9. Zhang, C., Su, S., Chen, J.: A Novel Genetic Algorithm for QoS-Aware Web Ser-
vices Selection. In: Lee, J., Shim, J., Lee, S.-g., Bussler, C.J., Shim, S. (eds.) DEECS
2006. LNCS, vol. 4055, pp. 224–235. Springer, Heidelberg (2006)

10. Cao, L., Li, M., Cao, J.: Using genetic algorithm to implement cost-driven web
service selection. Multiagent Grid Syst. 3(1), 9–17 (2007)

11. Gao, C., Cai, M., Chen, H.: QoS-aware Service Composition Based on Tree-Coded
Genetic Algorithm. In: COMPSAC 2007: Proceedings of the 31st Annual Interna-
tional Computer Software and Applications Conference, Washington, DC, USA,
pp. 361–367. IEEE Computer Society, Los Alamitos (2007)

12. Vanrompay, Y., Rigole, P., Berbers, Y.: Genetic algorithm-based optimization of
service composition and deployment. In: SIPE 2008: Proceedings of the 3rd inter-
national workshop on Services integration in pervasive environments, pp. 13–18.
ACM, New York (2008)

13. Alrifai, M., Risse, T., Dolog, P., Nejdl, W.: A Scalable Approach for QoS-based Web
Service Selection. In: 1st International Workshop on Quality-of-Service Concerns
in Service Oriented Architectures (QoSCSOA 2008) in conjunction with ICSOC
2008, Sydney (December 2008)

14. Mokhtar, S.B., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic service
discovery in pervasive computing environments. In: van Steen, M., Henning, M.
(eds.) Middleware 2006. LNCS, vol. 4290, pp. 240–259. Springer, Heidelberg (2006)

15. Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY:
Efficient semAntic Service discoverY in pervasive computing environments with
QoS and context support. J. Syst. Softw. 81(5), 785–808 (2008)

16. Lloyd, S.P.: Least squares quantization in PCM. Unpublished memorandum, Bell
Laboratories (1957)

17. Mabrouk, N.B., Georgantas, N., Issarny, V.: A Semantic End-to-End QoS Model
for Dynamic Service Oriented Environments. In: Principles of Engineering Ser-
vice Oriented Systems (PESOS 2009), held in conjunction with the International
Conference on Software Engineering, ICSE 2009 (2009)

18. Moscato, F., Mazzocca, N., Vittorini, V., Di Lorenzo, G., Mosca, P., Magaldi,
M.: Workflow Pattern Analysis in Web Services Orchestration: The BPEL4WS
Example. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC
2005. LNCS, vol. 3726, pp. 395–400. Springer, Heidelberg (2005)



142 N.B. Mabrouk et al.

19. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Pattern
Based Analysis of BPEL4WS. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuer-
mann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer, Heidelberg
(2003)

20. Arthur, D., Vassilvitskii, S.: On the Worst Case Complexity of the k-means Method.
Technical Report 2005-34, Stanford InfoLab (2005)

21. Al-Masri, E., Mahmoud, Q.H.: QoS-based Discovery and Ranking of Web Services,
August 2007, pp. 529–534 (2007)

22. Al-Masri, E., Mahmoud, Q.H.: Discovering the Best Web Service. In: WWW 2007:
Proceedings of the 16th international conference on World Wide Web, pp. 1257–
1258. ACM, New York (2007)

23. Hogben, L., Greenbaum, A., Brualdi, R., Mathias, R.: Handbook of Linear Algebra.
Chapman & Hall, Boca Raton (2007)


	QoS-Aware Service Composition in Dynamic Service Oriented Environments
	Introduction
	Related Work
	Composition Approach Overview
	QoS Model
	Composition Model

	Service Selection Algorithm
	Scaling Phase
	Local Classification
	Global Selection

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	References


