
QoS-based Service Selection and Ranking with
Trust and Reputation Management?

Le-Hung Vu, Manfred Hauswirth and Karl Aberer

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
{lehung.vu, manfred.hauswirth, karl.aberer}@epfl.ch

Abstract. QoS-based service selection mechanisms will play an essen-
tial role in service-oriented architectures, as e-Business applications want
to use services that most accurately meet their requirements. Standard
approaches in this field typically are based on the prediction of services’
performance from the quality advertised by providers as well as from
feedback of users on the actual levels of QoS delivered to them. The
key issue in this setting is to detect and deal with false ratings by dis-
honest providers and users, which has only received limited attention
so far. In this paper, we present a new QoS-based semantic web ser-
vice selection and ranking solution with the application of a trust and
reputation management method to address this problem. We will give
a formal description of our approach and validate it with experiments
which demonstrate that our solution yields high-quality results under
various realistic cheating behaviors.

1 Introduction

One key issue in the Semantic Web Service area is to discover the most rele-
vant services meeting the functional requirements of users. Equally important,
e-Business applications also would like to discover services which best meet their
requirements in terms of QoS, i.e., performance, throughput, reliability, avail-
ability, trust, etc. Thus QoS-based web service selection and ranking mechanisms
will play an essential role in service-oriented architectures, especially when the
semantic matchmaking process returns lots of services with comparable func-
tionalities.

In this paper we present a QoS-based web service selection and ranking ap-
proach which uses trust and reputation evaluation techniques to predict the
? The work presented in this paper was (partly) carried out in the framework of

the EPFL Center for Global Computing and was supported by the Swiss National
Funding Agency OFES as part of the European project DIP (Data, Information,
and Process Integration with Semantic Web Services) No 507483. Le-Hung Vu is
supported by a scholarship of the Swiss federal government for foreign students. We
also thank Zoran Despotovic, Amit Lakhani and the anonymous reviewers for their
carefully reading and commenting this paper.

future quality of a service. Our work is based on requirements from a real-world
case study on virtual Internet service providers (VISP) from an industrial partner
in one of our projects 1. In a nutshell, the idea behind the VISP business model
is that Internet Service Providers (ISPs) describe their services as semantic web
services, including QoS such as availability, acceptable response time, through-
put, etc., and a company interested in providing Internet access, i.e., becoming
a VISP, can look for its desired combination of services taking into account its
QoS and budgeting requirements, and combine them into a new (virtual) prod-
uct which can then be sold on the market. This business model already exists,
but is supported completely manually. Since many ISPs can provide the basic
services at different levels and with various pricing models, dishonest providers
could claim arbitrary QoS properties to attract interested parties. The standard
way to prevent this is to allow users to evaluate a service and provide feedbacks.
However, the feedback mechanism has to ensure that false ratings, for example,
badmouthing about a competitor’s service or pushing one’s own rating level by
fake reports or collusion with other malicious parties, can be detected and dealt
with. Consequently, a good service discovery engine would have to take into ac-
count not only the functional suitability of services but also their prospective
quality offered to end-users by assessing the trustworthiness of both providers
and consumer reports. According to several empirical studies [1, 2], the issue of
evaluating the credibility of user reports is one of the essential problems to be
solved in the e-Business application area.

We develop the QoS-based service selection algorithm under two basic as-
sumptions which are very reasonable and realistic in e-Business settings: First,
we assume probabilistic behavior of services and users. This implies that the
differences between the real quality conformance which users obtained and the
QoS values they report follow certain probability distributions. These differences
vary depending on whether users are honest or cheating as well as on the level of
changes in their behaviors. Secondly, we presume that there exist a few trusted
third parties. These well-known trusted agents always produce credible QoS re-
ports and are used as trustworthy information sources to evaluate the behaviors
of the other users. In reality, companies managing the service searching engines
can deploy special applications themselves to obtain their own experience on
QoS of some specific web services. Alternatively, they can also hire third party
companies to do these QoS monitoring tasks for them. In contrast to other mod-
els [3–7] we do not deploy these agents to collect performance data of all available
services in the registry. Instead, we only use a small number of them to monitor
QoS of some selected services because such special agents are usually costly to
setup and maintain.

The QoS-based service selection and ranking algorithm we describe in this
paper is a part of our overall distributed service discovery approach [8]. During
the service discovery phase, after the functional matchmaking at a specific reg-
istry, we would obtain a list of web services with similar functionalities from the
matchmaking of our framework, i.e., the services fulfilling all user’s functional

1 DIP Integrated Project, http://dip.semanticweb.org/

requirements. We need to select and rank these services based on their predicted
QoS values, taking into consideration the explicit quality requirements of users in
the queries. The output of the selection and ranking algorithm is the list of web
services fulfilling all quality requirements of a user, ordered by their prospective
levels of satisfaction of the given QoS criteria. So as to perform this selection and
ranking accurately, we collect user reports on QoS of all services over time to
predict their future quality. This prediction is also based on the quality promised
by the service providers as well as takes into consideration trust and reputation
issues.

The major contribution of our work is a new QoS-based web service selection
and ranking approach which is expected to be accurate, efficient and reliable.
First, we have taken into account the issue of trust and reputation manage-
ment adequately when predicting service performance and ranking web services
based on their past QoS data. Experimental results have shown that the newly
proposed service selection and ranking algorithm yields very good results under
various cheating behaviors of users, which is mainly due to the fact that our
use of trusted third parties observing a relatively small fraction of services can
greatly improve the detection of dishonest behavior even in extremely hostile en-
vironments. This is particularly important as without cheating detection, service
providers will be likely to generate lots of false reports in order to obtain higher
ranks in the searching results, thereby having higher probability to be selected
by clients and gain more profits. Second, our algorithm is semantic-enabled by
offering support for the semantic similarity among QoS concepts advertised by
providers and the ones required by users. This allows the QoS-based service se-
lection process to work more flexibly and produce more accurate results. Third,
we adapt the idea of Srinivasan et al [9] to pre-compute all matching information
between QoS capabilities of published services and possible QoS requirements of
users to avoid time-consuming reasoning and to minimize the searching costs.

The rest of this paper is organized as follows. First, we briefly mention the re-
lated work in section 2. Section 3 presents our trust and reputation management
model in a Web Service Discovery scenario. Our QoS-based service selection and
ranking approach is described in detail in section 4. We discuss various experi-
mental results in section 5 and conclude the paper in section 6.

2 Related Work

Although the traditional UDDI standard 2 does not refer to QoS for web services,
many proposals have been devised to extend the original model and describe web
services’ quality capabilities, e.g., QML, WSLA and WSOL [10]. The issue of
trust and reputation management in Internet-based applications has also been
a well-studied problem [1, 2].

The UX architecture [11] suggests using dedicated servers to collect feedback
of consumers and then predict the future performance of published services.

2 Latest UDDI Version (3.0.2), http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

[12] proposes an extended implementation of the UDDI standard to store QoS
data submitted by either service providers or consumers and suggests a special
query language (SWSQL) to manipulate, publish, rate and select these data from
repository. Kalepu et al [13] evaluate the reputation of a service as a function of
three factors: ratings made by users, service quality compliance, and its verity,
i.e., the changes of service quality conformance over time. However, these solu-
tions do not take into account the trustworthiness of QoS reports produced by
users, which is important to assure the accuracy of the QoS-based web service
selection and ranking results. [14] rates services computationally in terms of their
quality performance from QoS information provided by monitoring services and
users. The authors also employ a simple approach of reputation management by
identifying every requester to avoid report flooding. In [15], services are allowed
to vote for quality and trustworthiness of each other and the service discovery
engine utilizes the concept of distinct sum count in sketch theory to compute
the QoS reputation for every service. However, these reputation management
techniques are still simple and not robust against various cheating behaviors,
e.g., collusion among providers and reporters with varying actions over time.
Consequently, the quality of the searching results of those discovery systems will
not be assured if there are lots of colluding, dishonest users trying to boost the
quality of their own services and badmouth about the other ones. [16] suggests
augmenting service clients with QoS monitoring, analysis, and selection capabil-
ities, which is a bit unrealistic as each service consumer would have to take the
heavy processing role of a discovery and reputation system. Other solutions [3–7]
use third-party service brokers or specialized monitoring agents to collect perfor-
mance of all available services in registries, which would be expensive in reality.
Though [7] also raises the issue of accountability of Web Service Agent Proxies
in their system, the evaluation of trust and reputation for these agents is still an
open problem.

Our QoS provisioning model is grounded on previous work of [3, 4, 11, 13,
14]. The trust and reputation management of our work is most similar to that
of [17, 18] but we employ the idea of distrust propagation more accurately by
observing that trust information from a user report can also be used to reveal
dishonesty of other reporters and by allowing this distrust to be propagated to
similar ones. Other ideas of the trust and reputation management method are
based on [19–21].

3 A Trust and Reputation Management Model for
QoS-based Service Discovery

The interaction among agents in our system is represented in Fig. 1 where
S0,..,Sn are web services, U0,...,Um are service users, RP 0,...,RP k are service
registries in a P2P-based repository network, based on our P-Grid structured
overlay [22]. T0,...,Tr are the trusted QoS monitoring agents from which we will
collect trustworthy QoS data to use in our algorithm.

tir

xir

yij
xij

 P-Grid registry network

S0

S1

Si

Sn

U0

U1

Uj

Um

RPk RP0

T0

Tr

Fig. 1. Interaction among agents in a QoS-based service discovery scenario

After Uj ’s perception of a normalized QoS conformance value xij (a real
number from Definition 1 in the following section) from a service Si, it may report
the value yij to the registry RP k, which manages the description information of
Si. This registry peer will collect users’ quality feedbacks on all of its managed
web services to predict their future performance and support the QoS-enabled
service discovery based on these data. Note that a user generally reports a vector
of values representing its perception of various quality parameters from a service.
Also, xijs and yijs are QoS conformance values, which already take into account
the quality values advertised by providers (see Definition 1 in the next section).
Since the prediction of QoS in our work mostly depends on reports of users
to evaluate service performance, the cheating behaviors of providers are not
explicitly mentioned henceforth. In this paper, we only consider the selection
and ranking of services with reputation management in one registry peer. The
study of interaction among different registries is subject to future work.

Given the above interaction model, we can make a number of observations.
An honest user will report yij = xij in most cases (in reality, they may not
report if not willing to do so). On the other hand, a dishonest reporter who
wants to boost the performance of Si will submit a value yij > xij . Similarly,
cheating reports generated by Si’s competitors will report yij < xij to lower
its QoS reputation. In addition, (colluding) liars may sometimes provide honest
reports and behave dishonestly in other cases [2]. Accordingly, we presume that
the differences between yijs and xijs follow certain distribution types which
expected values depend on the behavior of the user, i.e., are equal to 0.0 for honest
users and different from 0.0 in the case of liars. We use this assumption since
in general dishonest users are likely to change their actions over time in order
to hide their cheating behaviors with occasionally credible reports. Moreover, as
the quality parameter values of a service really depend on many environmental
factors, even trusted agents and honest users may obtain and report those values
a little different to each other when talking about the same service. However,

the expected value of trustworthy reports on QoS of Si, e.g., the average of
corresponding credible yij values, will reflect its real quality capability. In our
opinion, the expected values of these distributions, e.g., means, normally reveal
the behaviors of users, whereas other parameters, e.g., standard deviations, will
represent the uncertainty in actions of users, either accidentally or by purpose.
Our goal is not only to evaluate whether a user is honest but also to compute the
expected conformance values from the reports of the most honest users, e.g., the
average of values yijs by the most credible reporters, from which we will predict
the future quality of Sis.

4 QoS-based Service Selection and Ranking

Our QoS-enabled distributed service discovery framework is presented in de-
tail in [8]. Quality properties of web services are described by concepts from a
QoS ontology and then embedded into service description files using techniques
suggested by WS-QoS [3] and Ran [4]. The value of a quality parameter of a
web service is supposed to be normalized to a non-negative real-valued number
regarding service-specific and call-specific context information where higher nor-
malized values represent higher levels of service performance. We are aware that
the issue of normalizing the values of various quality attributes is complicated,
but this is out of the scope of our current study. However, with most frequently
used QoS concepts, e.g., reliability, execution-time, response-time, availability,
etc., the answer is well-defined and straight-forward. For instance, a web service
with a normalized QoS parameter value for reliability of 0.90 will be considered
as more reliable to another one with a normalized reliability value of 0.50. In
this case the normalized reliability is measured as its degree of being capable of
maintaining the service and service quality over a time period T . The ontology
language we use to describe service semantics and to define the QoS ontology is
WSMO 3, but other models, e.g., OWL-S 4, would also be applicable. For ex-
perimental evaluations, we have developed a simple QoS ontology for the VISP
use case including the most relevant quality parameters for many applications,
i.e., availability, reliability, execution time, etc. We currently assume that users
and providers share a common ontology to describe various QoS concepts. How-
ever, this could be relaxed with the help of many existing ontology mapping
frameworks.

4.1 Predicting Service Performance

In order to predict the quality of a web service Si, we collect all QoS feed-
backs on its performance over a time period W and use a real-valued time series
forecasting technique to predict its future quality conformance from past data.
To understand the concepts in our algorithms we start with two fundamental
definitions.
3 http://www.wmso.org/
4 http://www.daml.org/services/owl-s/

Definition 1. The quality conformance value ck
ij of a service Si in providing

a quality attribute qij at time k is defined as ck
ij = dk

ij−pk
ij

pk
ij

where dk
ij is the

normalized value of qij that Si actually delivered to a specific user at time k and
pk

ij is the corresponding normalized QoS value promised by Si’s provider at that
time.

Definition 2. A user QoS report R, either by a normal service consumer or by
a trusted monitoring agent, is a vector {u, Si, t, L}, where u is the identifier of
the user that produced this report, Si is the corresponding web service, t is the
timestamp of the report and L is a quality conformance vector of {qij , c

t
ij} pair

values, with qij being a QoS attribute offered by Si and ct
ij being qij ’s quality

conformance that Si provides to this user at time t.

In order to filter out as much dishonest reports as possible and to take only
the most credible ones in the QoS predicting process, we apply our trust and rep-
utation management techniques comprising of two steps: a report preprocessing
and a report clustering phase. The first phase evaluates the credibility of col-
lected user reports by applying a trust-and-distrust propagation approach, which
relies on some initial trusted reports produced by special monitoring agents. We
consider two QoS reports as comparable if they are related to the same service
during a specific time interval δt and as incomparable otherwise. Generally, we
can set this δt as big as the length of the period during which the correspond-
ing service provider does not change the promised quality values of this service.
Two comparable QoS reports are considered to be similar if the squared Euclid-
ean distance between their conformance vectors is less than a specific threshold.
On the contrary, they are regarded as dissimilar if this distance is greater than
another threshold value.

The report preprocessing step is done according to Algorithm 1. nch and
nh1, nh2 (nh1 < nh2) are threshold values to estimate a user as cheating or
honest regarding to the similarity of its reports to other cheating/honest ones
(line 9, 17 and 18). N and T represent for how long and how frequent a user stay
in and submit QoS reports to the system. The values of nh1, nh2, nch, N and
T are design parameters to be chosen depending on properties of the collected
reports after running the algorithm several times. Generally, higher values of
these parameters stand for higher level of caution when estimating behaviors of
users regarding current evidences against them.

After finishing the preprocessing phase, we can identify a certain number of
cheaters and honest users. However, this trust-distrust propagation phase may
not be able to evaluate the credibility of all reports in case the user communities
of certain services are isolated from other communities as well as if we set the
values of nh1, nh2 and nch too high in Algorithm 1.

Therefore, in the next step we have to estimate the trustworthiness of the
remaining reports of which credibility has not been evaluated. To achieve this,
we reason that colluding cheating users will cooperate with each other in order
to influence the system with their dishonest feedbacks. As a result, users within
each group will produce similar values and naturally form different clusters of

Algorithm 1 QosReportsPreprocessing()
1: all trusted agents are marked as honest users;
2: all reports of trusted agents are marked honest ;
3: repeat
4: all unmarked reports of each cheating user are marked cheating ;
5: for each unmarked report do
6: if this report is dissimilar from an honest report then mark it cheating ;
7: if this report is similar with a cheating report then mark it cheating ;
8: end for
9: users with at least nch reports similar with cheating ones are marked cheating ;

10: users with at least N reports in at least T different time are marked stable;
11: until there is no new cheating user discovered;
12: repeat
13: all unmarked reports of each honest user are marked as honest ;
14: for each unmarked report and each report marked cheating do
15: if this report is similar with an honest report then mark it honest ;
16: end for
17: unmarked users with at least nh1 reports similar with honest ones are marked

honest ;
18: users marked as cheating and having at least nh2 reports similar with honest

ones are re-marked honest ;
19: until there is no new honest user discovered;

reports. Thus it is possible to apply data-mining techniques in this situation
to discover various existing clusters of reports related to those user groups. In
our work, we apply the convex k-mean clustering algorithm on each set of QoS
reports related to a service during the time interval δt with the following met-
rics: The distance between two comparable reports is defined as the Euclidean
squared distance between two corresponding quality conformance vectors and
the distance between two incomparable ones is assigned a large enough value so
that these reports will belong to different clusters.

After the trust and reputation evaluation in the two above phases, for each
service Si, we will have a list Gi of groups of reports on QoS of Si over time.
Generally, Gi includes the groups containing those reports that were previously
marked as honest/cheating during the trust-distrust propagation phase, as well
as other clusters of reports obtained after the clustering step. We will assign
the credibility wg

i of a report group gi ∈ Gi as follows. Firstly, we filter out all
dishonest ratings by assign wg

i = 0.0 for all groups of reports marked as cheating
during the trust-distrust propagation. If there exists the group g0

i of reports
previously marked honest during that step, we assign wg0

i = 1.0 whereas letting
wg

i = 0.0 for the remaining groups. Otherwise, we try to compute wg
i so that this

value would be proportional to the probability that the group gi is trustworthy
among all of the others. Our heuristic is to assign higher weight to clusters which
are populated more densely, having bigger size and with more stable users. This
assumption is reasonable, as the reports of independent cheaters are likely to be
scattered, and in the case liars cooperate with each other to cheat the system,

the size of their corresponding clusters will not exceed those consisting only of
honest reports as it would be too costly to dominate the system with numerous
and clustered dishonest ratings. Even if dishonest providers try to produce lots of
more condense reports so that they could get high influences to the final ranking
results at any cost, these values will be separated from honestly reported values
and therefore are likely to be discovered during the distrust-propagation phase
(line 3 to line 11 in Algorithm 1), provided we have enough trustworthy reports
to use. Specifically, wg

i could be estimated based on the following information:
the number of users in the cluster gi (sizeg

i), the number of all users producing
reports in all clusters of Gi (allusersi), the number of stable users in this cluster
(stableg

i), the total number of stable users in all clusters of Gi (allstablei), as
well as the average distance dg

i from the member reports of cluster gi to its
centroid values. Based on our model in section 3, the credibility of one report
would depend on the distance between its conformance vector and that of an
honest report. Therefore, the similarity among credibility of different reports
in one cluster gi would be inversely proportional to its dg

i value. Furthermore,
a report in gi would be honest in two cases: (1) it is submitted by a stable
and honest user; (2) it is produced by an unstable and honest user. Let Pstbl

and Punstbl be the probability that this report is of a stable user and of an
unstable user, respectively, and let Pstblcr and Punstblcr be the probability that
stable and unstable users report credibly, then we have wg

i = C
dg

i
.(Pstbl.Pstblcr +

Punstbl.Punstblcr), where Pstbl = stableg
i

sizeg
i

and Punstbl = 1 − Pstbl. Pstblcr and
Punstblcr could be estimated by comparing reports of trusted agents with those
of sample stable/unstable users to derive an appropriate value at the whole
network level. The value of C represents our belief in the relation between the
density of a report cluster and the credibility of its members, which is considered
as parameters of the reputation system and to be set by experience.

The future quality conformance Ĉij of a service Si in providing a QoS at-
tribute qij is predicted using a linear regression method, thus we have: Ĉij =
LinearRegression(C

t

ij), t ∈ {0, δt, . . . , (W − 1).δt}, where C
t

ij is the evaluated

QoS conformance value of the quality parameter qij at time t. We compute C
t

ij

as the average of conformance values reported by various user groups in the sys-
tem at that specific time point, using the evaluated credibility wg

i s as weights in

the computation. In other word, C
t

ij =
∑

gi∈Gi
wg

i
Ct

ij∑
gi∈Gi

wg
i

where Ct
ij is the mean of

conformances of a report group gi on Si’s quality attribute qij at time t, i.e., a
centroid value of a cluster/group of reports produced after the trust and reputa-
tion evaluation phase. Regarding the probabilistic behavior of users and services
as in section 3, we consider Ĉij as an approximate estimate of the expected value
of Si’s QoS conformance in providing quality attribute qij to users.

4.2 QoS-based Service Selection and Ranking

We define QoS requirements in a user query as a vector Q of triples {qj , nj , vj}
where qj represents for the required QoS attribute, nj is the level of importance

of this quality attribute to the user and vj is the minimal delivered QoS value
that this user requires. To rank services according to its prospective level of
satisfying user’s QoS requirements, we utilize the Simple Additive Weighting
method, which produces ranking results very close to those of more sophisticated
Decision Making techniques [5]. Thus, the QoS rank of a service Si in fulfilling

all quality criteria depends on the weighted sum Ti =

∑
qj∈Q

nj .Pij∑
qj∈Q

nj
in which

Pij = wij .n̂dij represents the capability of Si in providing the QoS concept qij

for users at the query time. The value n̂dij = d̂ij−vj

vj
evaluates the difference

between the QoS value d̂ij of the quality attribute qij that Si is be able to
offer to its users according to the prediction and the corresponding value vj

of qj required by the service query. In combination with Definition 1, we can

compute n̂dij = (1+pij).Ĉij−vj

vj
, where Ĉij is the predicted QoS conformance

value of quality attribute qij and pij is the corresponding QoS value promised
by provider of Si at current time. wij is a weight proportional to the semantic
similarity mij between qij and the QoS ontology concept qj required by the
user, i.e., the degree of match as in [23]. In other word, we will give higher
ranks for services which offer the most accurate QoS concepts at the higher
levels compared to the ones required by users. In our program we simple use the
following definition to evaluate wij :

wij =





1.0 if mij=exact; (i.e., qij is equivalent to qj)
0.5 if mij=pluggin; (i.e., qij is more general than qj)
0.0 if mij ∈ {subsume, failed}; (i.e., otherwise)

(1)

In order to accelerate the selection of only services fulfilling all required QoS
parameters, we use the idea of Srinivasan et al [9] to avoid the time-consuming
semantic reasoning step. Specifically, we use a QoS matching table to store the
matching information for all frequently accessed QoS attributes. With each QoS
attribute qj in this table, we have a list Lqosj of records {Sij , wij , d̂ij} where wij ,
d̂ij are computed as above and Sij identifies a service having certain support for
qj . Given the list L of services with similar functionalities, the discovery engine
performs the QoS-based service selection and ranking process as in Algorithm 2.

5 Experimental Results and Discussions

To evaluate the selection and ranking algorithm, we have implemented it as a
QoS support module in a registry peer of our distributed discovery framework [8]
and studied its effectiveness under various settings. The service selection and
ranking is performed on three representative quality parameters, namely avail-
ability, reliability and execution-time taken from the VISP case study.

We observed the dependency between the quality of selection and ranking
results and other factors, such as the percentage of trusted users and reports,
the rate of cheating users in the user society and the various behaviors of users.

Algorithm 2 QosSelectionRanking(ServiceList L, ServiceQuery Q)
1: Derive the list of QoS requirements in Q: Lq = {[q1, n1, v1], ..., [qs, ns, vs]}
2: Initialize Score[Sij] = 0.0 for all services Sij ∈ L;
3: for each quality concept qj ∈ Lq do
4: for each service Sij ∈ L do
5: Search the list Lqos of qj for Sij ;
6: if Sij is found then

7: Score[Sij] = Score[Sij] +
nj .wij∑

nj
(

d̂ij−vj

vj
);

8: else
9: Remove Sij from L;

10: end if
11: end for
12: end for
13: Return the list L sorted in descending order by Score[Sij] s;

Specifically, we evaluated the effectiveness of the service discovery by studying
the differences in the quality of results when running evaluations in four different
settings: In the ideal case the discovery engine has complete knowledge, such
that it knows all correct QoS conformance values of all published services in the
system over a time window W and performs the selection and ranking of services
from this ideal data set. In the realistic case, we ran our algorithm with the
application of trust and management techniques to filter out incredible reports
and to evaluate the credibility for the others. The optimistic case corresponds to
the QoS-based discovery of services without regarding to trust and reputation
issues, i.e., the system simply uses the average of all reported conformance values
to predict services’ performance and to perform the QoS ranking. The naive case
corresponds to the selection of services based only on their QoS values promised
by the providers, i.e., the system trusts all providers completely. Our goal was
to show that the obtained results of the QoS-based service discovery process are
more accurate and reliable in the realistic case with various cheating behaviors
of users, they would be much worse in the optimistic case, and the worst with
the naive method thus clearly showing the contribution of our approach.

The quality of selection results produced by our algorithm can be measured
by four parameters, namely recall, precision, R-precision and Top-K precision, of
which the R-precision is the most important quality parameter as recognized by
the Information Retrieval community. In our settings, these parameters generally
represent the fraction of services that are most relevant to a user among all
returned services in terms of their real QoS capabilities. Apparently, the results
would be the best in the ideal case, i.e., its recall, precision, R-precision and
Top-K precision parameters are all equal to 1.0. Therefore, we use the results
of the ideal case as a reference to compare with the quality parameters in the
other three situations. Due to space limitations we only show the R-precision
values as the most representative experimental results in this section. We also
measured the other parameters as well as computed the absolute QoS ranks of

returned services using weighting Spearman’s footnote method and had similar
results.

We prepared our experiments with the probabilistic assumption on the be-
havior of service providers and consumers. In this paper we only present the
experiments with Gaussian (normal) distributions. The extension to other prob-
abilistic distributions is subject to future work. The society of service con-
sumers was modeled as a collection of different types of users. As mentioned
in section 3, honest users and trusted agents would report values with the
difference Dh ∼ Normal(0.0, σh

2) to the real QoS conformance capabilities
of services. On the contrary, cheaters would report values with the difference
Dc ∼ Normal(Mc, σc

2) to the real quality conformances that they had obtained.
The values of the mean Mc varied according to the purpose of the cheaters, i.e.,
advertise or badmouth a service. The values of σc represented the variation in
reported values of users among different quality attributes of different services.
Users with higher values of σc had higher levels of inconsistency in their behav-
iors and therefore were harder to be detected. We further divided these liars into
three sub-types: badmouthing users who mostly reported badly about services
of their competitors, advertising users who usually exaggerated performance of
their own services and uncertain users with indeterministic actions and who
might act as advertising, badmouthing or even as honest users. We set the val-
ues of Mc for each type of cheaters in the most pessimistic situation, making
our testing environment be very hostile. Specifically, cheaters had their corre-
sponding Mcs set to high/low enough values such that badmouthing users would
succeed in pushing services of their competitors out of the selection results and
advertising users would be able to raise the QoS ranks of their own services,
provided that their reports had been taken into the predicting process of the
QoS-based service discovery engine. This setting is realistic because in business,
companies generally have knowledge of the base requirements of their users as
wells as owning certain statistics of their competitors’ capabilities. More com-
plicatedly, uncertain users had their Mcs values belonging to Nc specific values
each of which was a randomized real value, with Nc was the number of groups
of cheaters with varied behaviors. These types of liars would be harder to be
detected since their Mc values were uniformly distributed around 0.0. Though
they did not contribute directly to the boosting and lowering the reputation
of certain services, their reports were not so dissimilar from honest reports in
most cases and therefore they would act as good recommenders for other bad-
mouthing/advertising guys. To assure the scalability of the approach, we also
tested it with an increasing number of services, users and QoS reports while
keeping the percentage of user types and other parameters the same. The re-
maining experiments were run in a society of 1000 users which produced a total
of 50000 QoS reports on 200 services during a time window of length W = 5 and
δt = 1. The results of each experiment were averaged over 10 runs.

As a first question, we wanted to study the effects of the trusted reports on
the quality of results in the realistic case. Specifically, we wanted to observe the
effects of the percentage of the services monitored by trusted agents Fspecial to

the results of our QoS-based service selection and ranking algorithm expressed by
R-Precision values. We increased Fspecial from 1.0% to 10.0%. The percentage of
trusted users/reports was also increased from 0.1% to 1.0% with the increment
of 0.1% each step as well. The results of this experiment are shown in Fig. 2.

Quality of searching results in term of
R-Precision parameter values

0

0.2

0.4

0.6

0.8

1

1.2

1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0%

Percentage of services
to be monitored by trusted agents

R
-P

re
ci

si
o

n
 p

ar
am

et
er

R_precision_realistic

R_precision_naive

R_precision_opstimistic

Fig. 2. Fspecial vs. R-Precision

Correspondingly, Fig. 3 shows the percentage of cheating and honest reports
correctly identified during the report preprocessing phase with our trust-distrust
propagation method.

The effectinevess of the report preprocessing phase

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1.
0%

2.
0%

3.
0%

4.
0%

5.
0%

6.
0%

7.
0%

8.
0%

9.
0%

10
.0

%

Percentage of services to be trustedly monitored

P
er

ce
n

ta
g

e
o

f
re

p
o

rt
s

w
it

h

d
is

co
ve

re
d

 c
re

d
ib

ili
ty

Cheating reports discovered

Honest reports->cheating

Honest reports discovered

Cheating reports->honest

Fig. 3. Fspecial vs. Correctness of the report preprocessing phase.

In this experiment, we assumed a very high number of cheaters (74.0% of the
total users) consisting of badmouthing users, advertisers and five different groups
of uncertain users. We also did various experiments to study the effects of σc’s
and σh’s values and found that our algorithm performed very well with different

settings of σc provided the quality of the honest user population was good, i.e., σh

was low. Given the fact that the QoS conformance values in our simulation are in
the interval [−1.0, 1.0], we kept the standard deviations of cheating reports very
high (σc = 0.5) and those of trusted and honest users at an acceptably low level
(σh = 0.01). With the increase of Fspecial, we could correctly discover almost
all cheating reports and an increasing percentage of honest reports. Accordingly,
the quality of the results was significantly increased as well. The clustering phase
was actually not performed with Fspecial > 1.0% because above this threshold,
using only the trust-distrust propagation was enough to evaluate the credibility
of all reports. Although a lot of honest reports were wrongly identified as cheat-
ing, which was due to our cautious approach in estimating report credibility,
the quality of the results was always very good if Fspecial was kept high enough
(about 5.0%). The results were the worst with Fspecial around 2.0% and 3.0%.
In these cases, as the trust-propagation was not effective and did not identify
enough honest reports, we had to (partly) use the quality value advertised by
providers instead. When Fspecial was very small (1.0%), the result was still ac-
ceptable (R-Precision = 0.8), since in this situation we could actually combine
the trust-propagation and the report clustering phase together. i.e., there were
enough reports with unknown credibility after the preprocessing of reports such
that the clustering step had enough input data to process. As a whole, the result
of our algorithm with the trust and reputation management scheme in place is
much better than that of the optimistic and the naive cases, as we expected.

Next, we studied the effects of the fraction of cheaters to the quality of re-
sults. We increased the total percentage of all types of cheating users (Fcheating),
which consists of badmouthing, advertising and uncertain users, from 4.0% to
94.0% in increment of 10% each step. More specifically, we raised the percentage
of badmouthing and advertising users/reports, from 3.33% to 78.33% while gen-
erating five different groups of uncertain users with corresponding percentage of
dishonest reports increased from 0.67% to 15.67%. This setting represents the
realistic situation when there are various types of dishonest providers colluding
with the generated cheating users to boost the reputation of certain services and
badmouth other ones, which could be considered as the most important case
where there are various types of users with changing behaviors. The results for
this experiment are shown in Fig. 4. We kept the percentage of trusted reports
at 0.5% and let Fspecial = 5.0%, as an acceptable fraction collected from ob-
servations in the first experiment. The standard deviations of of cheating and
honest reports were kept at σc = 0.5 and σh = 0.01 respectively.

With the reduction of honest users and the corresponding increase of Fcheating,
the values of the R-Precision parameter were also reduced. However, the quality
of the results in the realistic case was always much better than that of the opti-
mistic case and the naive case. Even when the fraction of cheaters Fcheating was
very high (0.84), the R-Precision parameter value in the realistic case was still
acceptable (higher than 0.8). On the other hand, the quality of results without
taking into account trust and reputation management issues, i.e., the optimistic
and the naive case, dropped dramatically in hostile settings. This phenomenon

Quality of searching results in term of
R-Precision parameter values

0

0.2

0.4

0.6

0.8

1

1.2

4.
0%

14
.0

%
24

.0
%

34
.0

%
44

.0
%

54
.0

%
64

.0
%

74
.0

%
84

.0
%

94
.0

%

Percentage of all cheaters

R
-P

re
ci

si
o

n
 p

ar
am

et
er

R_precision_realistic

R_precision_naive

R_precision_opstimistic

Fig. 4. Fcheating vs. R-Precision

was due to the fact that in a society with a very high cheating rate, our trust
and reputation evaluation mechanism could discover and filter out almost all
incredible reports, as shown in Fig. 5.

The effectinevess of the report preprocessing phase

0.00

20.00

40.00

60.00

80.00

100.00

120.00

4.
0%

14
.0

%
24

.0
%

34
.0

%
44

.0
%

54
.0

%
64

.0
%

74
.0

%
84

.0
%

94
.0

%

Percentage of all cheaters

P
er

ce
n

ta
g

e
o

f
 r

ep
o

rt
s

w
it

h

d
is

co
ve

re
d

 c
re

d
ib

ili
ty

Cheating reports discovered

Honest reports->cheating

Honest reports discovered

Cheating reports->honest

Fig. 5. Fcheating vs. Correctness of the report preprocessing phase.

From these experiments we can draw a number of conclusions. Regarding effi-
ciency and effectiveness, our selection and ranking approach exhibits the follow-
ing properties: As the trust and reputation evaluation phase uses social network-
based analysis (trust-distrust propagation) and data-mining (report clustering)
methods, it requires high-computational cost. Fortunately, in our case, the com-
putation involves mainly local processing in one registry and thus does not re-
quire much communication overheads. Additionally, it could be done off-line on
a periodical basis and therefore will not affect much to the system performance.
Another important observation is that almost no cheating report was wrongly
evaluated as honest even in very hostile settings due to our cautious reputa-

tion evaluation mechanism. Therefore, in reality one can observe the results
of the trust-distrust propagation step and incrementally adjust the parameters
of the system, e.g., increase Fspecial, in order to collect enough honest reports
for the performance prediction phase. The service selection and ranking can be
performed fast and efficiently thanks to the pre-computation of the matching
information between QoS of existing services with possible quality requirements
of users. Similar to [17], we conclude that the use of trusted third parties moni-
toring a relatively small fraction of services can greatly improve the detection of
dishonest behavior even in extremely hostile environments. However, this effec-
tiveness mainly depends on the following properties of the set of service users
and their corresponding reports:

1. The overlaps among the set of users of each service, i.e., whether the services
monitored by trusted agents have many users who are also consumers of other
services.

2. The inconsistency in the behavior of users, i.e., whether a user is honest
while reporting on a service but behaves dishonestly on other cases.

These factors suggest that we should deploy trusted agents to monitor the
QoS of the most important and most widely-used services in order to get a “high
impact” effect when estimating behaviors of users. Currently as the user reports
are distributed uniformly for services in our experiments, we have not yet taken
into account this factor. However, we have employed another technique to fight
back the inconsistency behaviors of users by detecting cheaters first and evalu-
ating honest users later in the preprocessing phase. This helps us to collect all
possible evidences against cheaters by making use of the distrust propagation
among reports at the first place. The philosophy behind is that it would be better
to filter out a certain number of honest users rather than accept some dishonest
reports. However, lots of credible users will be accidentally detected as cheating
because of the similarity between their reports with other ones produced by well-
disguised liars in the system. Thus, in the honest detecting (trust-propagation)
phase, we also give these users a second chance to prove their honesty provided
they have produced lots of credible reports which could be certified by trusted re-
ports and other honest users. Additionally, other techniques can also be utilized
to make this method more robust. For example, we can pre-select the important
services to monitor and increase the number of them as well as keep the identi-
ties of those specially chosen services secret and change them periodically. Thus,
cheaters will not know on which services they should report honestly in order to
become high-reputation recommenders and have to pay a very high cost to have
great influences in the system. In reality, this also help us to reduce the cost
of setting-up and maintaining trusted agents as we only need to deploy them
to monitor changing sets of services at certain time periods. Moreover, we can
extend our algorithm so that neighboring registries are allowed to exchange with
each other the evaluated credibility of users to further find out other possibly
well-disguised cheaters who frequently change their behaviors. Note that the ad-
jacent registry peers in our system are assigned to manage services with similar

functional characteristics and therefore they are likely to attract comparable sets
of users in the system [8].

6 Conclusion

In this paper, we have introduced a new QoS-based web service selection and
ranking algorithm with trust and reputation management support. We have
shown that our selection and ranking solution yields very good results in most
cases. As the proposed reputation management mechanism is robust against
various cheating behaviors, the results are generally of good quality even in
hostile situations in which many different types of cheaters make up a high
percentage of the overall users and report values with remarkable variances. By
combining a trust-distrust propagation approach with a data-mining method,
we could filter out almost all cheaters and find out honest reports to be used
in the quality prediction process with very high probability. However, there are
a lots of open issues and improvements we can apply to the current model.
First of all, the selection of services to be monitored by trusted agents is an
interesting point not yet to be mentioned. Another open problem is how to
accurately predict the performance of newly published services with only few
QoS reports and how to motivate users to evaluate services’ performance and
submit their feedback to the service search engine. The selection of an optimal
configuration for many design parameters of our proposed solutions is also an
important question to be studied in further. Additionally, in each iteration of the
trust-distrust propagation, the comparison should be done between an unmarked
report with the average of current honest/cheating ones to make the credibility
evaluation more accurate since the reports are generally different from each
other. Also, after this propagation step, there maybe a number of users whose
real behaviors are not revealed due to insufficient evidences while their marked
reports include both cheating and honest ones. It is possible to take this factor
into account while clustering and evaluating the credibility of various report
groups. As part of future work, we will also use QoS properties as ranking criteria
for service queries without explicit QoS requirements. Another plan is to develop
a so-called meta-behavior model of users, which is more general to describe user
behaviors with various possible probabilistic responses and to obtain analytical
results of the proposed solution. Last but not least, we are going to deploy our
algorithm in a decentralized setting to observe the effectiveness of our trust and
reputation techniques where there are many registry peers exchanging among
each other the information of users and services’ quality data.

References

1. A. Jøsang, R. Ismail and C. Boyd: A Survey of Trust and Reputation Systems for
Online Service Provision, Decision Support Systems, 2005 (to appear).

2. Z. Despotovic and K. Aberer: Possibilities for Managing Trust in P2P Networks,
EPFL Technical Report No. IC200484, Switzerland, November, 2004.

3. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schi: A Concept for QoS Inte-
gration in Web Services, Proceeding of WISEW’03.

4. S. Ran: A Model for Web Services Discovery with QoS, ACM SIGecom Exchanges,
Vol. 4, Issue 1 Spring, pp. 1-10, 2003.

5. M. Ouzzani, A. Bouguettaya: Efficient Access to Web Services, IEEE Internet
Computing, Mar./Apr., pp. 34-44, 2004.

6. C. Patel, K. Supekar, Y. Lee: A QoS Oriented Framework for Adaptive Management
of Web Service-based Workflows, Database and Expert Systems 2003 Conf.

7. E. M. Maximilien and M. P. Singh: Reputation and Endorsement for Web Services,
SIGEcom Exch., 3(1):24-31, ACM Special Interest Group on e-Commerce, 2002.

8. L.- H. Vu, M. Hauswirth and K. Aberer: Towards P2P-based Semantic Web Service
Discovery with QoS Support, Proceeding of Workshop on Business Processes and
Services (BPS), Nancy, France, 2005 (to appear).

9. N. Srinivasan, M. Paolucci, K. Sycara: Adding OWL-S to UDDI, Implementation
and Throughput, Proceedings of the First International Workshop on Semantic Web
Services and Web Process Composition, USA, 2004.

10. G. Dobson: Quality of Service in Service-Oriented Architectures, 2004,
http://digs.sourceforge.net/papers/qos.html.

11. Z. Chen, C. Liang-Tien, B. Silverajan, L. Bu-Sung: UX - An Architecture Providing
QoS-Aware and Federated Support for UDDI, Proceedings of ICWS’03.

12. A. S. Bilgin and M. P. Singh: A DAML-Based Repository for QoS-Aware Semantic
Web Service Selection, Proceedings of ICWS’04.

13. S. Kalepu, S. Krishnaswamy and S. W. Loke: Reputation = f(User Ranking,
Compliance, Verity), Proceedings of ICWS’04.

14. Y. Liu, A. Ngu, and L. Zheng: QoS Computation and Policing in Dynamic Web
Service Selection, Proceedings of WWW 2004 Conf.

15. F. Emekci, O. D. Sahin, D. Agrawal, A. E. Abbadi: A Peer-to-Peer Framework for
Web Service Discovery with Ranking, Proceedings of ICWS’04.

16. J. Day and R. Deters: Selecting the Best Web Service, the 14th Annual IBM
Centers for Advanced Studies Conf., 2004.

17. R. Guha and R. Kumar: Propagation of Trust and Distrust, Proceedings of WWW
2004 Conf.

18. M. Richardson, R. Agrawal, P. Domingos, Trust Management for the Semantic
Web, Proceedings of ISWC’03, LNCS 2870, p.p. 351-368, 2003.

19. K. Aberer and Z. Despotovic: Managing Trust in a Peer-2-Peer Information Sys-
tem, Proceedings of ACM CIKM’01.

20. A. Whitby, A. Jøsang and J. Indulska: Filtering Out Unfair Ratings in Bayesian
Reputation Systems, Icfain Journal of Management Research, Vol. IV, No. 2, p.p. 48-
64, Feb. 2005.

21. F. Cornelli, E. Damiani, S. C. Vimercati, S. Paraboschi and P. Samarati: Choosing
Reputable Servents in a P2P Network, Proceeding of WWW 2002 Conf., USA.

22. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt: P-Grid: a Self-Organizing Structured P2P System.
ACM SIGMOD Record, 32(3), 2003.

23. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, Semantic Matching of Web
Services Capabilities, Proceedings of ISWC’02.

