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QoS driven Channel Selection Algorithm for

Cognitive Radio Network: Multi-User Multi-armed

Bandit Approach
Navikkumar Modi, Philippe Mary, Member, IEEE, and Christophe Moy, Member, IEEE

Abstract—In this paper, we deal with the problem of oppor-
tunistic spectrum access (OSA) in infrastructure-less cognitive
networks. Each secondary user (SU) Tx is allowed to select
one frequency channel at each transmission trial. We assume
that there is no information exchange between SUs, and they
have no knowledge of channel quality, availability and other SUs
actions, hence, each SU selfishly tries to select the best band to
transmit. This particular problem is designed as a multi-user
restless Markov multi-armed bandit (MAB) problem, in which
multiple SUs collect a priori unknown reward by selecting a
channel. The main contribution of the paper is to propose an
online learning policy for distributed SUs, that takes into account
not only the availability criterion of a band but also a quality
metric linked to the interference power from the neighboring cells
experienced on the sensed band. We also prove that the policy,
named distributed restless QoS-UCB (RQoS-UCB), achieves at
most logarithmic order regret, for a single-user in a first time
and then for multi-user in a second time. Moreover, studies on
the achievable throughput, average bit error rate obtained with
the proposed policy are conducted and compared to well-known
reinforcement learning algorithms.

Index Terms—Cognitive Radio, Upper Confidence Bound,
Opportunistic Spectrum Access, Machine Learning.

I. INTRODUCTION

A. Bandit Theory and Opportunistic Spectrum Access

Opportunistic spectrum access (OSA) has emerged as an

effective alternative to alleviate the spectrum scarcity issue

and to improve the spectrum efficiency. In OSA, secondary

users (SUs) also referred as unlicensed users identifies vacant

spectrum through sensing and transmit opportunistically into

the selected band without interfering with primary users (PUs).

One of the main challenges of the cognitive networks is to

achieve coexistence of heterogeneous SUs trying to access

the same part of the spectrum. Due to resource and hardware

constraints, SUs may sense only a part of the spectrum at any

given time and hence they need to learn about statistics of

the PUs’ channels without having any a priori informations

or very few. OSA scenario is hence generally tackled with

reinforcement learning (RL) approaches whose the principle

is to reward good trials and penalize bad ones.

This work has received a French government support granted to the
CominLabs excellence laboratory and managed by the National Research
Agency in the ”Investing for the Future” program under reference No. ANR-
10-LABX-07-01. The authors would also like to thank the Region Bretagne,
France, for its support of this work.
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6164 France (e-mail: navikkumar.modi@centralesupelec.fr).

P. Mary is with INSA de Rennes, IETR, UMR CNRS 6164, France.

It has been shown in several works that multi-armed bandit

(MAB) approach is particularly well adapted to tackle the OSA

problem. Indeed, each SU senses, at each time step, one of the

K frequency bands available in the PUs spectrum, according

to a given policy, and searches for learning the best channel

given a certain criterium, e.g. availability. The performance is

analyzed using two criteria: convergence and regret [1]. The

former is the guarantee that the policy, at the end, finishes to

play almost always the best channel, and the latter measures

the speed at which the convergence is achieved and is defined

as the difference between the expected reward obtained using

an infeasible ideal policy and the selected policy.

Additionally in this paper, we consider a distributed frame-

work where there is no information exchange or prior agree-

ment among the different SUs, thus it introduces additional

challenges such as: loss in the collected reward due to colli-

sions among the different SUs trying to access same channel,

and also competition among different SUs since they all sense

and access a channel with higher reward in the long run. It

is necessary for the channel access policies to overcome the

above challenges.

B. Related Work

Detailed discussions on MAB problems can be found in

[2], [3], [4], [5]. In [6], [7], the authors have provided a

lower bound on the regret of single user MAB policies and

developed simple mean based index policies for independent

and identical distributed (iid) rewards to achieve this bound.

In [8], the authors have proposed a simple mean based

index policy for single SU, named upper confidence bound

1 (UCB1) for iid reward which achieves logarithmic order

regret uniformly over time and not only asymptotically.

The reward distribution model is fundamental in the ma-

chine learning analysis and the iid assumption is not the only

one used. For instance, Markovian reward is also particularly

well adapted to OSA scenario in which the probability for

a channel to be free at the current time is correlated to its

state at the previous time instant. Logarithmic lower bound

on regret has also been shown for Markov MAB in [9]. In

Markov MAB framework, two use cases can be considered,

i.e. rested or restless MAB. In the former case, the state of

arms (or bands in OSA scenario) that are not played do not

change and only the arm played continues to evolve, while

in the later case, the state of non-played arms may change

[5], [10]. In [4], [11], the authors have proved that the single
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user regenerative cycle algorithm (RCA) are order optimal for

rested and restless MAB, respectively. In general, there have

been relatively few works on MAB problem with Markovian

reward, however, the authors in [11], [10], have proposed few

policies for restless Markov MAB problem when a single user

accesses the spectrum.

The authors in [11] and [12] have considered centralized

spectrum access schemes in contrast to distributed spectrum

access here. In a centralized spectrum access, multiple chan-

nels are selected by a single centralized user, at each iteration,

and receives the reward which is a linear combination of

the collected rewards from the selected channels. However,

it requires extensive information flow among users, and this

type of learning cannot generally be used in cognitive networks

where multiple users act selfishly and their collected rewards

are affected by the actions of other users operating in a same

spectrum.

Moreover, the MAB framework have been also designed to

address the distributed channel selection problem, as discussed

in [13], [14]. In [14], the authors have proposed a set of poli-

cies for multiple-user iid and rested MAB problems, whereas

in this paper we propose a policy for restless MAB problems.

[14] has assumed that each SU declares its actions to others

e.g. the selected channel, which can be a strong constraint. Liu

and Zhao, in [13], have proposed a distributed learning and

spectrum access policy, time-division fair share (TDFS), for iid

rewards and have proved that the policy has a logarithmic order

regret. In [13] and [15], the SUs orthogonalize their transmis-

sion with different offsets in their time-sharing schedule, while

we consider that SUs orthogonalize into different channels.

Moreover, the TDFS policies consider that each SU collects

almost the same time-average reward while policy proposed

in this paper achieves probabilistic fairness.

In [16], the authors have formulated the OSA problem

of decentralized learning and spectrum access for multiple

SUs, however they have considered MAB framework with iid

reward distribution only. In this paper, we consider a similar

probabilistic channel access framework as in [16], however

contrary to the previous works, we consider restless Markov

MAB, which has been proven to be an NP-hard problem, and

we prove that the presented policy achieves logarithmic order

regret for restless Markovian rewards. Moreover in the above

presented works, upon availability, each channel provides the

same reward which is a restrictive hypothesis since it ignores

different channel qualities. Moreover, the authors in [17] have

modeled the OSA problem with partially observable Markov

decision process (POMDP) framework which considers chan-

nel quality along with availability statistics to decide about the

channel to sense. However, their solution has comparatively an

higher complexity and also there is no theoretical guarantee

on the convergence property of the proposed policies. On

the contrary, the OSA problem is modeled under the MAB

framework which turns to be very easy and less complex to

implement.

Most of the previous works, [10], [11], [14], on restless

Markov MAB models a considered fixed positive reward (i.e.

expectation of the reward distribution of each channel). In

this paper, we consider not only a reward coming from the

availability of the channel, which evolves according to a

Markov chain, but also a positive random reward iid that we

decide to be related to the quality of a channel when the

channel is accessed by the user. It is worth mentioning that

the distribution of this reward is unknown from the user. Also,

an important difference compared to previous approaches, is

that the quality reward changes time to time; it is not fixed.

Moreover in wireless communication field, the separation of

both functionalities, i.e. availability and quality, is necessary

for applications where certain level of QoS is required. Hence,

by making the engine able to learn on the availability and on

the quality, we can choose to emphasize on one or the other

criteria.

C. Contributions

Our contributions are to propose single and multi-player

policies able to learn on two different criteria, i.e. availability

and quality, and to prove the logarithmic order of the regret for

these policies. The contributions of this paper are summarized

in the following:

• A new version of the quality of service UCB (QoS-

UCB), proposed in [18], for the restless Markov MAB

framework is proposed and named RQoS-UCB that takes

into account not only the availability but also the quality

for rating a channel. This new metric allows not only to

opportunistically use the spectrum holes but also maxi-

mizing the data rate achieved by the unlicensed users.

• A single-user followed by the multi-user version of the

algorithm are proposed. The regret bound analysis is pro-

vided for the both cases and is proved to be logarithmic

over time.

• No information exchange or prior agreement between

different users is assumed thereby minimizing the com-

munication overhead. In that context we show that the

number of collisions is bounded.

D. Paper Structure

Section II introduces the CR model and hypothesis on

the restless Markov MAB problem. In Section III, the new

distributed RQoS-UCB algorithm taking into account channel

availability and quality is presented for the single-user restless

Markov MAB problem and the regret law is derived and

Section IV extends to the multi-user case. Numerical results

are presented in Section V, which validates the efficiency

of the proposed distributed RQoS-UCB policy compared to

state-of-the-art algorithms in literature. Finally, Section VI

concludes the paper.

II. MODEL AND PROBLEM FORMULATION

A. System Model

Let U ≥ 1 be the number of SUs which opportunistically

access the spectrum, and K ≥ U be the number of PUs’

channels available1. We consider that each SU can sense only

1When U ≥ K all channels need to be accessed to avoid collisions and
hence learning makes less sense.
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one channel in each time slot. Moreover SUs operate in a

completely uncorrelated manner w.r.t. primary users, hence

the actions of individual SU does not affect the PUs policy. A

policy is defined as a one-to-one mapping A such as at each

time n, a frequency band i ∈ K, K = {1, · · · ,K}, is selected:

A : N −→ K

n 7−→ i

Each band is modeled as an aperiodic, irreducible and dis-

crete time Markov chain with finite state space Si = {q0, q1},
where q0 and q1 are the states occupied and free respectively,

and the transition probability matrix of the i−th band is

P i =
{

pikl, k, l ∈ Si
}

. Markov chains are independent from

each other and π
i is the stationary distribution of the i−th

Markov chain with πi
q(n) = πi

q ∀n. Si,j(n) denotes the state

observed from band i by SU j, ∀j ∈ U at time n. The reward

achieved in state q ∈ Si from band i by SU j at time n
is ri,jq (n) ∈ R. Without loss of generality, one can consider

that ri,jq (n) = Si,j(n). The mean reward µS
i,j associated with

state Si,j of the i−th band and j−th user under stationary

distribution π
i is given by: µS

i,j =
∑

q∈Si,j

ri,jq πi
q .

Furthermore, the band quality is rated according to the inter-

ference temperature recorded on it. We assume that the band

quality in a given state is stationary in the wide sense, meaning

that its statistical properties, i.e. first and second moment, are

not evolving over time, but the instantaneous value Ri,j
q (n)

may vary. Gi,j
q (T i,j(n)) = 1

T i,j(n)

∑T i,j(n)
k=1 Ri,j

q (k) denotes

the empirical mean of quality observations Ri,j
q collected from

band i by SU j in state q and T i,j(n) denotes the total number

of times band i has been sensed up to time n by SU j. The

global mean reward, i.e. taking into account the quality as well

as the state of each band i, is defined as:

µR
i,j =

∑

q∈Si,j

Gi,j
q ri,jq πi

q. (1)

Without loss of generality, let us consider that µR
1 > µR

i >
µR
K , ∀ i ∈ {2, · · · ,K − 1}. It is important to note that the

optimal bands are the ones having the highest global mean

reward, i.e. {µR
j }∀j∈U . The global mean reward can be seen

as the expectation of the reward function of the user j in band

i, i.e. Gi,j
q ri,jq . This function can be seen as a weighting of

the channel availability reward, i.e. ri,jq , by a random variable

reflecting its quality, i.e. Gi,j
q . Other combinations of quality

and availability might be envisaged but fall out of the scope

of this paper and are left for further works.

Let ALOHA-like protocol be considered under which if

two or more SUs transmit in the same channel then none of

the transmissions are successful, and no collision avoidance

mechanisms are considered2. Cj
o(i, n) is the collision indicator

function at the n−th slot at channel i for SU j. At the end of

each slot n, each SU j receives the reward ri,jq (n) and Ri,j
q (n).

Under this model, we are interested in designing a policy A,

maximizing the expected number of successful transmissions

2The effect of employing CSMA-CA is not taken into an account here
although the use of CSMA-CA increases spectrum usage and consecutively
decreases the regret, thus, the bound we derive in this paper is applicable.

with good quality in the long run. Let ΦA(n) be the regret and

defined as the reward loss after n slots for U SUs and policy

A. In the ideal scenario, we assume that the channel mean

reward statistics µR
i are known a priori by a central agent and

it selects U optimal channels for U SUs.

We are interested in minimizing the regret ΦA(n) associated

with the learning and access scheme, defined as:

ΦA(n) =
U
∑

j=1

nµR
j −

U
∑

j=1

E

[

n
∑

t=1

GA(t,j)
qA(t,j)

(t)rA(t,j)
qA(t,j)

(t)

]

(2)

where the expectation E is taken over the states and quality.

Let qA(t,j) being the state observed by SU j under the policyA
at time t. Frequency bands whose mean reward is strictly less

than {µR
j }∀j∈U are referred as suboptimal frequency bands.

B. Bandit Theoretical Model of Wireless Network

A centralized primary network is considered where a radio

access point serves K frequency bands. In the same cell,

Tx-Rx SU pairs are considered. The CR system seeks to

interweave the SU’s signals with the PUs transmissions in

the set of frequency bands. Due to the frequency reuse factor

and partial utilization of the frequency band i by PUs in the

neighboring cells, the interference level is not the same for all

bands which leads to a varying quality according to the band

considered. This noise process is considered as stationary in

wide sense.

A slotted frame structure for CR is considered. During the

frame duration, i.e. Ttotal, SUs sense the channel during Tsens,

learn during Tlear, and transmit (or not depending on the result

of the channel sensing) during Ttrans. The aim of the learning

policy is to decide which band should be explored in the next

time slot and can be implemented in parallel with transmission

requiring a very small time compared to the sensing and

transmission duration [19].

At the current time slot, SUs sense the spectrum on the i−th

frequency band and utilize it for communication only when

there is no PU. The spectrum sensing part is error-prone but

the imperfect sensing has no effect on the optimal solution

achieved by algorithms [20]. The discrete received signal at

SUs Rx can be written according to both hypothesis: i.e. H0

band i is used by a PU and H1 band i is vacant:

H0 : yiq0 [m] = pi[m] + ui[m], (3)

H1 : yiq1 [m] = ui[m] (4)

where, pi[m] and ui[m] are the signal and noise component

respectively for the i−th band. The PU signal pi[m] is

a zero mean independent and identically distributed (i.i.d.)

random process with variance E[|pi[m]|2] = σ2
p,i. The noise

components ui[m] are assumed to be zero mean and complex

Gaussian distributed with variance E[|ui[m]|2] = σ2
u,i and

independent from the primary users’ signal pi. We remind that

ui[m] counts for other cells interference and background noise.

Theoretically in OSA context, SUs should transmit only when

no PU occupies band i. However, they may miss the detection

of a primary user and transmit anyway.
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1) Energy Detector (ED) as state and quality information

metric: ED senses band i and measures a power level. If

the measured power level is above a certain threshold υ,

ED decides the band is occupied and if the power level is

below υ the band is decided to be available. Moreover, in

our work, the measured spectrum level is recorded and used

as a quality information metric for learning policy. Indeed,

instead of having only a binary variable at the output of

ED, we get a soft-metric representing the measured power

level which will be used later to rate the band quality.

Let Fs being the sampling frequency at the receiver, then

Ns = TsensFs is the number of samples acquired during the

sensing phase. User j measures the power in the i−th band as

Pi,j
q = 1/Ns

∑Ns

m=1 ∥yi,jq [m]∥2. The false alarm probability

Pf (υ,Ns) under the threshold υ and number of samples Ns

is given as Pf (υ,Ns) = Q
((

υ/σ2
u,i − 1

)√
Ns

)

[21], Q(·)
being the Gaussian Q-function. The band with the highest

quality has the lowest interference plus noise power level.

Hence, the quality metric should be inversely proportional

to the ED output, i.e. Ri,j
q = 1/

(

Pi,j
q + ce

)

where ce is a

constant added to the received power in order to avoid taking

the inverse of very small numbers. The proposed algorithms

in this paper is able to take into account quality metric related

to soft output of any spectrum sensing detector [22]. There

have been some attempts in [23], [24], to consider the energy

detector soft output as a reward for general reinforcement

learning algorithms, but they lack from significant theoretical

guarantee and a relation with achievable throughput.
2) Achievable Throughput Analysis: The SU’s average

achievable throughput Ξi,j in the i−th frequency band is given

by the sum of the achievable throughput under H0 and the

achievable throughput under H1, which can be written as:

Ξi,j(υ,Ns) = Ξi,j
q1
(υ,Ns) + Ξi,j

q0
(υ,Ns), (5)

where Ξi,j
q1

and Ξi,j
q0

are defined as:

Ξi,j
q1
(υ, Tsens) =

Ttotal − Tsens

Ttotal

πi
q1
C
(

Γi,j
1

)

(1− Pf (υ,Ns))

Ξi,j
q0
(υ, Tsens) =

Ttotal − Tsens

Ttotal

πi
q0
C
(

Γi,j
0

)

(1− Pd(υ,Ns))

where C (Γ) denotes the achievable rate with SINR Γ, i.e.

C (Γ) = log2(1 + Γ). Hence, C
(

Γi,j
1

)

is the achievable

rate in the i−th band without any PU and C
(

Γi,j
0

)

is the

achievable rate in the i−th band when a PU has not been

detected. The achievable throughput under hypothesis H1

is hence C
(

Γi,j
1

)

multiplied by the probability band i is

available, i.e. πi
q1

, and the probability not to generate a false

alarm, i.e. 1 − Pf (υ,Ns). On the other hand, the achievable

throughput under H0 is C
(

Γi,j
0

)

weighted by the probability

band i is occupied, i.e. πi
q0

and the miss detection probability

i.e. Pmd (υ,Ns) = 1 − Pd (υ,Ns) where Pd (υ,Ns) is the

probability of correct detection. Both rates are weighted by

the effective transmission time ratio, i.e. Ttotal−Tsens

Ttotal
.

III. SINGLE USER RESTLESS MARKOVIAN MAB PROBLEM

Let us consider in a first place that our secondary network

only contains 1 transceiver pair. We construct an algorithm

called RQoS-UCB, as shown in Algorithm 1, and prove that it

achieves logarithmic order regret uniformly over time same as

original QoS-UCB policy for rested problem [18]. On a way to

solve the restless MAB problem is to apply regenerative cycle

algorithm (RCA), [25], [11], or restless UCB (RUCB), [10],

policies and ignore the separate weight for channel quality and

availability criteria. In this paper, we assume that channel set

consists in different transmission quality, and also a CR may

have certain preferences, i.e., quality or availability or both,

for channel selection. Unlike the rested problem dealt with in

[18], the Markov chains of arms evolve even if they are not

observed. Table I summarizes the notation we use for RQoS-

UCB algorithm, where the dependence on index j vanishes

for 1 SU.

RQoS-UCB operates in a block structure as shown in Fig. 1.

For each arm, a state ζi is chosen and defined as a regenerative

state. Each block is further divided into three sub-blocks (SBs),

i.e. SB1, SB2 and SB3. SB1 consists in all time slots from

the start of the block to right before the first visit to ζi, SB2

contains all time slots from the first visit to ζi up to but

excluding the second visit to ζi where state and quality of the

band are recorded, and finally SB3 consists in a single time

slot with the second visit to state ζi. At the end of SB3, the

policy index is computed and is compared with the index of

other arms and the highest one gives the next arm to play, e.g.

arm K for the second block in Fig. 1. Note that the sub-block

division is relevant for regret analysis purpose. Indeed, all SB2

blocks are virtually assembled to construct a regenerative cycle

of the Markov chains. The newly constructed sample path has

exactly the same statistics as the original transition probability

matrix P i which translates restless problem into a tractable

problem. However, it is important to emphasize that the CR

does not run only during SB2 block but also in SB1 and SB3

blocks in which channels are sensed and transmissions are

performed, if bands are found free.

Initially, all the channels are observed at least once and ζi

is fixed as a first state observed for each arm, i.e. steps 1 to 3

in Algorithm 1. After the initialization, at the beginning of a

new block b, RQoS-UCB selects the channel which maximizes

the policy index Bi(n2, T
i
2(n2)) ∀ i ∈ K, step 5, according to

three terms:

Bi(n2, T
i
2(n2)) = S̄i(T i

2(n2))−Qi(n2, T
i
2(n2))

+ Ai(n2, T
i
2(n2)), ∀i (6)

where S̄i(T i
2(n2)) being the empirical mean of the states of

the i−th band (occupied or free) at time n2, defined as:

S̄i(T i
2(n2)) =

Si(1) + Si(2) + · · ·+ Si(T i
2(n2))

T i
2(n2)

, ∀i. (7)

The second term, i.e. Qi(n2, T
i
2(n2)), is computed same as of

rested policy:

Qi(n2, T
i
2(n2)) =

βM i(n2, T
i
2(n2)) log(n2)

T i
2(n2)

, ∀i, (8)

where,

M i(n2, T
i
2(n2)) = Gq1

max(n2)−Gi
q1
(T i

2(n2)), ∀i,
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Fig. 1. Example of block (i.e. SB1, SB2 and SB3 sub-block) operation of RQoS-UCB policy. At the end of block 1, RQoS-UCB policy computes index
based on the observations collected in SB2 block, finds a channel having highest the index among the set of channels K, and moves to channel (for example
K) with the highest index for block 2.

Algorithm 1 Single SU RQoS-UCB policy

Input: b = 1, n = 0, n2 = 0, T i
2 = 0, α, β, A(0), Ri

q1
(0) ∀

i ∈ K.

Output: A(n+ 1)
1: for n2 = b to K do

2: Initialize policy by sensing each channel for at least one

block (i.e. SB1, SB2 and SB3)

3: end for

4: while (1) do

5: Bi(n2, T
i
2(n2)) = S̄i(T i

2(n2)) − Qi(n2, T
i
2(n2)) +

Ai(n2, T
i
2(n2)), ∀i

6: A(n) = argmaxi B
i(n2, T

i(n2))
7: Sense i = A(n) and Observe Si(n2)
8: while Si(n2) ̸= ζi do

9: n = n+ 1, A(n) = i // Start SB1 sub-block

10: Sense channel i and Observe Si(n2)
11: end while

12: n = n+1, n2 = n2+1, T i
2(n2) = T i

2(n2)+1,A(n) = i;
// End of SB1, start SB2

13: Observe current state Si(n2) and update Ri
q1
(n2)

14: Update S̄i(T i
2(n2)), Qi(n2, T

i
2(n2)) and

Ai(n2, T
i
2(n2)) as of (7), (8) and (9), respectively

15: while Si(n2) ̸= ζi do

16: n = n + 1, n2 = n2 + 1, T i
2(n2) = T i

2(n2) + 1,

A(n) = i; // Start SB2 sub-block

17: Observe current state Si(n2) and update Ri
q1
(n2)

18: Update S̄i(T i
2(n2)), Qi(n2, T

i
2(n2)) and

Ai(n2, T
i
2(n2)) as of (7), (8) and (9), respectively

19: end while

20: b = b+ 1, n = n+ 1 // Start of SB3 sub-block

21: end while

where Gi
q1
(T i

2(n2)) and Gq1
max(n2) denote the empirical mean

of quality observations Ri
q1

and the maximum expected quality

within the set of frequency bands respectively, defined as in

Table I. Finally, the bias term Ai(n2, T
i
2(n2)), is defined as

Ai(n2, T
i
2(n2)) =

√

α log(n2)

T i
2(n2)

, ∀i. (9)

Two coefficients come into play in (8) and (9), i.e. β
and α respectively, and are introduced to balance the trade-

off between exploration and exploitation. Parameter α in

(9) forces the exploration of the other bands to check their

availability while the new parameter β forces the algorithm to

give some weight to the quality in the index computation.

We first give an upper bound on the total expected number

of plays of suboptimal arms in Theorem 1 and then the regret

of RQoS-UCB policy in Theorem 2.

Condition 1. All arms are finite-state, irreducible, aperiodic

restless Markov chains whose transition probability matrices

have irreducible multiplicative symmetrization, and the state

of non-played arms evolve. Let, Gi
q ≥ 1

π̂max+πi
q

and ∀β ≥
84S2

maxr
2
maxG

2
maxπ̂

2
max/

(

γmin∆µR
i Mmin

)

.

Theorem 1. Assume all arms follow condition 1. We can upper

bound the total expected number of block spent in suboptimal

arms as:

E[F i(b(n))|b(n) = b] ≤ 4α log n

(∆µR
i )

2
+
|S1|+ |Si|

πmin

∞
∑

t=1

t−2

and the time spent in suboptimal arm:
∑

i∈K

(µR
1 − µR

i )E[T
i(n)] ≤ Z1 log n+ Z2

where,

Z1 =

K
∑

i=2

(

1

πi
min

+Ωi
max + 1

)

4α

∆µR
i

Z2 =
K
∑

i=2

(

1

πi
min

+Ωi
max + 1

)

∆µR
i

[

|S1|+ |Si|
πmin

∞
∑

t=1

t−2

]

Proof: The proof is given in Appendix A.

Theorem 2. Assume all arms follow condition 1, the regret

of RQoS-UCB can be bounded by

ΦR(n) ≤ Z3 log n+ Z4, (10)

Z3 = Z1 + Z5 and Z4 = Z2 + Z6 + Z7

Z5 =
K
∑

i=2

4α
(

∆µR
i

)2

[

µR
i

(

1 + Ωi
max

)

+ µR
1 Ω

1
max

]

Z6 =

K
∑

i=2

[

|S1|+ |Si|
πmin

∞
∑

t=1

t−2

]

[

µR
i

(

1 + Ωi
max

)

+ µR
1 Ω

1
max

]

Z7 = µR
1

(

1

Πmin
+ max

i∈{1,...,K}
Ωi

max + 1

)
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K and U : Number of arms (channels) and users respectively

P i and Si: transition matrix and state space of the Markov chain of channel i
{1, · · · , U} and {U + 1, · · · ,K}: denotes set of optimal and suboptimal channels

Si,j(n): observed state of channel i at time n for SU j

r
i,j
q (n): reward achieved in state q ∈ Si from a band i by SU j at time n

R
i,j
q (n): Instantaneous observed quality of band i by SU j at time n

T i(n) =
∑U

j=1
T i,j(n): total number of times band i has been sensed up to time n

G
i,j
q (T i,j(n)): the empirical mean of quality observations R

i,j
q by SU j

G
q,j
max(n): maximum expected quality within the set by SU j

M i,j(n, T i,j(n)): G
q1,j
max(n)−G

i,j
q1 (T

i,j(n))
A(n, j) channel index which has to be sensed in the next time slot by SU j

Bi,j(n, T i,j(n)): policy index for the set of bands K at SU j
α and β: exploration coefficients with respect to availability and quality, respectively

ζi,j : state that determines regenerative cycles for band i by SU j
n2: total number of time slots spend in SB2 block up to block b.

T
i,j
2

(n2): total number of time band i is sensed by SU j during SB2 block up to n2 time.
W : Frame size for multi-user distributed RQoS-UCB policy

C
j
o(i, n): indicator of collision at n−th slot at channel i for SU j

Rank(j): Rank(j)−th highest entry in Bi,j(n, T i(n)),∀i ∈ K for SU j

πi
q : stationary distribution for state q of the Markov chain associated with i

µR
i : global mean reward

∆µR
i,j : µR

j − µR
i

G
j
max: maxq∈Si G

q,j
max

πi
min

and πmin: minq∈Si πi
q and mini∈K πi

min
respectively

π̂i
q , π̂max and rmax: max

{

πi
q , 1− πi

q

}

, maxq∈Si,i∈K
π̂i
q and maxq∈Si,i∈K

riq respectively

Smax: maxi∈K |Si|, where
∣

∣Si
∣

∣ stands for the cardinality of the state space of arm i

M
j
min

and M
j
max: mini∈K M i,j

(

n, T i,j(n)
)

and maxi∈K M i,j
(

n, T i,j(n)
)

respectively

γi, γmin and γmax: eigenvalue gap of the i−th channel, mini∈K γi and maxi∈K γi, respectively

Ωi
k,l

: mean hitting time of state l starting from an initial state k for the ith arm.

Ωi
max and Ωmax: maxk,l∈Si,k ̸=l Ω

i
k,l

and maxi∈{1,··· ,K} Ωi
max respectively

b(n) and f(n): total number of completed blocks and frame up to time n

nb time at the end of the last completed block b(n)
fw(n) and Tw(n): number of frame and time where any one of the U optimal channel’s estimated ranks is wrong

F i,j(b(n)): total number of block in which arm i is played by SU j up to block b(n)
E(Co(n)): expected number of collisions in U optimal channels

Υ: refers to the time required to reach the absorbing state from any initial state

S
i,j
1

(k): vector of observed states from SB1 of k−th block in which band i is sensed by SU j

S
i,j
2

(k): vector of observed states from SB2 of k−th block in which band i is sensed by SU j

Si,j(k): vector of observed states from k−th block Si(j) =
[

Si
1
(j), Si

2
(j), ζi

]

X̄(j): j-th combined block in which the optimal band is sensed, i.e. X̄(j) =
[

X̄1(j), X̄2(j), ζi
]

b̄i,j : total number of joined blocks up to current block b for optimal band i for SU j

TABLE I
NOTATION FOR ALGORITHMS 1 AND 2, AND REGRET ANALYSIS

Proof: Proof of Theorem 2 is given in Appendix B.

IV. DISTRIBUTED MULTI-USER LEARNING AND ACCESS

POLICY

In this part, we extend the previous approach to the multi-

users case and present the multi-user version of RQoS-UCB,

sometimes referred as distributed RQoS-UCB policy. If each

SU applies naively the single user RQoS-UCB presented in

Algorithm 1, then the number of collisions will likely increase

since all SUs go for the best channel. Hence, we introduce

the so-called channel access rank [16]. Let assume that each

SU j keeps a decreasing ordering set Bi,j∀i ∈ K indexes.

For instance, a user having a rank equal to 3, goes to the

channel having the third entry in the ordering set of its index.

Moreover, suboptimal channels are expected to be played as

less as possible, in order not to increase the regret of the

system.

Fig. 2 illustrates the functioning of the distributed RQoS-

UCB policy for 2 SUs. Let us consider a slotted system with

a frame size W , where each SU can be synchronized for their

index calculation. Each SU computes its own Bi,j index at

the end of W if possible, i.e. the sub block SB3 has been

encountered for user j in channel i when the frame ends. If

not, the computation is delayed to the next frame and user j
continues to play the same channel. If two or more users go to

the same channel, they collide and then they draw a random

number from the channels’ set K as their new rank. Letting a

player randomizes among its U optimal ranked arms can help

alleviate this problem, and focuses to eventually orthogonalize

the U players in their choice of arms.

This random rank is the same idea that has been used in

Anandkumar et al. [16]. The difference in this paper is that,

in Anandkumar et al. [16] the randomization is performed at

each time step a collision occurs under an iid reward model,

whereas in our case the randomization is performed at the

end of a completed frame of length W and is therefore less

frequent as block lengths are random. The reason for this is

because with the Markovian reward model, index updates can
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Fig. 2. Running cycle for 2 different SUs using the distributed RQoS-UCB policy. Actions of user 1 and 2 are listed on top and bottom, respectively

only be performed after finishing a regenerative cycle, and

switching a channel before a completion of regenerative block

will waste the state observations made within that incomplete

block. Algorithm 2 summarizes the steps followed by each

user. Note that policy operation in each block (containing SB1,

SB2 and SB3) follows the same steps as the single user policy

detailed in Algorithm 1, but not reported here for the sake of

simplicity.

Algorithm 2 Multi-User Distributed RQoS-UCB policy

Input: U : Number of users, K: Number of channels,

Bi,j(n, T i(n)): single-user policy index for each SU j ∈
U and channel i ∈ K,

Cj
o(i, n): collision indicator in channel i for SU j,

Rank(j): the Rank(j)−th highest entry in

Bi,j(n, T i(n)), ∀i ∈ K for SU j
Output: A(n, j)

1: if SB3 sub-block observed by SU j in last frame then

2: Calculate RQoS-UCB policy index Bi,j(n, T i(n)) as in

Algorithm 1

3: if Cj
o(A(n− 1, j), n− 1) = 1 then

4: Draw a new Rank(j) randomly from the set

{1, · · · , U} for SU j
5: else

6: Maintain the same Rank(j) for SU j
7: end if

8: A(n, j): channel having Rank(j)−th highest entry in

Bi,j(n, T i(n))
9: Sense A(n, j) channel

10: if collision then

11: Cj
o(A(n, j), n)← 1,

12: else

13: Cj
o(A(n, j), n)← 0

14: end if

15: else

16: A(n, j) = A(n− 1, j)
17: Follow on SB1 and SB2 block same as Algorithm 1

18: end if

We now present a logarithmic upper bound on the number

of time one of the suboptimal channel i ∈ {U +1, · · · ,K} is

sensed by one of the U SUs employing the same distributed

RQoS-UCB policy3.

Theorem 3 (Time spent in suboptimal channels under multi-

-user distributed RQoS-UCB policy). Assume all arms follow

condition 1. Under the distributed RQoS-UCB scheme, total

time spent by any SU j ∈ {1, · · · , U} in any suboptimal

channel i ∈ {U + 1, · · · ,K} is given by:

E[T i,j(n)] ≤
U
∑

j=1

(

1

πi
min

+Ωi
max +W

)

E
[

F i,j(f(n))
]

≤
U
∑

j=1

(

1

πi
min

+Ωi
max +W

)

[

4α log n

(∆µR
i,j)

2

+

[

|Sj |+ |Si|
πmin

∞
∑

t=1

t−2

] ]

(11)

Proof: Proof of Theorem 3 is given in Appendix C.

Let now focus on the analysis of the number of collisions

Co(n) in the U optimal channels up to time n. First, we

state a bound on the expected number of collisions in the

ideal scenario where each SU has perfect knowledge of the

mean reward µR
i . In this case, SUs try to reach an orthogonal

configuration by uniformly randomizing over the U optimal

channels. We use the following Lemma from [16] and [26] to

bound the number of collisions arising due to the distributed

scenario:

Lemma 1 (Number of collisions under perfect knowledge of

µR
i , [16], [26]). The expected number of collisions under the

random allocation access scheme in Algorithm 2, assuming

that each SU has perfect knowledge of the mean reward µR
i ,

is given by

E[Co(n)|µR
i ] ≤ UE[Υ] ≤ U

[(

2U − 1

U

)

−1
]

.

3Note that the upper bound on E[T i,j(n)] is still valid even if other SUs
use a different policy than distributed RQoS-UCB. However on the contrary,
we need to ensure that every SU must implement the same random access
mechanism in order to analyze the expected number of collisions
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The above Lemma 1 states that there is a finite number of

collisions, bounded by UE[Υ] under the perfect knowledge

of µR
i . However as stated before, there are no collisions in a

case where all SUs have the perfect knowledge of µR
i in the

presence of pre-allocated ranks. Thus, UE[Υ] gives a bound

on the additional number of collisions due to absence of pre-

allocated ranks or the lack of direct communication among

the SUs to negotiate their rank. To analyze the number of

collisions under multi-user distributed RQoS-UCB learning

of the unknown µR
i , we show that all SUs are able to

learn the correct order of the different channels with only

logarithmic regret, and then we show that only an additional

finite number of collisions occurs before reaching collision-

free configuration.

Let define Tw(n) and fw(n) as the number of time and

frames where any one of the U optimal channel’s estimated

ranks is wrong under the distributed RQoS-UCB policy.

Lemma 2 (Wrong order of distributed RQoS-UCB index

statistics without perfect knowledge of µR
i ). Under the dis-

tributed RQoS-UCB scheme in Algorithm 2, the total expected

number of frames and time slots for which the estimated

Bi,j(n, T i,j(n)) indices of distributed RQoS-UCB policy is

not in a same order as the mean reward µR
i , is:

E[Tw(n)] ≤ U
U
∑

a=1

K
∑

b=1

(

1

πb
min

+Ωb
max +W

)

[

4α log n

(∆µR
a,b)

2

+
|Sa|+ |Sb|

πmin

∞
∑

t=1

t−2

]

(12)

Proof: Proof of Lemma 2 is achieved by following same

argument and steps as of [16].

With the help of Theorem 3 and Theorem 3 from [16], the

number of time slots spent in the suboptimal channels is also

logarithmic, we proceed to prove one of the main results of this

paper that the sum regret under multi-user distributed RQoS-

UCB policy is logarithmic for restless Markovian reward.

Theorem 4 (Regret analysis of multi-user distributed

RQoS-UCB policy). Assume all arms follow condition 1.

Then, the regret of distributed RQoS-UCB policy can be

bounded by O(log n)

ΦM (n) ≤ X3 log n+X4 (13)

where X3 and X4 are as stated in Appendix D.

Proof: Proof of Theorem 4 is given in Appendix D.

We can note that the presented upper bound does not depend

on the regenerative state ζ. Thus, with minimal information

about the bands, an SU can still have a logarithmic regret by

selecting appropriate exploration coefficients.

V. NUMERICAL ANALYSIS

The performance of distributed RQoS-UCB policy is in-

vestigated on a set of 10 bands, and with different number of

SUs U ∈ {1, · · · , 10}. Simulation is performed over 103 runs,

each with a duration about 1000 seconds. QPSK signaling

are assumed to be used for PU signals same as [21]. The

threshold υ is set to have a high detection probability, i.e.

Pd (υ, Ts) = 0.95 for each channel i. Note that the learning

phase represents a very low computational complexity and it

may be neglected compared to sensing [19]. Learning can be

done in parallel with the transmission, and so uses no time that

could prevent from transmitting frames, and thus be considered

as having no impact on bandwidth usage. The exploration

coefficients of RQoS-UCB policy are α = 0.25, β = 0.32,

like in [18], and will be used throughout the numerical analysis

unless otherwise mentioned.

Table II summarizes the Markov chain parameters modeling

the primary network, such as the transition probabilities P i,

selected arbitrarily, for each channel on the first and second

rows, the vacancy probability πi
q1

calculated from P i, the em-

pirical average of the band quality Gi
q1

calculated as explained

in Section II and estimated at Rx and feedback to Tx, on the

fourth row and the global mean reward, µR
i calculated with (1)

taking into account availability and quality on the fifth row.

A. Single user case

In this Section, only one cognitive transceiver pair is con-

sidered trying to exploit the frequency bands of a primary net-

work. Theorems 1 and 2 state that the new metric introduced

to rate the quality in the learning phase does not prevent from

achieving a logarithmic order regret in the restless case, as it

has been also observed but not proved in the rested case [18].

Due to the application to OSA context, regret analysis is not

sufficient to characterize the performance of a learning policy

and its ability to provide high reliable data rate is of great

interest for telecommunication purposes. Hence, RQoS-UCB

policy is compared to several other learning policies found

in literature, such as RCA [11], RUCB [10] and Q-learning

[27] with the optimal exploration parameters suggested by the

authors. The classical RCA and RUCB policies are modified

such as the unique reward takes into account the combination

of availability and quality, i.e. si,jq = Ri,j
q ri,jq . Here, ri,jq is

the fixed reward selected for channel i and user j in state q,

whereas Ri,j
q is the sample drawn from the fixed iid reward

distribution modeling the quality of channel i in state q for user

j which is not considered in previous works. The algorithms

are also compared with two other policies used as baseline for

comparison, i.e. best channel selection and best opportunistic

selection policies. The best channel selection policy always

selects the optimal channel, i.e. channel with the highest mean

reward, and if it is occupied does not transmit, whereas the

best opportunistic selection policy is a ”god driven” policy

which knows a priori all holes in the spectrum as well as the

quality associated to. Then at a given time, it exploits the best

available channel among all channels to transmit.

Fig. 3(a) presents the percentage of transmission opportuni-

ties defined as the ratio between the number of times a policy

selects an available channel and the total number of trials. Best

opportunistic transmission policy is an upper bound since it

possesses a prior information about the spectrum occupancy.

The proposed RQoS-UCB but also RCA [11], RUCB [10]

and Q-learning policies are able to find an optimal channel

in the long run, and match the performance of best channel

selection policy which always selects a channel having the



2332-7731 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2017.2675901, IEEE

Transactions on Cognitive Communications and Networking

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 9

channel (i) 1 2 3 4 5 6 7 8 9 10

piq0q1 0.3 0.65 0.75 0.6 0.8 0.4 0.2 0.65 0.45 0.35

piq1q0 0.7 0.35 0.25 0.4 0.2 0.6 0.8 0.35 0.55 0.65

πi
q1

0.3 0.65 0.75 0.6 0.8 0.4 0.2 0.65 0.45 0.35

Gi
q1

0.67 0.64 0.79 0.77 0.70 0.80 0.67 0.63 0.64 0.79

µR
i 0.31 0.48 0.60 0.47 0.58 0.33 0.26 0.46 0.39 0.29

TABLE II
STATE TRANSITION PROBABILITIES, MEAN AVAILABILITY, EMPIRICAL MEAN QUALITY AND GLOBAL MEAN REWARD.
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Fig. 3. Percentage of transmission opportunities exploited, achievable
throughput and SER for single SUs w.r.t. the number of frames.

highest mean reward µR
i . However, the proposed RQoS-UCB

policy greatly outperforms other approaches in term of conver-

gence and achieves the higher number of opportunities. This

result highlights the benefits of using separate optimization of

both availability and quality as we propose with QoS-UCB

compared to use a single reward in the UCB policy.

The achievable throughput is investigated in Fig. 3(b) and

is computed with (5). The best opportunistic selection policy

logically upper bounds the performance due to the higher

number of transmission opportunities it exploits as it can be

seen in Fig. 3(a). RQoS-UCB, RCA and Q-learning converge

toward the best channel selection because of their ability to

learn the band with the best weighted combination of quality

and availability but with different convergence speed. RQoS-

UCB achieves 87% of the best channel selection policy rate

in 1000 frames while more than 4000 frames is needed to

achieve less than 87% of this value for RCA and Q-learning

policies. Moreover, Fig. 3(b) also depicts that RQoS-UCB

outperforms RUCB, in [10], in convergence speed which is

relatively far from the best channel and the best opportunistic

transmission policies. This behavior is probably due to the

exploitation-exploration epoch structure which has an expo-

nentially growing length. Hence, if the channel selected is not

the optimal one, the policy in [10] has difficulties to change

in a real communication scenario. On the other hand, the

exploration and exploitation are done in the regenerative cycle

of a near constant length in our policy, which makes it more

suitable to try other channels and hence converge faster to the

optimal one. These results also demonstrate the efficiency of

controlling the learning phase with two rewards instead of one

when channels are characterized by not only their availability

but also by their quality. As expected, a simple round-robin

technique cannot compete in this scenario.

In Fig. 3(c), the average symbol error rate (SER) is in-

vestigated. The SER of RQoS-UCB, RCA and Q-learning

converge toward the SER obtained with the best channel

selection policy, i.e. 5 · 10−3 which is the SER of QPSK

signaling under 9 dB of SNR, i.e. SNR of band 3. Again,

the slower convergence characteristic of Q-learning and RCA,

w.r.t. RQoS-UCB, can be emphasized in this figure. This figure

also reveals the limitation of the RUCB policy, which likely

does not select the band with the best SNR as often as the

competing policies, i.e. RQoS-UCB, RCA and Q-learning. We

can even notice that the SER of the best opportunistic trans-

mission policy is higher than the RQoS-UCB policy, because

it selects a sub-optimal bands to continue transmission when

optimal band is occupied. Indeed, the best opportunistic policy

is an ideal scheme which exploits at each time the best (in
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Learning Algorithms Running time Space Selection Theoretical Convergence
complexity complexity Criteria guarantee speed

Q-learning [27] O(N(6K + 3)) O(N(3K + 3)) availability and quality Rested and Restless Medium

RCA [11] O(N (3K + 3)) O((4K + 5)) availability only Rested and Restless Fast

RQoS-UCB O(N (8K + 6)) O((4K + 7)) availability and quality Rested and Restless Fast

TABLE III
ALGORITHMS COMPLEXITY

term of quality) available channel, but not necessarily the best

one globally. Hence, rather than stopping transmission because

the best channel in term of quality is occupied, it goes to a

suboptimal (in quality) channel but available. Hence, during

the transmission the secondary link experiences a degraded

SINR which increases the SER compared to the case where

it would have used the optimal channel, however it allows to

transmit anyway. In (5), the achievable throughput depends

not only on SINR but also on the transmission opportunities

exploited. In other words, transmitting on a link with a better

SINR leads to an increase of throughput but attenuated by the

log function. On the other hand, if the link is of bad quality,

this results in a decrease of throughput but marginally due to

the log function which can be compensated by using more

often this link (if it is more available than another one with

a better SINR). This what explains that the best opportunistic

policy may have a larger SER than the best channel selection

policy but a larger throughput than the latter, Fig. 3(b).

Complexity Analysis

To conclude this first part, a comparative study, in terms of

complexity, optimality and convergence speed, between the

three learning algorithms, i.e. RQoS-UCB, Q-learning and

RCA, has been summarized in Table III. The running time

complexity is the number of operation performed and space

complexity is related to the storage space (memory) needed

to run [28]. For the running time complexity, RCA, RQoS-

UCB and Q-learning policies behave in O(NK) for large N
and K, where N and K are the number of time slots and

channels. Time complexity of these algorithms are comparable

however, RQoS-UCB performs better than the others as seen in

numerical analysis. Time complexity of reinforcement learning

is negligible and it is approximately 1% of the sensing time

complexity of energy detector that is also required for OSA

as stated in [19]. On the other hand, it is clear that space

complexity (expected memory requirement) is the drawback

of Q-learning that needs to store all past observations contrary

to RCA and RQoS-UCB policies whose complexity is about

O(K).

B. Multiple users case

In this part, RQoS-UCB is implemented as presented in

Algorithm 2 and compared to distributed RCA, distributed

RUCB, and round robin-perfect order (R2PO) policy. Only the

single user version of RCA can be found in literature, how-

ever multi-user version can be implemented easily following

the same structure as distributed RQoS-UCB leading to the

distributed RCA in the following. Moreover, the round robin-

perfect order policy plays each channel consecutively without

suffering from collisions, and best channel selection and best

opportunistic selection are defined in a same manner as for

the single-user policy.

Fig. 4 presents the average percentage of transmission op-

portunities exploited by the RQoS-UCB, RCA, RUCB, R2PO

and the best channel selection policies w.r.t. the number of

frames for 2 SUs, Fig. 4(a), and w.r.t. the number of users

in Fig. 4(b). The best opportunistic selection policy logically

upper bounds the performance. From Fig. 4(a), one can remark

that distributed RQoS-UCB policy achieves better performance

compared to RCA converging towards the best channel se-

lection policy due to separation of two optimization criteria,

i.e. availability and quality, and both significantly outperform

R2PO which finds less transmission opportunities even if all

SUs have a perfect knowledge about each others’ actions.

This is also confirmed by Fig. 4(b) where the percentage of

transmission opportunities is investigated w.r.t. the number of

SUs. The distributed RQoS-UCB outperforms RCA in general,

and also percentage of opportunities decreases for both when

the number of SUs in the network increases and achieves

similar performance than R2PO when 9 secondary transceivers

are considered. Note that R2PO is not an interesting solution

for CR systems, because requiring a predefined agreement

or information exchange among SUs. Hence, the distributed

implementation of RQoS-UCB is able to find sufficiently

high number of transmission opportunities without additional

signaling overhead.

The average achievable throughput is investigated in Fig.

5 w.r.t. the number of frames for 2 users in the network,

in Fig. 5(a), and w.r.t. the number of SUs in Fig. 5(b).

Distributed RQoS-UCB converges rapidly towards the best

channel selection policy while distributed RCA achieves simi-

lar performance after a larger learning time. Our policy, RQoS-

UCB, outperforms RUCB for all values of the number of users

and converges to the same performance than RCA when the

number of users is larger than or equal to 6, Fig. 5(b). Note

that these particular values are not absolute but depend on the

scenario considered and the total number of primary users’

channels. Hence, our proposal is not only beneficial for up to

6 SUs but can be greater if the number of channels is higher.

Average SER obtained with several policies is investigated

in Fig. 6, w.r.t. the number of frames and 2 SUs in Fig.

6(a), and w.r.t. the number of SUs in 6(b). The SER of

distributed RQoS-UCB converges towards the SER obtained

with the best channel selection policy. Like in Figs. 3, 4 and

5, the distributed RUCB [10] and RCA [11] converge to an

optimal band but with a slower convergence speed due to the

single reward mixing the availability and quality, and hence

the average SER achieved with RUCB and RCA is poorer

than the one with RQoS-UCB. We remark in Fig. 6(b) that



2332-7731 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2017.2675901, IEEE

Transactions on Cognitive Communications and Networking

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 11

Number of Frames
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pe
rc

en
ta

ge
 o

f t
ra

ns
m

iss
ion

 o
pp

or
tu

nit
ies

0

10

20

30

40

50

60

70

80

90

100
Transmission opportunities exploited (U =2 users)

Distributed RCA [11]
Round robin - perfect order
Distributed RUCB [10]
Distributed RQoS-UCB
Best channel selection
Best oppo. selection

(a) Opportunities w.r.t. the number of frames

No. of Users
1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 o

f t
ra

ns
m

iss
ion

 o
pp

or
tu

nit
ies

40

50

60

70

80

90

100
Percentage of transmission opportunities exploited

Distributed RCA [11]
Round robin - perfect order
Distributed RUCB [10]
Distributed RQoS-UCB
Best channel selection
Best oppo. selection
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Fig. 4. Opportunities transmission percentage for 2 SUs w.r.t. the number of
frames a) and w.r.t. the number of SUs operating in the primary network b).

RQoS-UCB matches the best channel selection policy which

lower bounds the SER of all other strategies when the number

of users is varying. The SER of RQoS-UCB increases as the

number of users increases, since the number of channels with

worse quality increases but is still lower than the SER of RCA

and RUCB. At a point, i.e. more than 7 SUs in network, the

difference between all learning approaches and round robin-

perfect order becomes negligible as they finish to select an

important proportion of the same channels. Furthermore, if K
would be much larger, the number of users at which our policy

would offer better performance than round-robin would also

be larger.

Fairness in Channel Access

One of the important features of the proposed restless

RQoS-UCB policy is that it does not favor one specific user

over another in order to access optimal arms. In the proposed

distributed RQoS-UCB approach, each user has an equal

chance to sense and transmit in any one of the U−optimal

channels. Fig. 7(a) illustrates the percentage of opportunities

exploited and Fig. 7(b) the optimal arm selection percentage

for 4 SUs when K = 10 channels w.r.t. the number of frames.

As it can be observed, each user exploits approximately the

same amount of transmission opportunities and select the

optimal arm more or less the same proportion of time. This

demonstrate that the proposed distributed RQoS-UCB scheme

is indeed fair in user allocation.
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Fig. 5. Average achievable throughput for 2 SUs w.r.t. the number of frames
a) and w.r.t. the number of SUs operating in the primary network b).

VI. CONCLUSION

This paper has dealt with OSA problem in multi-user

infrastructure-less cognitive wireless network. A new machine

learning algorithm, called distributed RQoS-UCB, has been

proposed to address the multi-user OSA problem modeled

as a restless Markov MAB formulation. The proposed policy

takes into account a quality information metric instead of only

availability for most of algorithms in literature. Moreover, we

have proved that our proposed policies achieve a logarithmic

order regret uniformly over time for the restless Markov

MAB. In cognitive radio applications, the ability to learn on a

different criteria than the traditional free or occupied status of

a channel is of particular interest in order to improve the QoS

of SUs transmissions. Using the soft-output of ED as a quality

metric for the sensed band, we have shown that the proposed

policies are able to achieve a larger throughput than the state-

of-the-art algorithms which suffer from a larger convergence

time compared to the proposed policies. The idea proposed in

this paper can be used to learn on many other criteria such as

energy efficiency or actual SINR on the secondary link and

will be investigated in further works. Moreover, our model

ignores dynamic traffic at the secondary nodes and extension

to a queueing-theoretic formulation is left for future work.
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Fig. 6. Average SER for 2 SUs w.r.t. the number of frames a) and w.r.t. the
number of SUs operating in the primary network b).

APPENDIX A

PROOF OF THEOREM 1

In order to bound the regret, we need to bound the expected

number of blocks, E[F i(b)], for any suboptimal band i > 1.

Let l being a positive integer and A(b) the action performed

by policy A in block b. n2(b) represents total time spent in

SB2 block up to block b. Following the steps as in [4], the

number of blocks a band i has been visited up to block b can

be expressed as

F i(b) = 1 +

b
∑

m=K+1

1 ((A(m) = i)) (14)

F i(b) = l +
b
∑

m=K+1

1
((

A(m) = i, F i(m− 1) ≥ l
))

(15)

= l +
b
∑

m=K+1

1

(

B1
(

T 1
2 (n2(m)), n2(m)

)

≤ Bi
(

T 1
2 (n2(m)), n2(m)

)

, F i(m) ≥ l
)

(16)

≤ l +

b
∑

m=K+1

1
(

∃ωi : l ≤ ωi ≤ n2(m), Bi(ωi, n2(m)) > µR
1

)

+ 1
((

∃ω1 : 1 ≤ ω1 ≤ n2(m), B1(ω1, n2(m)) ≤ µR
1

))

(17)

where (15) comes from the fact that each band has been sensed

at least l blocks up to block b. (16) comes from the reason why
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Fig. 7. Fairness analysis for 4 SUs implementing RQoS-UCB policy w.r.t.
the number of frames.

suboptimal band i is chosen up to n2(m−1) time at the end of

block m−1, i.e. the index of an optimal band at block m−1,

i.e. B1
(

T 1
2 (n2(m− 1)), n2(m− 1)

)

, is below the index of

the suboptimal band i. Moreover (16) is upper bounded by

(17) because these two conditions are not exclusive. Taking

the expectation on both sides and using union bound we get:

E[F i(b)] ≤ l +

b
∑

m=K+1

n2(m−1)
∑

ωi=n2(l)

P(Bi(ωi, n2(m)) > µR
1 )

+

b
∑

m=K+1

n2(m−1)
∑

ω1=1

P(B1(ω1, n2(m)) ≤ µR
1 )

≤ l +

n2(b)
∑

t=1

t−1
∑

ωi=l

P(Bi(ωi, t) > µR
1 )

+

n2(b)
∑

t=1

t−1
∑

ω1=1

P(B1(ω1, t) ≤ µR
1 ) (18)

The summation over t starts from 1 instead of K +1 because

it does not change the validity of the upper bound. Note that

channel 1 is optimal in terms of mean reward, µR
1 , i.e. both

in vacancy and quality. G1 is hence the empirical mean of the

quality reward of this channel, it does not mean necessarily

that G1 = Gq1
max. Moreover, let’s remind that ∆µR

i = µR
1 −µR

i .

let’s choose l =
⌈

4α lnn
(∆µR

i )2

⌉

, take expectation on both sides and

relaxing the outer sum in (18) from n2(b) to ∞, and proceed
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from (18):

E[F i(b)] ≤ l +

∞
∑

t=1

t−1
∑

ωi=l

P(Bi(ωi, t) > µR
1 )

+

∞
∑

t=1

t−1
∑

ω1=1

P(B1(ω1, t) ≤ µR
1 ) (19)

Let’s start with the first part of (19), i.e. P(Bi(ωi, t) > µR
1 ).

By writing µR
1 = µR

i + ∆µR
i and replacing the Bi(ωi, t) by

its expression, we get

P(Bi(ωi, t) > µR
1 )

= P

(

S̄i(ωi)− βM i(ωi) ln(t)

ωi
+

√

α ln(t)

ωi
> µR

i +∆µR
i

)

(20)

For sake of notational simplicity, let’s note Di(ωi, t) =
βMi(ωi) ln(t)

ωi . Moreover, using l =
⌈

4α lnn
(∆µR

i )2

⌉

and ωi ≥ l, the

third term in (20) can be upper-bounded by:
√

α ln t

ωi
≤
√

α ln t

l
≤
√

α ln t(∆µR
i )

2

4α ln t
=

∆µR
i

2

Substituting this last bound into (20) and because all terms are

positive we get

P(Bi(ωi, t) > µR
1 ) ≤ P

(

S̄i(ωi)− µR
i >

∆µR
i

2
+Di(ωi, t)

)

(21)

Let, Oi
q(t) being the number of times reward riq associated

with state q of arm i has been observed up to time t, hence

S̄i(ωi) = 1
ωi

∑

q∈Si riqO
i
q(ω

i). Following from (21):

P

(

S̄i(ωi)− µR
i ≥

∆µR
i

2
+Di(ωi, t)

)

= P

(

∑

q∈Si

(

−riqOi
q(ω

i) + ωiGi
qr

i
qπ

i
q

)

≤ −ωi

(

∆µR
i

2
+Di(ωi, t)

)

)

(22)

Following same steps as of [4], (22) is upper bounded as:

≤
∑

q∈Si

Nhi exp











−
ωi

(

∆µR
i

2 +Di(ωi,t)

riq|Si|Gi
qπ̂

i
q

)2

γi

28











(23)

where
∣

∣Si
∣

∣ is the arm i state space cardinality, π̂i
q =

max
{

πi
q, 1− πi

q

}

and π̂max = maxi∈K π̂i
q . Moreover, (23)

follows from Theorem 3.3 from [29] by considering n = ωi,

f(Xi
t) =

1(Si
t=q)−Gi

qπ
i
q

Gi
qπ̂

i
q

. The Theorem 3.3 from [29] con-

ditions are fulfilled if Gi
q ≥ 1

π̂max+πi
q

. Consider an initial

distribution h
i as defined in [4] and eigenvalue gap γi for

the ith arm, then

Nhi =

∥

∥

∥

∥

∥

(

hi
q

πi
q

, q ∈ Si

)∥

∥

∥

∥

∥

2

≤
∑

q∈Si

∥

∥

∥

∥

∥

hi
q

πi
q

∥

∥

∥

∥

∥

2

≤ 1

πmin
, (24)

In order to lighten the notation, let us redefine the following

variables. Gmax ≡ Gq1
max but the superscript is dropped and

rmax = maxq∈Si,i∈K riq . Moreover, let’s define Mmin =
mini∈K M i

(

ωi
)

, ωmax = maxi∈K ωi and ωmin = 1. From

(23),

≤ |Si|
πmin

exp











−
ωi

(

∆µR
i

2 +Di(ωi,t)

|Si|riqGi
qπ̂

i
q

)2

γi

28











≤
∣

∣Si
∣

∣

πmin
t
− ∆µR

i βMminγmin

28S2
maxr2maxG2

maxπ̂2
max (25)

where (25) is achieved by noting that

exp

(

− (∆µR
i )

2
γminωmin

112S2
maxr

2
maxG

2
maxπ̂

2
max

)

≥ 0. Inserting (25) into

first part of (19), we get

∞
∑

t=1

t−1
∑

ωi=l

P(Bi(ωi, t) ≥ µR
1 ) ≤

|Si|
πmin

∞
∑

t=1

t−2 (26)

where, β ≥ 84S2
maxr

2
maxG

2
maxπ̂

2
max/

(

γmin∆µR
i Mmin

)

is

considered to obtain (26).

Similarly, we prove the second part of (19):

P(B1(ω1, t) ≤ µR
1 )

= P

(

S̄1(ω1)− βM1(ω1) ln t

ω1
+

√

α ln t

ω1
≤ µR

1

)

(27)

Let, C(ω1, t) =
√

α ln t
ω1 and D1(ω1, t) = βM1(ω1) ln(t)

ω1 for

notation simplification.

P(B1(ω1, t) ≤ µR
1 )

= P
(

S̄1(ω1)− µR
1 ≤ −(C(ω1, t)−D1(ω1, t))

)

(28)

Similarly as shown in (23), we obtain

P
(

S̄1(ω1)− µR
1 ≤ −(C(ω1, t)−D1(ω1, t))

)

= P

(

∑

q∈S1

(r1qO
1
q(ω

1)− ω1G1
qr

1
qπ

1
q )

≤ −ω1(C(ω1, t)−D1(ω1, t))

)

(29)

≤
∑

q1∈S1

Nh1 exp

(

−w1

(

C(ω1, t)−D1(ω1, t)
)2

γ1

28
(

|S1|G1
qr

1
q π̂

1
q

)2

)

(30)

where, (30) follows from Theorem 3.3 from [29] with

C(ω1, t) − D1(ω1, t) can be proved to be positive

from a certain time. Indeed, C(ω1, t) − D1(ω1, t) =
√

ln t
w1

(√
α− βM1

(

w1
)

√

ln t
w1

)

and ∃A ∈ N, ∃ϵ > 0 such

that ∀t > A,

√

ln t
w1 < ϵ. This can be justified by the fact

that ln t grows always slower than t and so w1 which can be

viewed as a fraction of t. Using inequalities in (24) and after
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replacing C
(

w1, t
)

and D1
(

w1, t
)

by their values and after

some calculus we get

P(B1(ω1, t) ≤ µR
1 ) ≤

∣

∣S1
∣

∣

πmin
t
−

γmin(α−2
√

αβM1(ω1)
√

ln t
w1 )

28(SmaxGmaxrmaxπ̂max)2

t
−

γmin(βM1(ω1))
2

ln t

28(SmaxGmaxrmaxπ̂max)2ω1 (31)

Moreover, ∃A ∈ N, ∃ϵ > 0, such that ∀t > A, ln t
ω1 <

√

ln t
ω1 <

ϵ < 1. We get

P(B1(ω1, t) ≤ µR
1 ) ≤

∣

∣S1
∣

∣

πmin
t
−

γmin(α−2
√

αβM1(ω1))
28(SmaxGmaxrmaxπ̂max)2

≤
∣

∣S1
∣

∣

πmin
t
− γmin(α−2

√
αβMmax)

28(SmaxGmaxrmaxπ̂max)2 (32)

where Mmax = maxi∈K M i
(

ωi
)

and where from (31) to (32)

the second term in t is upper bounded by 1. By choosing α

such that
γmin(α−2

√
αβMmax)

28(SmaxGmaxrmaxπ̂max)
2 ≥ 3 we obtain

P(B1(ω1, t) ≤ µR
1 ) ≤

∣

∣S1
∣

∣

πmin
t−3 (33)

Replacing (33) into second part of (19), we get

∞
∑

t=1

t−1
∑

ω1=1

P(B1
(

ω1, t
)

≤ µR
1 ) ≤

|S1|
πmin

∞
∑

t=1

t
∑

ω1=1

t−3

=
|S1|
πmin

∞
∑

t=1

t−2 (34)

Then the bound follows from combining (26) and (34):

E[F i(b(n))|b(n) = b] ≤ 4α lnn

(∆µR
i )

2
+
|S1|+ |Si|

πmin

∞
∑

t=1

t−2 (35)

The SB2 block begins with the state ζi and ends with

a return to the same state. The total number of plays of

sub-optimal arm i at the end of block b(n) is estimated by

considering the observations acquired in: i) the total number

of plays of sub-optimal arm i during SB2 sub-block (upper

bounded by 1
πi
min

), ii) the total number of plays in SB1 before

entering in SB2 (upper bounded by Ωi
max), and iii) one more

play during SB3. Thus, we have

E
[

T i(n)
]

≤
(

1

πi
min

+Ωi
max + 1

)

E
[

F i(b(n))
]

Thus,
∑

i∈K

(µR
1 − µR

i )E[T
i(n)] ≤ Z1 lnn+ Z2,

where,

Z1 =
∑

i:µR
i <µR

1

(

1

πi
min

+Ωi
max + 1

)

4α

∆µR
i

Z2 =
∑

i:µR
i <µR

1

(

1

πi
min

+Ωi
max + 1

)

∆µR
i

[

|S1|+ |Si|
πmin

∞
∑

t=1

t−2

]

APPENDIX B

PROOF OF THEOREM 2

Assume that the regenerative states are denoted by ζ =
[ζ1, · · · , ζK ]. The expectation w.r.t. the modified sample path

is defined as Eζ . Let nb be the time at the end of the last

completed block b(n) for all SUs.

ΦR(n) = nµR
1 − E

[

n
∑

t=1

GA(t)
qA(t)

(t)rA(t)
qA(t)

(t)

]

ΦR(n) = µR
1 Eζ [n

b]− Eζ





nb

∑

t=1

rA(t)
qA(t)

GA(t)
qA(t)





+ µR
1 Eζ [n− nb]− Eζ





n
∑

t=nb+1

rA(t)
qA(t)

GA(t)
qA(t)





=

{

µR
1 Eζ [n

b]−
K
∑

i=1

µR
i Eζ

[

T i(n)
]

}

+
K
∑

i=1

µR
i Eζ

[

T i(n)
]

− Eζ





nb

∑

t=1

rA(t)
qA(t)

GA(t)
qA(t)





+ µR
1 Eζ

[

n− nb
]

− Eζ





n
∑

t=nb+1

rA(t)
qA(t)

GA(t)
qA(t)



 (36)

First difference in (36) is bounded logarithmically with the

help of Theorem 1 as:

µR
1 Eζ [n

b]−
K
∑

i=1

µR
i Eζ

[

T i(n)
]

≤
K
∑

i=2

(

µR
1 − µR

i

)

Eζ

[

T i(n)
]

≤ Z1 lnn+ Z2 (37)

We have to bound only the two remaining differences in

(36). We can bound second difference in (36) by following

same steps as of Theorem 2 in [4], as:

K
∑

i=1

µR
i Eζ

[

T i(n)
]

− Eζ





nb

∑

t=1

rA(t)
qA(t)

GA(t)
qA(t)





≤
K
∑

i=2

µR
i (Ω

i
max + 1)Eζ

[

F i(b(n))
]

+ µR
1 Ω

1
max

K
∑

i=2

Eζ

[

F i(b(n))
]

(38)

by following same steps as of Theorem 2 in [11]. Finally, the

last part in (36) is bounded as:

µR
1 Eζ

[

n− nb
]

− Eζ





n
∑

t=nb+1

rA(t)
qA(t)

GA(t)
qA(t)





≤ µR
1

(

1

πmin
+ max

i∈{1,...,K}
Ωi

max + 1

)

. (39)
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From (37), (38), (39) and Theorem 1, the upper bound on the

regret of RQoS-UCB policy is:

ΦR(n) ≤ Z1 lnn+ Z2 +
K
∑

i=2

µR
i (Ω

i
max + 1)Eζ

[

F i(b(n))
]

+ µR
1 Ω

1
max

K
∑

i=2

Eζ [F
i(b(n))]

+ µR
1

(

1

πmin
+ max

i∈{1,...,K}
Ωi

max + 1

)

≤ Z3 lnn+ Z4

where Z1, Z2, Z3, Z4, Z5, Z6 and Z7 are as stated in Theorems

1 and 2 and obtained by identification with previous quantities

and the proof is complete.

APPENDIX C

PROOF OF THEOREM 3

The total number of frames f(n) up to time n for which

the distributed RQoS-UCB policy suggested suboptimal arms

i to sense is bounded in the same way as for the RQoS-UCB

policy in a single-user restless Markov MAB setting. For con-

venience, let T i(n) :=
∑U

j=1 T
i,j(n) and

∑K
i=1 T

i(n) = nU ,

since each SU selects at least one channel to sense in each

slot and there are U SUs. Let, ∀j, i : j ∈ {1, · · · , U} and

i ∈ {U +1, · · · ,K} denote the set of optimal and suboptimal

channel respectively. Following the same steps as in [14],

[16], the total expected number of blocks E
[

F i,j(f(n))
]

up to

frame f(n) for which SU j implementing distributed RQoS-

UCB policy selected suboptimal channels i can be bounded

as:

E
[

F i,j(f(n))
]

= P
[

Bj
(

f j(n), n
)

≤ Bi
(

f i(n), n
)]

≤
U
∑

j=1

P
[

Bj
(

f j(n), n
)

≤ Bi
(

f i(n), n
)]

For one user, Theorem 1 gives the expected number of blocks

used to sense a suboptimal band:

E
[

F i,1(b(n))
]

=

n
∑

t=1

1
(

B1
(

f1(t), t
)

≤ Bi
(

f i(t), t
))

≤ 4α lnn

(∆µR
i )

2
+

[

|S1|+ |Si|
πmin

∞
∑

t=1

t−2

]

Thus, we have for U optimal channels for SU j:

E
[

F i,j(f(n))
]

≤
U
∑

j=1

[

4α lnn

(∆µR
i,j)

2
+

[

|Sj |+ |Si|
πmin

∞
∑

t=1

t−2

]]

The total number of senses of the suboptimal channel i at

the end of the frame f(n) is estimated by considering the

observations acquired during i) the entire block duration (i.e.

SB1, SB2 and SB3), and ii) after the end of SB3 and before

finishing of current frame f(n) within the fixed time slot W .

Thus, we have

E
[

T i,j(n)
]

≤
U
∑

j=1

(

1

πi
min

+Ωi
max +W

)

[

4α lnn

(∆µR
i,j)

2
+

[

|Sj |+ |Si|
πmin

∞
∑

t=1

t−2

]]

APPENDIX D

PROOF OF THEOREM 4

Let {1, · · · , U} and {U + 1, · · · ,K} denote the set of

optimal and suboptimal channels, respectively, and nb is the

time at the end of the last completed block b(n) as detailed in

Fig. 1. Following the same spirit as in the proof of Theorem

2, we have

ΦM (n) =
U
∑

j=1

nµR
j −

U
∑

j=1

E

[

n
∑

t=1

GA(t),j
qA(t)

(t)rA(t),j
qA(t)

(t)

]

=







Eζ [n
b]

U
∑

j=1

µR
j −

U
∑

j=1

K
∑

i=1

µR
i Eζ

[

V i,j(n)
]







+

{

U
∑

j=1

K
∑

i=1

µR
i Eζ

[

V i,j(n)
]

−
U
∑

j=1

Eζ





nb

∑

t=1

rA(t),j
qA(t)

GA(t),j
qA(t)





}

+







Eζ [n− nb]
U
∑

j=1

µR
j −

U
∑

j=1

Eζ





n
∑

t=nb+1

rA(t),j
qA(t)

GA(t),j
qA(t)











(40)

where V i,j(n) is the total number of times where an SU j is

the only one to sense and access the channel i up to time n.

Working with the first part of (40) we have:






Eζ [n
b]

U
∑

j=1

µR
j −

U
∑

j=1

K
∑

i=1

µR
i Eζ

[

V i,j(n)
]







≤
U
∑

i=1

µR
i

(

Eζ [n
b]− Eζ

[

V i(n)
])

≤ µR
1

(

UEζ [n
b]−

U
∑

i=1

Eζ

[

V i(n)
]

)

(41)

= µR
1

(

UEζ [n
b] + Eζ [Co(n)]−

U
∑

i=1

Eζ

[

T i(n)
]

)

≤ µR
1

(

Eζ [Co(n)] +
K
∑

i=U+1

Eζ

[

T i(nb)
]

)

(42)

≤ µR
1

(

U(E[Υ(U,U)] + 1)E[Tw(n)] +
K
∑

i=U+1

Eζ

[

T i(n)
]

)

(43)

where in (41), we use the fact that Eζ

[

V i(n)
]

=
U
∑

j=1

Eζ

[

V i,j(n)
]

because of V i(n) < Eζ [n
b], since the

total number of time a unique SU occupies the channel i
is at most Eζ [n

b]. In (42), we use the fact that the total

number of collisions in U optimal channels is defined as

Co(n) =
U
∑

i=1

(

T i(n)− V i(n)
)

. Moreover, in (42), we have

UEζ [n
b] =

(

U
∑

i=1

T i(nb) +
K
∑

i=U+1

T i(nb)

)

, and Eζ

[

T i(n)
]

≥

Eζ

[

T i(nb)
]

. Finally (43) is achieved by applying Theorem 3

and Theorem 3 from [16].

Concerning the second part of (40), we can upper bound as

shown in (44) at the top of next page, where the first and the
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U
∑

j=1

K
∑

i=1

µR
i Eζ

[

V i,j(n)
]

−
U
∑

j=1

Eζ





nb

∑

t=1

rA(t),j
qA(t)

GA(t),j
qA(t)





≤







U
∑

j=1

U
∑

i=1

µR
i Eζ

[

V i,j(n)
]

−
U
∑

j=1

U
∑

i=1

∑

q∈Si

riqG
i
qEζ





F i,j(f(n))
∑

k=1

∑

S(t)∈Si,j(k)

1(S(t)=q)











+

{

U
∑

j=1

K
∑

i=U+1

µR
i Eζ

[

V i,j(n)
]

−
U
∑

j=1

K
∑

i=U+1

∑

q∈Si

riqG
i
qEζ





F i,j(f(n))
∑

k=1

∑

S(t)∈S
i,j
2 (k)

1(S(t)=q)





}

+







U
∑

i=1

∑

q∈Si

riqG
i
qEζ [Co(n)] +

K
∑

j=1

Eζ [Co(n)]

K
∑

i=U+1

∑

q∈Si

riqG
i
q







(44)

second part of (44) are the rewards collected in optimal and

suboptimal arms separately. The last part is the reward loss due

to the collisions in optimal and suboptimal channels, where

Eζ [Co(n)] is the expected number of collisions in optimal

channels.

Let us start with the first part of (44) and following the

same reasoning than in [11], we have:

Eζ [b̄
i,j(n)] ≤

K
∑

k=U+1

Eζ [F
k,j(f(n))]. (45)

where, {b̄i,j} is the total number of the joined blocks, and is

always less than or equal to the total number of discontinuities.

Thus, each successive combined block X̄i,j can be separated

into two sub-blocks: i) X̄i,j
1 consisting in the states observed

from the beginning of X̄i,j (empty if the first state is ζi,j) to

the state right before observing ζi,j , and ii) X̄i,j
2 consisting in

the rest of X̄i,j .

Therefore, the first part of (44) can be upper bound as

shown in (48) at the top of next page, where (46) comes

from counting the rewards in two different sub-blocks SB1

and SB2. The inequality in (48) is obtained by observing

that Eζ

[

∑b̄i,j(n)
k=1 |X̄i,j

2 (k)|
]

≤ 1
πi
ζ

Eζ

[

b̄i,j(n)
]

in SB2 and

Eζ

[

∑b̄i,j(n)
k=1 |X̄i,j

1 (k)|
]

≤ Ωi
maxEζ

[

b̄i,j(n)
]

in SB1. Since

rewards are positive, the last part of (46) is larger than 0,

and applying Lemma 2 from [11], [30] to the second part of

(46).

The second part of (44) can be upper bound as shown:

≤
U
∑

j=1

K
∑

i=U+1

µR
i Eζ

[

T i,j(n)
]

−
U
∑

j=1

K
∑

i=U+1

µR
i

πi
ζ

Eζ

[

F i,j(f(n))
]

=

U
∑

j=1

K
∑

i=U+1

µR
i

(

Ωi
max +W

)

Eζ

[

F i,j(f(n))
]

(49)

where (49) comes from V i,j(n) ≤ T i,j(n), and applying

Lemma 2 from [11], [30]. (49) is obtained with Theorem 3.

Now we bound the last part of (44) in (50):

≤ Eζ [Co(n)]

[

U
∑

i=1

µR
i

πi
min

+K

K
∑

i=U+1

µR
i

πi
min

]

≤
[

K2 −KU + U
] µR

1

πmin
U(E[Υ(U,U)] + 1)E[Tw(n)]

(50)

where (50) follows from Theorem 3 and Theorem 3 from [16].

Combining (50), (49) and (48) into (44), we immediately

upper bound (44) as (51):

U
∑

j=1

K
∑

i=1

µR
i Eζ

[

V i,j(n)
]

− Eζ [
U
∑

j=1

nb

∑

t=1

rA(t),j
qA(t)

GA(t),j
qA(t)

]

≤
U
∑

j=1

U
∑

i=1

µR
i Ω

i
max

K
∑

K=U+1

Eζ [F
k,j(f(n))]

+
U
∑

j=1

K
∑

i=U+1

µR
i

(

Ωi
max +W

)

Eζ

[

F i,j(f(n))
]

+
[

K2 −KU + U
] µR

1

πmin
U(E[Υ(U,U)] + 1)E[Tw(n)]

(51)

The last part of (40) is bounded as:

Eζ [n− nb]
U
∑

j=1

µR
j − Eζ [

U
∑

j=1

n
∑

t=nb+1

rA(t),j
qA(t)

GA(t),j
qA(t)

]

≤
U
∑

j=1

µR
j

(

1

πζ

+Ωmax +W

)

(52)

Combining (43), (51), (52) and using Lemma 2 and Theo-

rem 3, the upper bound on the regret ΦM (n) of the multi-user

distributed RQoS-UCB policy is obtained as:

ΦM (n) ≤ X3 lnn+X4

X3 = X1 +X5 and X4 = X2 +X6 +X8

X1 =

(

[

K2 −KU + U
]

πmin
+ 1

)

µR
1 U

2

(

E[Υ(U,U)]

+ 1

) U
∑

a=1

K
∑

b=1

4α

∆µR
a,b

X9

X2 =

(

[

K2 −KU + U
]

πmin
+ 1

)

µR
1 U

2

(

E[Υ(U,U)]

+ 1

) U
∑

a=1

K
∑

b=1

[

|Sa|+ |Sb|
πmin

∞
∑

t=1

t−2

]

X9

X5 =
K
∑

i=U+1

U
∑

k=1

4α
(

∆µR
i,k

)2X7
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U
∑

j=1

U
∑

i=1

µR
i Eζ

[

V i,j(n)
]

−
U
∑
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U
∑

i=1

∑

q∈Si

riqG
i
qEζ
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∑
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∑

S
i,j
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1(Si,j
t =q)
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∑
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i
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i
qEζ





b̄i,j(n)
∑
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U
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∑
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i
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∑
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∑
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2 (k)
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+

U
∑
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U
∑
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∑
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i
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i
qEζ
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∑
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−
U
∑
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U
∑
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∑
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i
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∑
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∑
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 (46)

≤
U
∑

j=1

U
∑

i=1

µR
i

πi
ζ

Eζ

[

b̄i,j(n)
]

−
U
∑

j=1

U
∑
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i

πi
ζ

Eζ

[
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]

+
U
∑
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U
∑
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i Ω

i
maxEζ

[
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− 0 (47)

<
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∑
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U
∑
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i Ω
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K
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Eζ [F
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[
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(

1
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+Ωmax +W

)
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(

1
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)
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