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QoS-Driven Optimized Design-Based Integrated
Visible Light Communication and Positioning

for Indoor IoT Networks
Helin Yang , Student Member, IEEE, Wen-De Zhong, Senior Member, IEEE, Chen Chen , Member, IEEE,

Arokiaswami Alphones, Senior Member, IEEE, and Pengfei Du

Abstract—With the rapid development of the Internet of
Things (IoT) in the smart city, smart grid, and smart indus-
try, indoor communication and positioning are important for
IoT. However, radio-frequency (RF)-based wireless networks may
fail to guarantee different quality-of-service (QoS) requirements
of devices, due to the limited bandwidth, severe interference,
and multipath reflections. Hence, this article presents a new
integrated visible light communication (VLC) and VLC posi-
tioning (VLCP) network for IoT to provide both high-speed
communication and high-accuracy positioning services. As the
network consists of multiple VLC access points (APs), we pro-
pose jointly optimizing the AP selection, bandwidth allocation,
adaptive modulation, and power allocation approach to satisfy
different QoS requirements of indoor devices while maximizing
the network data rate. A low-complexity iterative algorithm is
presented to solve the resource management (RM) optimization
problem by decomposing it into two subproblems. Finally, a
robust handover mechanism and a pedestrian dead reckoning
(PDR)-assisted VLCP scheme are presented to maintain good
performance under line-of-sight (LOS) blockages. The simula-
tion results verify that the proposed solutions outperform other
existing solutions in terms of effectively enhancing the data rate,
improving the positioning accuracy, and guaranteeing devices’
QoS requirements. In detail, the mean position error is reduced
from 20 to 4.3 cm by using our presented integrated VLCP
model. The proposed RM approach achieves a satisfied QoS level
improvement of up to 20.3% compared with the non-QoS-driven
RM approach, and it achieves the high data rate up to 1.31 Gb/s.

Index Terms—Internet of Things (IoT), link blockage, quality
of service (QoS), resource management (RM), robust scheme,
visible light communication (VLC) and VLC positioning (VLCP).
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I. INTRODUCTION

W ITH the various application services of devices (e.g.,
mobile phones, monitors, and sensors) in wireless

networks, Internet of Things (IoT) has been emerging as a
promising vision for next generation networks through realiz-
ing smart manufacturing, smart grid, and smart city [1], [2].
Note: Acronyms of full forms are shown in Table I.

However, several challenges need to be considered for
IoT when operating the wireless communication techniques
in radio-frequency (RF)-based wireless networks. First, it is
difficult for the RF-based wireless networks to support the
huge connectivity and guarantee different quality-of-service
(QoS) requirements of IoT devices due to the limited band-
widths in the RF band [1], [3], [4]. Second, the severe
electromagnetic interference may lead to the financial loss
for industries, or even the physical damage for human
safety [5]. Last but not least, the indoor RF-based local-
ization systems [such as wireless-fidelity (Wi-Fi), Bluetooth,
ultra wideband (UWB), etc.] are still inaccurate and unreli-
able in the IoT networks due to the multipath reflections and
shadowing [3], [6], [7]–[10].

Recently, visible light communication (VLC) and visible
light positioning (VLP) have been identified as promising
candidates to provide high-speed-data transmission and high-
accuracy positioning in indoor environments [3], [4], [7],
where about 80% of wireless data usage is by indoor
devices [11]. Many studies [12]–[16] have adopted VLC for
indoor IoT networks to offer high data rate and guarantee
different QoS requirements of IoT devices. In [12], a VLC-
based IoT architecture was presented for indoor and outdoor
deployments. Liu et al. [13] and Shao et al. [14] proposed
the light energy harvesting models to support communication
services, where the energy from light signals is harvested by
IoT devices over VLC downlink and the harvested energy is
used for the data transmissions over RF links. Moreover, the
hybrid VLC/RF IoT networks were presented to offer the bet-
ter service to devices [15], [16], where the VLC network can
support the high data rate and the RF network guarantees the
seamless coverage.

On the other hand, VLP has become an attractive research
topic recently due to its high positioning accuracy com-
pared with the RF-based localization systems [7], [17]–[25].
Some VLP system models were presented to support
indoor localization, tracking, and navigation services for IoT
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TABLE I
ACRONYMS OF FULL FORMS

devices [20]–[25]. Shao et al. [23] and Zhuang et al. [24]
experimentally evaluated the real-time localization schemes
using the received signal strength (RSS) algorithm for IoT
devices with high positioning accuracy. In [20] and [21], the
novel imaging processing frameworks-based high-precision
VLP systems were investigated in indoor rooms, but they need
highly complicated image sensor arrays at receivers. Moreover,
Ma et al. [25] presented a new indoor localization technique
based on VLP that allows IoT devices to obtain high posi-
tioning accuracy with low signal processing complexity and
power consumption.

As a matter of fact, most of the studies only focused
on VLC [11]–[16] or VLP independently [19]–[25] in
the indoor IoT networks, where both communication and
positioning services might be expected at the same time
for IoT devices in practical indoor environments (e.g.,
offices, hospitals, supermarkets, factories, etc.). So far, several
works [17], [18], [26], [27] presented their integrated VLC
and VLP systems (called VLCP) to provide both communica-
tion and positioning purposes. For example, the combination
of orthogonal frequency-division multiple access (OFDMA)
and RSS algorithm was presented in [17] and [18], but
high out-of-band interference (OOBI) generated from sig-
nals may degrade the positioning performance. Moreover, the
filter bank multicarrier-based subcarrier multiplexing (FBMC-
SCM)-assisted-VLP with the high signal processing complex-
ity was proposed to reduce the OOBI [26], [27]. However,
the works [17], [18], [26], [27] only considered a single cell,
where indoor environments consist of multiple VLC access
points (APs) and intercell interference (ICI) greatly degrades
the system performance [28]–[33].

It is worth noting that both high-speed data rate and high
positioning accuracy strongly depend on the line-of-sight (LOS)
link in VLC and VLP systems, while the LoS link is often
partially or completely blocked due to the mobility of devices
and human beings in practical indoor environments [34]. In

this case, the network performance is notably affected and
the satisfied QoS levels are decreased. To the best of our
knowledge, almost all of the above works [7]–[33] did not
investigate how to satisfy minimum data rate requirements of
devices and maintain high positioning accuracy performance
under blockages in the dynamic IoT networks.

According to the above discussion, some fundamental ques-
tions arise: Will the integrated VLC and VLP systems be
able to provide both the high-speed communication and
high-accuracy positioning services for devices? How do we
maintain both the communication and positioning performance
when LOS blockages happen in the dynamic integrated VLCP
IoT networks? Will the resource management (RM) strat-
egy be capable of guaranteeing the requirement of both the
minimum data rate and the positioning accuracy of the IoT
devices? Moreover, the performance of the integrated system is
degraded due to the high OOBI generated from OFDM signals
on adjacent subcarriers. In addition, ICI and LOS blockages
significantly degrade the network performance.

Motivated by the above observations and in order to solve
the problem, in this article, we first present a new integrated
VLCP network to achieve both communication and positioning
purposes for indoor IoT devices. Then, a joint AP section, sub-
carrier group (SG) allocation, adaptive modulation, and power
allocation approach is proposed to maximize the network data
rate while guaranteeing the QoS requirements (i.e., the mini-
mum data rate and the positioning accuracy) of IoT devices.
The LOS blockage issue is investigated in the IoT networks,
and the robust optimized schemes are presented to maintain the
network performance. The main contributions of this article
are summarized as follows.

1) For the first time, in this article, in order to achieve both
the communication and positioning purposes for indoor
IoT devices, we present a new integrated VLCP IoT
network, where the RSS sinusoidal positioning signals
can be put into the idle frequency holes to avoid OOBI
on the positioning frequencies.

2) We investigate the optimization problem of joint AP
section, SG allocation, adaptive modulation, and power
allocation in multicell integrated VLCP IoT networks
under different QoS requirements of devices. We solve
the optimization problem with low complexity.

3) We propose robust schemes to reduce the negative effect
of the LOS blockage on the network performance in the
dynamic integrated VLCP IoT networks. Specifically,
we propose a robust handover mechanism to maintain a
high data rate. In addition, a robust positioning scheme
is proposed to guarantee high positioning accuracy by
combining PDR [35] with the RSS-based VLP model
under LOS blockages.

The rest of this article is organized as follows. The new inte-
grated VLCP IoT network model is presented in Section II.
Section III formulates the optimization problem and the solu-
tion is provided in Section IV. Section V shows the robust
schemes under LoS blockages. The extended applications of
the presented work for IoT are provided in Section VI. The
simulation results and analysis are offered in Section VII.
Finally, Section VIII concludes this article.
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Fig. 1. Indoor integrated VLCP network for IoT devices.

II. INTEGRATED VLCP SYSTEM MODEL

We consider an indoor IoT application scenario based on
the integrated VLCP networks, which consists of a set of L
VLC APs uniformly installed on the ceiling and each VLC
AP covers a confined area to generate a small optical cell,
as shown in Fig. 1. In addition to offer the lighting require-
ments, the network also provides both the communication and
positioning services for indoor IoT devices. In the network,
the communication and positioning signals are modulated into
the APs before passing through the wireless optical channel,
and each IoT device is equipped with a photo-detector (PD)
to convert the received light into electrical signals.

In the IoT network, a number of IoT devices (K devices)
are randomly located in the lighting coverage area, and some
IoT devices may suffer from ICI from adjacent cells when
they are in the overlapped areas. There exists a central con-
troller in the network, which connects all APs to broadcast
information to IoT devices, and the uplink feedback is offered
by the Wi-Fi links. After receiving the feedback information,
the central controller can tackle the RM task. All available
subcarriers are equally divided into N + 1 SGs, where the
subcarriers in the (N + 1)th SG are used for positioning and
the remaining N SGs are served for communication. In order
to improve the subcarrier utilization, the network adopts the
unity frequency reuse (UFR) design in the integrated VLCP
IoT network, where the communication SGs are reused across
all cells. Let L and K denote the AP set and the IoT device
set, respectively. Let Nl denote the SG set in the lth cell.

In this section, we describe the existing and proposed inte-
grated VLCP models, the communication model, and the
RSS-based positioning model.

A. New Integrated VLCP Model

1) OFDMA-Based VLCP via RSS [17], [18]: The scheme
directly combines the OFDM modulation and 2-D RSS posi-
tioning algorithm for the integrated VLCP system, as shown
in Fig. 2(a), where the L identified subcarriers are used for
positioning. The positioning subcarriers are also used for com-
munication. Here, each positioning subcarrier with respect
to its corresponding AP is used for indoor positioning. The
detailed procedures to implement OFDMA-based VLCP via
RSS can be seen in [17] and [18]. However, as shown in
Fig. 2(a), the OFDM signals usually leak relatively high OOBI

Fig. 2. Spectrum structures of the integrated VLCP IoT network.

to subcarriers, which degrades both the communication and
positioning performance of the integrated VLCP system.

2) Proposed OFDM-SCM-Interleaving-Based VLCP via
RSS: As shown in Fig. 2(b), we can observe that there exist
several specific frequencies (called frequency holes) having the
negligible OOBI from the OFDM signal when these subcarri-
ers are not used to transmit the OFDM signal (idle subcarriers).
In this case, the sinusoidal positioning signals (red color) can
be put into the frequency holes, which can avoid the OOBI
on the positioning frequencies from the adjacent communica-
tion subcarriers and hence achieve higher positioning accuracy
performance as compared with the OFDMA-based VLCP. In
addition, the RSS indicator (RSSI) at each IoT device can be
adopted for the AP selection in the multicell networks, which
will be analyzed in the next section.

At each AP, the sinusoidal signals for VLP are added
with the OFDM signal after allocating the SGs to devices,
where the L positioning subcarriers from f1 to fL are all
in the (N + 1)th SG and the communication data for the
devices are all on the N SGs. After collecting the feedback
information [channel information, signal-to-interference-plus-
noise-ratio (SINR), QoS requirements, RSSI, etc.,] from the
IoT devices, the communication data stream is then encoded
to the OFDM signal with the adaptive quadrature amplitude
modulation (QAM) mapping based on the devices’ minimum
data rate requirements and the received SINR values.

At the device, on the one hand, the RSSI values on the
positioning subcarriers from different APs can be measured by
devices, and the locations of devices can be estimated by using
the RSS-based positioning algorithm, which will be shown in
Section II-C. On the other hand, the communication signal
can be obtained when the received signal passes through the
band-stop filter (BSF), and the OFDM demodulation method
is applied to demodulate the communication signal.

B. Communication Model

For the optical link, the LOS channel gain between the lth
AP and the kth device is expressed as

Gk,l = (ml + 1)Ar

2πd2
k,l

cosml
(
φk,l

)
Ts
(
ψk,l

)
g
(
ψk,l

)
cosψk,l (1)

where Ar denotes the PD’s active area. dk,l, φk,l, and ψk,l are
the distance, the angle of irradiance, and the angle of inci-
dence between the lth AP and the kth device, respectively.
ml denotes the order of Lambertian emission of the lth AP.
Ts(ψk,l) and g(ψk,l) are the gains of the optical filter and the
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optical concentrator, respectively. The channel gain depends on
the characteristics of LEDs and PDs as well as the transmission
distance.

At the receiver, the received SINR at the kth device if it
assigns on the nth SG of the lth AP is given by

γ co
k,n,l =

μ2Pn,l
(
Gk,n,l

)2

∑L
i=1,i �=l Pn,i

(
Gk,n,i

)2 + δ2
(2)

where μ is the PD’s responsivity. Pn,l is the allocated electri-
cal power on the nth SG at the lth AP. Gk,n,l represents the
optical channel gain from the lth AP to device k on the nth
SG.

∑L
i=1,i �=l Pn,i(Gk,n,i)

2 denotes ICI from other cells. δ2 is
the noise power, including the shot noise (denoted by δ2

shot),
the thermal noise (denoted by δ2

thermal), and the intersymbol
interference (ISI, denoted by δ2

ISI) caused by the multipath
propagation [3], [6], which can be expressed as

δ2 = δ2
shot + δ2

thermal + δ2
ISI. (3)

In (3), the received signals at the PD through diffuse
path may suffer from multipath propagation which causes
ISI in complex indoor environments. The more details about
the above-mentioned multipath propagation can be found
in [3] and [6].

At the kth device, if it assigns the nth SG of the lth AP
and the OFDM signal is modulated by Mk,n,l-QAM with
the modulation order Mk,n,l, the bit error rate (BER) can be
approximated by using [36]

BERk,n,l =
√

Mk,n,l − 1
√

Mk,n,llog2
(√

Mk,n,l
)erfc

(√
3γ co

k,n,l

2
(
Mk,n,l − 1

)

)

. (4)

The available data rate (bps) of the kth device across
allocated SGs at the lth AP can be expressed as [36]

Rk = Bn

N∑

n=1

ρk,n,llog2Mk,n,l (5)

where Bn is the bandwidth of the nth SG. ρk,n,l is a binary
variable, ρk,n,l ∈ {0, 1}, and ρk,n,l = 1 indicates the nth com-
munication SG is allocated to the k-device at the lth AP;
otherwise, it takes the value 0.

C. RSS-Based Positioning Model

For the kth device, the received electrical power (also called
RSSI) on the lth positioning subcarrier from the lth AP can
be expressed as Prec

k,l = Gk,lPl [17]–[19]. In addition, assuming
the PD axis and the AP axis are perpendicular to the ceiling,
we have cos(φk,l) = cos(ψk,l) = h/dk,l with h being the height
from APs to the receiver plane [17]–[19]. Consequently, Gk,l

in (1) can be rewritten as

Gk,l = hml+1(ml + 1)Ar

2πdml+3
k,l

Ts
(
ψk,l

)
g
(
ψk,l

)
= C(ml + 1)

hml+1

dml+3
k,l

(6)

where C = ArTs(ψk,l)g(ψk,l)/2π is a constant value which
depends on the characteristics of LEDs and PDs. Then, the
received electrical power Prec

k,l is rewritten as

Prec
k,l = Pi,lC(ml + 1)hml+1/dml+3

k,l . (7)

From (7), we can derive the distance dk,l as follows:

dk,l = ml+3
√

Pi,lC(ml + 1)hml+1/Prec
k,l . (8)

Let �k = (xk, yk) and �l = (xled
l , (xled

l ) denote the loca-
tions of the kth device and the lth AP, respectively. The device
coordinates �k correspond to the APs coordinates �l based
on the following group of equations:
(

xk − xled
l

)2 +
(

yk − yled
l

)2 = d2
k,l − h2, l ∈ L. (9)

When the received power Prec
k,l is measured at the kth device,

the distance dk,l can be calculated by (8). Finally, the esti-
mated location of the device can be calculated by using the
RSS-based trilateration algorithm [17]–[19], the detailed pro-
cedures to implement the 2-D RSS-based positioning can be
seen in [17] and [18]. Let �e

k = (xk,e, yk,e) denote the esti-
mated location of the kth device. The positioning error [root
square error (RSE)] of the kth device is given by

RSEk =
√(

xk,e − xk
)2 + (yk,e − yk

)2
. (10)

III. QOS REQUIREMENTS AND PROBLEM FORMULATION

A. QoS Requirements in Integrated VLCP IoT Networks

In the IoT networks, some certain QoS requirements of
devices should be considered in the optimized design, which
will be discussed and analyzed as follows.

1) Minimum Data Rate Requirements of VLC: The mini-
mum data rate requirements of some devices may range from
low data rates to high data rates, which should be satisfied
in the performance optimization design. Thus, the resulting
constraint is expressed by

Rk ≥ Rmin
k (11)

where Rmin
k is the minimum data rate threshold of the kth

device.
2) Positioning Accuracy Requirements of VLP: In addition

to the requirement in (11), the IoT network should guarantee
the positioning accuracy requirement of the devices that need
positioning services.

Without loss of generality, when other parameters are fixed,
the RSE can be expressed as an explicit function of trans-
mit electrical powers by using the Cramer–Rao lower bound
(CRLB) [37]. Then, the CRLB on the RSE of the kth device
is given by [37]

RSECRLB
k ≥

√
tr
(
J−1(�e

k,Ppo
))

(12)

where J(·) is the Fisher information matrix (FIM) and Ppo is
the transmit electrical power vector on the positioning sub-
carriers at the selected APs with the selected corresponding
highest RSSI. Due to space limitations, see [37] for all the
analysis processes. Hence, we have the constraint

√
tr
(
J−1(�e

k,Ppo
)) ≤ RSEmax

k (13)

where RSEmax
k is the tolerant positioning error threshold of

the kth device.
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B. Problem Formulation

In the IoT network, our objective is to maximize the
overall network transmission data rate while guaranteeing
the above-mentioned QoS requirements of devices shown in
Section III-A. Here, the RM problem (joint AP selection, SG
allocation, adaptive modulation, and power allocation) can be
mathematically formulated as

max
α,ρ,M,P

Rsum =
∑

l∈L

∑

k∈K
αk,lRk

s.t. a: (11), (13)

b: αk,l, ρk,n,l ∈ {0, 1} ∀k ∀l ∀n
c:

∑

l∈L
αk,l = 1 ∀k

d:
∑

k∈K

∑

n∈Nl

ρk,n,lPn,l ≤ Pmax ∀l

e:
∑

k∈K

∑

n∈Nl

ρk,n,l ≤ N ∀l (14)

where α, ρ,M, and P represent the matrix or vectors of the
AP selection, SG allocation indicator, modulation order, and
transmit power level, respectively. In order to reduce the AP
selection complexity, constraint “c” in (14) is used to ensure
that one device can only select a single AP to apply the com-
munication services. Constraint “d” in (14) is that the transmit
power of each AP allocated to its served devices should not
exceed the maximum transmit power. Constraint “e” in (14) is
imposed to guarantee that the sum of assembled SGs should
not exceed the number of the available SGs of each AP.

IV. SOLUTION TO THE RESOURCE MANAGEMENT

Clearly, the optimization problem in (14) is a mixed-integer
programming problem because the binary variables and the
non-negative power variables are involved, as well as it is
nonconvex, so it cannot be solved directly. Hence, we should
make the optimization problem tractable. In this section,
we solve the joint optimization problem in (14) by decom-
posing it into two subproblems: 1) AP selection with SG
allocation and 2) adaptive modulation and power allocation.
Consequently, after solving these two subproblems alternately,
we can achieve the optimized solution of the joint optimization
problem in (14) by using an iterative algorithm.

A. AP Selection Formation

The IoT network generally consists of multiple optical
cells, hence the VLC AP selection should be considered to
improve the network performance and guarantee IoT devices’
QoS requirements. The traditional max-RSSI approach [38] is
widely adopted to address the AP selection problem, but it
fails to enable devices to achieve the desired service qualities
because the devices may simply associate with the near-
est AP with the largest RSSI value, which may result in
intense channel contention and significant unbalanced data
rate distributions. In addition, some optimal AP selection
approaches [28]–[33] were theoretically presented in the RF
networks or VLC networks, but they have the high complexity
and the perfect assumption of devices’ location information.

Hence, we propose a new AP selection approach to find the
suitable AP selection strategy in the VLCP IoT network, where
the strategy has the following functions: 1) VLP APs could
satisfy the different QoS requirements of devices and 2) the AP
selection needs to optimize the overall network performance.
In short, the objective of the AP selection is to balance data
rate distributions in the whole network, minimize the overall
ICI, satisfy minimum data rate requirements of devices, and
optimize the network data rate, which will be realized by the
following analysis.

Considering the fact that different IoT devices have different
service requirements, we first divide the devices into two kinds
of devices based on their different services.

1) Primary Devices: Devices in this group have specific
requirements on low service delay, high transmission
reliability, and service steadiness, such as instant online
software installation and real-time data streaming.

2) Secondary Devices: This kind of devices are not
interested in the service delay and steadiness,
such as short message service, web browsing,
software/document downloading, and e-mail sending.

We set that primary devices have the higher priority to asso-
ciate its needed AP, while second devices are with the lower
priority to associate its needed AP compared with the primary
devices. Let KAP,l denote the set of devices currently selected
by the lth AP.

Implementation: Now, we show how to implement VLC AP
selection step by step.

Step 1 (Candidate AP Selection): Each device first sorts
the RSSI values of all APs in the candidate-selected AP sub-
set, and it searches its nearest AP (the highest RSSI) denoted
by APk, which refers to the candidate-selected AP, hence we
have

AP(k) = arg max
l∈L

(
Prec

k,l

)
. (15)

If more than one device select the same candidate AP and
the corresponding AP has no device association, the AP selects
the primary devices to associate its channel resource with the
high priority. Other secondary devices should search their next
nearest APs if this candidate AP has no enough channel and
power resource for them, until each device searches its unique
candidate AP. If more than one device with the same pri-
ority level select the same candidate AP, the AP adopts the
proportional fair (PF)-priority scheduling scheme to serve the
devices from the high PF-priority device to the low PF-priority
device if the AP has enough resource [39]; otherwise, the low
PF-priority devices have to select their next nearby APs.

Hence, according to the above analysis, each AP l ∈ L has
its current candidate-served device set, which is expressed as

KAP,l =
{

AP∗(k) : k ∈ K
}
. (16)

After completing the AP selection strategy, the minimum
data requirements and service quality can be effectively
guaranteed. However, the network still needs to adjust the
candidate AP selection strategy to address the following issues.

1) Balance the data rate distributions, where some APs
may be idle while other APs are busy serving devices,
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leading to the unbalanced resource allocation. Hence,
the networks need to adjust its AP selection strategy
to optimize the overall network performance, which is
shown in step 2.

2) Minimize the overall ICI to improve the network
performance, which is shown in step 3.

Step 2 (Resource Balance-Based-AP Selection Adjustment):
For the idle APs, the candidate-served device set of the l′th
idle AP is expanded first by including the nearby devices with
a certain range d0, which is written as

KAP,l′ =
(
KAP,l′ ∪

{
k ∈ KAP,l :

√
(xl − xk)

2 + (yl − yk)
2 ≤ d0

})
.

(17)

In (17), the l′th idle AP selects the kth device from the lth
AP candidate-served device set: KAP,l = KAP,l − {k}, but the
update subset KAP,l �= ∅. If the kth device was included in
several idle APs, it would select the nearest idle AP.

Step 3 (ICI Minimum-Based-AP Selection Adjustment): We
would like to mention that the device locating in the overlap-
ping area may suffer severe ICI form adjacent cells, leading to
the significant degradation of the network performance and the
satisfied QoS level. However, if the device changes its decision
by selecting the nearby AP with the lower ICI instead of its
current associated AP, its performance and satisfied QoS level
can be effectively improved. Based on this observation, the
network needs to adjust the AP selection strategy to reduce the
negative effect of ICI on the network performance improve-
ment. Here, we define the signal-to-interference ratio (SIR) as
the RSSI value of the current associated AP over the sum of
the RSSI values from other adjacent APs (or optical cells).
When the kth device currently associates with the lth AP, its
SIR can be written as

SIRk,l = Prec
k,l

/⎛

⎝
∑

l̂∈L, l̂ �=l

Prec
k,l̂

⎞

⎠. (18)

Similarly, according to the RSSI values, the device can cal-
culate other SIR values if it selects other APs, and it compares
its current SIRk,l with SIRk,l̂, l̂ ∈ L, and finally, selects the
AP from the these candidate APs with the highest SIR value
by

AP(k) = arg max
l∈L

(
SIRk,l

)
. (19)

B. Suboptimal SG Allocation

We can observe that the optimization problem in (14) is
a combinatorial problem, which has a prohibitive computa-
tional complexity if we solve it through using the exhaustive
search for all the possible cases, especially, when the number
of devices and SGs is large in the network. Hence, we pro-
pose a low complexity scheme to achieve the suboptimal SG
allocation under the constraints in (11). The goal of the SG
allocation is to flexibly allocate subcarrier resource of each
cell to meet devices’ minimum data rate requirement as well
as maximize the overall network data rate.

The key principle of the proposed approach is that the pri-
mary devices first access the SGs of its selected AP, and the

Algorithm 1 AP Selection and SG Allocation

Initialize: Nl = {1, . . . ,N}, K = {1, . . . ,K}, set Rk = 0 and 
k = ∅
for ∀k ∈ K.
Step 1: AP selection
1: The AP selection strategy is carried out by the candidate AP
selection, resource balance and ICI minimum based-AP selection
adjustment shown by Section IV-A.
Step 2: Satisfy minimum rate requirements
2: Primary devices access SGs of its selected AP with the higher
priority while secondary devices are with the lower priority to access
SGs. The devices with the same priority level take step 3 to step 5.
3: For any device k satisfying Rk < Rmin

k ;
4: Find the device k′ satisfying Rk,min − Rk ≤ Rk′,min − Rk′ for
∀k′ ∈ K;
5: For the device k′, find SG n′ ∈ Nl from its selected AP l with
the highest data rate;
6: Let 
k′ = 
k′ ∪ {n′}, Nl = Nl − {n′}, and update Rk′ ;
Step 3: Allocate excess SGs to maximize the sum data rate
7: If Nl �= ∅, ∀l, allocate the excess SGs to the devices with high
channel gains to maximize the sum data rate.

primary device whose rate is the farthest away from its target
minimum data rate requirement has the priority to be allocated
the SGs with highest channel quality to meet its minimum
data rate requirement. Then, the AP allocates the excess SG
resource to the secondary devices to meet their minimum data
rate requirement. After satisfying the devices’ QoS require-
ments, we allocate the excess SGs of each AP to the devices
with high channel gains to maximize the overall network data
rate.

Let 
k denote the SG subset allocated to the kth device. The
proposed AP selection and SG allocation approach is shown
in Algorithm 1.

C. Joint Adaptive Modulation and Power Allocation

Given the AP selection and SG allocation strategy, in each
cell, the joint adaptive modulation and power allocation are
presented to improve the network performance and guarantee
the QoS requirements shown in (11) and (13). The details to
implement it are shown in the following analysis.

When the BER target is BERmax, the modulation thresholds
can be expressed as [34]

γ th
j =

(
γ co

k,n,l

)
Mk,n,l

= 3
(
Mk,n,l − 1

)

2
erf c−1

(

BERmax

√
Mk,n,llog2

(√
Mk,n,l

)

√
Mk,n,l − 1

)

Mk,n,l = 2j, j = 1, . . . , J (20)

where erf c−1(·) is the inverse erfc-function, and γ th
1 ≤ γ th

2 ≤· · · ≤ γ th
J . Then, the network can select the modulation order

according to the SINR value γ co
k,n,l, which is

Mk,n,l =

⎧
⎪⎨

⎪⎩

0, γ co
k,n,l < γ th

1
2j, γ th

j ≤ γ co
k,n,l ≤ γ th

j+1, j = 1, . . . , J − 1
2J, γ th

J ≤ γ co
k,n,l.

(21)

The above analysis in (20) and (21) presents the selection of
the modulation order according to the feedback SINR values
from devices. The adaptive modulation scheme can effectively
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improve the transmission data rate and guarantee the devices’
minimum data rate requirements.

Due to the severe attenuation of LEDs in the high-frequency
domains in the VLC systems, the power allocation is applied to
compensate for the frequency attenuation at APs. Considering
the conventional power allocation scheme is not optimal due
to the attenuation of high-frequency domains is balanced at
the cost of the SINR reduction of low frequency domains,
Wang et al. [40] presented a weighted power allocation design
to improve the communication performance of all sub-bands.
However, power allocation in [40] was still not the efficient
approach in terms of the network throughput improvement
due to the only fixed-order modulation format. Moreover,
the power allocation variables on the positioning subcarri-
ers should be carefully set to satisfy the positioning accuracy
requirements, and the interference leakage from the two adja-
cent communication SGs to the positioning SG should not
be too large to generate the high OOBI on the position-
ing SG, which directly degrades the positioning performance.
Hence, the adaptive modulation and power allocation should
be adaptively updated to optimize the network capacity while
guaranteeing the QoS requirements of the IoT devices.

For the kth device in the lth cell, the nth SG signal in
the frequency domain with the joint adaptive modulation and
power allocation can be given by

S′k
(
Mk,n,l,Pn,l, ρk,n,l

)

= Pn,l ·H−1
k

(
ρk,n,l

) · Sk
(
Mk,n,l,Pn,l, ρk,n,l

)
(22)

where S′k(Mk,n,l,Pn,l, ρk,n,l) and Sk(Mk,n,l,Pn,l, ρk,n,l) are the
nth SG signal vectors in the frequency domain before and after
power allocation and pre-equalization, respectively. Hn is the
transfer pre-equalization matrix of the nth SG’ subcarriers, and
Hn is also a diagonal matrix. Hn can be first measured in the
VLCP IoT network.

Here, given the AP selection and SG allocation, we aim
to obtain the optimized modulation order variables M and
power allocation variables P. The partial Lagrange function
of problem (14) is expressed as

ϒ(β,ω,χ ,M,P)

=
∑

l∈L

∑

k∈K
αk,lRk +

∑

k∈K
βk

(
Rk − Rmin

k

)

+
∑

k∈K
ωk

(
RSEmax

k −
√

tr
(
J−1(�k,Ppo

)))

+
∑

l∈L
χl

⎛

⎝Pmax −
∑

k∈K

∑

n∈Nl

ρk,n,lPn,l

⎞

⎠ (23)

where β = {βk,∀k}, ω = {ωk,∀k}, and χ = {χl,∀l} are
the dual Lagrange multiplier vectors or variables for the con-
straints in (11), (13), and “d” in (14). Then, the dual function
of the Lagrange function (23) can be given by

J(β,ω,χ) = max
M,P
{ϒ(β,ω,χ ,M,P)}. (24)

In (24), when the dual function value is optimized, we can
get the optimized modulation order M and power allocation

Algorithm 2 RM Approach
Initialize: Set the iteration j = 0, set Rsum(0), α(0), ρ(0), M(0), and
P(0), the maximum tolerance ς > 0;
1: Repeat
2: Update the AP selection variables α(j+1) and the SG allocation
variables ρ(j+1) by Algorithm 1;
3: Update the modulation order variables M and power allocation
variables P(j+1) by solving (14) using the subgradient method with
the partial Lagrange function in (23);
4: j← j+ 1;
5: Update the sum data rate Rsum(j);
6: Until |Rsum(j)−Rsum(j− 1)| ≤ ς ;
7: End
8: Output: α(j), ρ(j), M(j) and P(j).

variables P. The dual problem to the original problem (14)
can be written as

min
β,ω,χ
{J(β,ω,χ)}

s.t. β ≥ 0,ω ≥ 0,χ ≥ 0. (25)

The value of J(β,ω,χ) can be computed by using the
Lagrange dual decomposition method. Notably, J(β,ω,χ) is
a concave function due to the pointwise infimum of a set of
affine functions of the Lagrange multipliers. Hence, we can
use the subgradient method to solve the optimization problem
(14) [41]. Due to space limitations, see [33] and [41] for all
the solutions processes.

Accordingly, we present the solution process for the AP
selection, SG allocation, adaptive modulation, and power allo-
cation in the integrated VLCP IoT networks, as shown in
Algorithm 2.

D. Complexity Analysis

The optimal AP selection and SG allocation can be achieved
if we adopt the exhaustive search for all the possible SG allo-
cation cases. In the multicell IoT network with the K-device,
L cells and N SGs per cell, it is prohibitive to search the
optimum due to the high computational complexity, since the
exhaustive search method has O(KN×L) possible SG allocation
cases. However, the complexity of our proposed suboptimal
AP selection and SG allocation is O(K × N × L), which is
greatly lower than the exhaustive search method.

Let Z denote the number of the employed reference points
(RPs) in the integrated VLCP network. The computational
complexity of the applied RSS positioning approach is O(L),
while the computational complexity of the popular finger-
print positioning approach based on RSSI can be expressed as
O(LZ) [8]. Moreover, Bisio et al. [9], [10] compared and dis-
cussed some existing fingerprint positioning approaches, such
as fingerprint positioning based on the Bayesian processes,
Gaussian processes, and HORUS method. Let V denote the
number of observation vectors of the Gaussian processes and
let L′ denote the number of APs necessary to converge to
a location estimation. The computational complexity of the
above-mentioned positioning approaches is summarized in
Table II.
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TABLE II
COMPLEXITY ANALYSIS OF POSITIONING APPROACHES

Fig. 3. Two cases of LOS blockages in integrated VLCP IoT networks.

A reduced fingerprint map is constructed in [45], containing
only the data from the APs present in the query finger-
print. Reference fingerprints within the reduced map are used
to localize the user. In [45], the complexity is reduced to
O(log(L+Z)) under the assumption that the number of RPs at
which an AP is visible and the number of APs visible at an RP
are both less than 20. This may not hold if the density of the
fingerprint map is increased through interpolation or crowd-
sourcing. In that case, the complexity of the algorithm is in
O(L+Z) [46]. We would like to mention that some simple fin-
gerprinting methods have low computational complexity, and
some other methods employ offline data processing to help
online fingerprinting methods to perform localization fast and
smoothly.

From Table II, we can observe that the computational
complexity of the fingerprinting positioning approaches is
higher than that of the mentioned RSS positioning approach.
However, it is worth noting that the fingerprinting positioning
approaches can significantly improve the positioning accuracy
compared with the RSS positioning approach (performance
comparisons are shown in Section VI), but they require a lot of
labeled data to train the localization model which needs extra
computation and storage space at devices, which is not appli-
cable for those IoT devices who require low computational
complexity.

V. ROBUST OPTIMIZED SCHEMES UNDER BLOCKAGES

In practical indoor environments, the optical signals being
broadcast from VLC APs to the devices may be blocked by
obstacles due to the movement of devices or human beings,
as shown in Fig. 3 (we take cases I and II as examples to
analyze the negative effect of blocked links on the network

performance). In this case, LOS is often blocked and none-
LOS (NLOS) cannot support effective communication and
positioning services, leading to the degradation of the network
performance.

In details, in case I, for the kth device, the optical signal
from its currently associated AP 4 is blocked by an obstacle,
hence, the received SINR value is significantly reduced, result-
ing in decreasing the satisfied QoS levels and the network data
rate. In this case, although the signal from AP 4 is blocked, the
2-D location of device k can be still successfully estimated by
using the RSSI values from AP 1, AP 2, and AP 5, the device
needs to select another AP to continue its service. However, in
case II, the optimal signals being broadcasted from a number
of APs (such as AP 5 and AP 9, even more APs) to the kth
device are missing. In this case, it is hard to estimate the loca-
tions of devices with high positioning accuracy only using less
than two RSSI values. Moreover, the data rate performance is
degraded in this case as well.

According to the above analysis, how to estimate the loca-
tions of the devices with high positioning accuracy and how to
guarantee the minimum data rate requirements of devices are
still key challenges under blockages in the dynamic integrated
VLCP IoT networks.

Hence, the following sections introduce two proposed
schemes to address the above-mentioned challenges, in
order to improve both the communication and positioning
performance under LOS blockages.

A. Robust Handover Among APs

1) Handover Under Blockages: Due to the mobility of IoT
devices, human beings, and obstacles, for any device, its cur-
rent LOS link from the associated AP may be blocked in
one time slot or even a long time duration. In this case,
the device’s performance and satisfied QoS level are notably
affected. Hence, we propose a robust handover scheme to
combat the LOS link blockage in the IoT network.

Once the device detects that its current LOS link is blocked,
it reports the blockage information to the controller. The con-
troller performs the handover mechanism based on the priority
level of the device.

a) Handover for primary devices: If the device’s location
is fixed for a long period, the controller immediately selects the
nearest AP to continually provide the communication services
for the device. On the contrary, if the device is in the state
of movement, the controller selects the device’s neighboring
AP based on the device’s mobility trajectory where the device
is moving toward the neighboring AP and the AP will be the
nearest one for some time slots in the future. This handover
mechanism aims to provide the stable and low-latency services
for primary devices under blockages.

b) Handover for secondary devices: When the device
detects the LOS blockage, the controller waits of a
dwell period of τwait. When τwait expires, the controller
selects one neighboring AP with the enough channel
resource for the device; otherwise, the device still asso-
ciates with its currently serving AP until the blocked link
is recovered. This handover mechanism can effectively avoid
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the potential ping-pong effects by reducing the unnecessary
handovers.

2) Handover Under Mobility: Some literatures proposed
the handover mechanisms based on the location information
of devices [28]–[33], but they assumed that the devices’ loca-
tion information is perfectly known. Hence, we present a
transmission handover mechanism based on the RSSI values.

Let Prec
k,l and Prec

k,l̂
denote the RSSI values of the kth device’s

currently serving AP and one candidate AP of its neighbor-
ing APs, respectively. The handover is executed when the
following condition is satisfied:

Prec
k,l̂
≥ Prec

k,l + ε ∀l̂ ∈ L (26)

where ε denotes the hysteresis value of the handover margin
which is also used to prevent the unnecessary handovers. If the
device locates in the region of the l̂th AP and the RSSI value
satisfied (26) for a certain period, then the device switches the
connection from its currently serving AP l to the l̂th AP.

B. Robust Positioning Scheme Under Blockages

As shown in Fig. 4(a), the kth device only receives the opti-
cal signals from AP 1 and AP 2 while the available signals
being broadcasted from other APs are missing by obstacles.
According to the RSSI signals received from AP 1 and AP 2,
two circles centered at these two APs are identified with
the black lines. The intersection of the two circles generates
two possible locations [the black dots shown in Fig. 4(a)] of
the kth device at the time slot t, denoted by A(1)(x(1)k,t , y(1)k,t )

and A(2)(x(2)k,t , y(2)k,t ), respectively. These two possible locations
A(1) and A(2) can be calculated by solving the following two
equations:

√(
xled

1 − x(1)k,t

)2 +
(

yled
1 − y(1)k,t

)2 = d1,k,t
√(

xled
2 − xk,t

)2 + (yled
2 − yk,t

)2 = d2,k,t (27)

where dl,k,t denotes the distance from the lth AP to device k
at the time slot t which can be calculated by (8).

We would like to mention that [42] presented a simple
scheme to select the most likely current location from these
two possible locations, where the scheme calculates the dis-
tances from the previous location to the two possible locations
and selects the possible location as the current location with
the smallest distance. However, the scheme in [42] did not
consider the movement behaviors of devices, hence, it still
has the high positioning errors during devices’ traveling under
blockages.

In order to improve the positioning accuracy under block-
ages, we present a new robust positioning scheme by combin-
ing the PDR method [35] with the RSS-based VLP system
(called PDR-assisted RSS), where PDR is the process of
predicting the device’ current location by using the previous
locations’ information.

In PDR, each device has its corresponding movement
prediction model by sampling its periodical location
information. When only one device receives at most two
RSSI signals from the APs and other optical RSSI signals

Fig. 4. (a) Signals only observed from AP 1 and AP 2 while the available
signals from other APs are blocked. (b) Signal only observed from AP 1 while
the available signals from other APs are blocked.

are missing at one time slot, it adopts PDR to calculate its
velocity components vk,x and vk,y along the x-axes and y-
axes from the previous location information (xk,t−1, yk,t−1)

and (xk,t−2, yk,t−2) taken at the time slots t − 1 and t − 2.
Here, the velocity components in the last time slot can be
computed by

vx
k,t−1 =

(
xk,t−1 − xk,t−2

)
/τt−1

vy
k,t−1 =

(
yk,t−1 − yk,t−2

)
/τt−1 (28)

respectively, and τt−1 is the time duration at the time slot t−1.
After calculating the velocity components by (28) according

to the two latest previous location samples, the kth device
predicts its location at the current time slot t by performing
the following formulas:

x′k,t = xk,t−1 + vx
k,t−1τt; y′k,t = yk,t−1 + vy

k,t−1τt. (29)

According to the above analysis, the kth device predicts its
current location P′ [the blue hollow square in Fig. 4(a)] by
adopting the PDR method and calculates the possible loca-
tions (A(1) and A(2)) by using the RSS positioning algorithm.
In this case, the predicted location P′ is close to one of the pos-
sible locations (A(1) and A(2)) due to the movement behavior
of devices, especially, in the indoor positioning environments.
This allows the selection of the most likely current location
of the device through comparing the distances between the
predicted location and the two possible locations, i.e.,

dP′→A(1)
k,t =

√(
x′k,t − x(1)k,t

)2 +
(

y′k,t − y(1)k,t

)2

dP′→A(2)
k,t =

√(
x′k,t − x(2)k,t

)2 +
(

y′k,t − y(2)k,t

)2
. (30)

The most likely current position (xk,t, yk,t) at the current
time slot t is selected from the two possible locations by

(
xk,t, yk,t

) =
⎧
⎨

⎩

(
x(1)k,t , y(1)k,t

)
, dP′→A(1)

k,t ≤ dP′→A(2)
k,t(

x(2)k,t , y(2)k,t

)
, dP′→A(1)

k,t > dP′→A(2)
k,t .

(31)

If dP′→A(1)
k,t = dP′→A(2)

k,t , the kth device will choose the pos-
sible location with its current value vx

k,t/v
y
k,t being most likely

with vx
k,t−1/v

y
k,t−1 at the previous time slot, but the probability

of dP′→A(1)
k,t = dP′→A(2)

k,t is very small, which is negligible.
If the device receives only the RSSI signal from one AP

while the other RSSI signals broadcast from APs are miss-
ing, as shown in Fig.4(b), according to the RSSI signal from
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AP 1, one circle centered at AP 1 is identified and the pos-
sible location of the device is on the circle. By adopting the
PDR method, the device predicts its current location P′ [the
blue hollow square in Fig. 4(b)], and the most likely current
position of the device (the black dot) is selected on the circle
with the minimum distance from it to the predicted location
P′. It is worth noting that all RSSI signals being broadcasted
from all APs to the device may be blocked in dynamic indoor
environments, but it happens with a very small probability. In
this case, the device can directly adopt the PDR positioning
method to predict its current location according to the previous
location samples.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, simulations are conducted in MATLAB
2017a to evaluate the performance of our presented integrated
VLCP IoT network, the proposed RM approach and the robust
schemes under LOS blockages.

We consider a typical indoor room with an area of
10 m × 10 m ×4 m, where 4 × 4 VLC APs are uniformly
distributed at a height of 3.75 m. A number of devices are
randomly distributed at two different heights (0.5 m and 1 m).
K/2 devices need both communication and positioning services
with low data rate (1 Mb/s per device) and other K/2 devices
only require communication services with the high data rate
requirement (10 Mb/s per device). The number of SGs in each
cell is N = 6. For each AP, the LED lamp semi-angle at
half power and the Lambertian emission order are 60◦ and 1,
respectively. The active area, the FOV, the concentrator refrac-
tive index, and the responsivity of the PD are 1 cm2, 110◦,
1.5, and 0.5 A/W, respectively. The gain of the optical filter
is 1. The dwell period of τwait is 1 s.

The transmission modulation bandwidth is 20 MHz and
the available bandwidth is 10 MHz due to the Hermitian
symmetry [4], [28], [36]. The range of the positioning
frequencies is from 5.0 to 6.45 MHz. The modulation order
M = {4, 8, 16, 32, 64, 128, 256, 512, 1024} and BERmax =
3.8×10−3. In addition, the positioning error threshold is 5 cm.

A. Performance Comparisons of Integrated VLCP Networks

Fig. 5(a) and (b) shows the positioning result and the cumu-
lative distribution function (CDF) of the positioning errors
over the indoor room, respectively. From Fig. 5(a), the mean
positioning errors of our proposed approach, the existing
approach [17], and the fingerprint-based indoor positioning
approach are 4.28, 19.55, and 3.22 cm, respectively. Compared
with the existing OFDMA-based integrated VLCP [17], our
presented OFDM-SCM-interleaving integrated VLCP achieves
the higher positioning accuracy. Among the three positioning
approach, the fingerprint-based indoor positioning approach
has the highest positioning accuracy, but it requires a lot of
labeled data to train the localization model which is not suit-
able for those IoT devices as they require low computational
complexity.

From Fig. 5(b), we can see that the positioning
errors at 90% confidence for OFDM-SCM-interleaving-
based integrated VLCP design, OFDMA-based integrated

Fig. 5. Comparisons of (a) positioning results and (b) positioning errors’
CDFs for the three different positioning approaches.

VLCP approach, and fingerprint-based indoor position-
ing approach are 6.37, 26.81, and 5.08 cm, respectively,
showing a significant improvement of positioning accu-
racy by using the OFDM-SCM interleaving-based integrated
VLCP approach and fingerprint-based indoor positioning
approach. Even though the fingerprint-based indoor posi-
tioning approaches achieves higher positioning than the
presented OFDM-SCM interleaving-based integrated VLCP
approach, it needs extra computation and storage space at
devices.

B. Performance Comparisons Versus Transmit Power Levels

In this section, we compare the performance of different
RM approaches in our presented multicell integrated VLCP
IoT network, where the approaches are shown as follows.

1) Optimal RM approach (denoted as optimal QoS-driven
RM) uses the exhaustive search method to find the
optimal AP selection and SG allocation strategy.

2) Our proposed suboptimal RM approach (denoted as
proposed QoS-driven RM), with the purpose of guar-
anteeing the QoS requirements of the IoT devices while
maximizing the overall data rate.

3) The load balancing (LB) approach without satisfying
QoS support first [29] (denoted as LB RM [29]).
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Fig. 6. Performance evaluations and comparisons versus the maximum transmit electrical power per AP.

Fig. 7. Performance evaluations and comparisons varying total number of devices.

4) The RM approach-based the maximal RSSI [38]
(denoted as max-RSSI RM [38]).

Fig. 6 shows the sum data rate of devices, the positioning
error, and the probability of satisfied QoS services versus the
electronic transmit power Pmax per AP for the four approaches,
when the total number of devices is K = 100 and the blocking
probability of LOS link is 0.1. As the increase of Pmax, for
all approaches, the sum data rate performance and the prob-
ability of satisfied QoS services increase, and the positioning
error decreases. This is because that when Pmax increases, the
received SINR and received power allocated on the positioning
subcarriers enhance, leading to the performance improvement.
The data rate of the proposed RM approach achieves about
1.31 Gb/s when Pmax = 100 mW per AP.

From Fig. 6, although LB RM outperforms our proposed
QoS-driven RM in terms of the data rate, it has the higher
positioning error and the lower satisfied QoS level than
the proposed QoS-driven RM. The max-RSSI RM approach
archives the worst performance in the IoT networks because
each device selfishly selects its own nearest AP, leading to the
unbalanced resource allocation.

From Fig. 6(b), as Pmax increases, the positioning error of
all approaches decreases significantly when Pmax < 60 mW,
but the performance is appropriately maintained at a horizon-
tal level when Pmax exceeds 60 mW. Such the performance
improvement results from the high received power on posi-
tioning subcarriers when Pmax is large. Once the positioning

accuracy requirements are guaranteed in the high power
region, the extra power will be allocated to maximize the sum
rate of devices as shown in the optimization problem (14), thus
the positioning accuracy performance is constant when Pmax
is in the high region. In addition, in Fig. 6(a), the improve-
ment rate of the performance is not obvious when Pmax >80
mW, because ICI is one of the key factors which limits the
data rate enhancement in the multicell IoT networks.

C. Performance Comparisons Under Various Device Density

Fig. 7 shows the performance comparisons of the four
approaches versus the total different numbers of devices when
Pmax = 60 mW and the blocking probability is 0.1. It can
be seen that the data rate is constantly increasing to a peak
due to the more probability of searching devices having good
channel gains to enhance the sum rate. After that, it then
declines as K increases further, because the increased num-
ber of handovers limits the data rate improvement and the
more resource may need to allocate to the devices with poor
channel gains to support their QoS requirements. Similarly,
when the number of devices is large, all devices aim to share
the limited power and bandwidth resource, hence, the posi-
tioning error slightly increases and the satisfied QoS level
reduces.

In addition, we can observe that the proposed QoS-driven
RM approach has comparable data rate performances to the
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Fig. 8. (a) Trajectory performance comparisons of the three positioning
schemes under blockages. (b) CDFs of positioning errors under blockages.

LB RM approach when the number of devices is large and out-
performs the max-RSSI RM approach. Moreover, the proposed
QoS-driven RM approach significantly achieves the higher sat-
isfied QoS levels and the lower positioning error than both the
LB RM and max-RSSI RM approaches for the large number
of devices. The proposed QoS-driven RM approach achieves
a satisfied QoS level improvement of up to 20.3% compared
with LB RM (non-QoS-driven RM) approach

Because the proposed approach aims to search the QoS-
driven optimized strategy to effectively meet the different QoS
requirements of devices while maintaining the high data rate
performance, thereby improving the device experiences in the
indoor IoT networks.

D. Performance Comparisons Under Blockages

This section compares the performance of the proposed and
existing approaches. For the positioning schemes, we compare
the indoor tracking performance of the following positioning
schemes under blockages.

1) Our proposed robust positioning scheme by combining
PDR with the RSS-based VLP (denoted as PDR-RSS-
based VLP).

2) The VLP-assisted PDR positioning scheme, similar
to [21] (denoted as VLP-assisted PDR [21]).

3) The RSS-based VLP positioning scheme by using the
previous location information to predict devices’ loca-
tions under blockages [42] (denoted as RSS-based VLP
prediction [42]).

4) Combining PDR with the fingerprint-based VLP
(denoted as PDR-fingerprint-based VLP).

The indoor tracking performances over a 2-D indoor floor
for the three positioning schemes under blockages are pro-
vided in Fig. 8(a). All the four schemes have the similar
positioning accuracy performance under the LOS condition
(no blockages). However, the positioning error is large for
the VLP-assisted PDR scheme [21] under blockages, and it
is further increased as the traveling distance increases in this
case. Because the positioning error will gradually increase over
time using the PDR method to predict devices’ locations under
blockages. By contrast, the best positioning performance is
achieved by using our proposed PDR-RSS-based VLP, where
the information of the RSS results are used to correct the posi-
tioning error under blockages, hence, the trajectory is pulled
back to the true path as analyzed in Section V-B. In addition,
the RSS-based VLP with prediction scheme [42] obtains the
high positioning error under blockages because it does not con-
sider the movement behaviors of devices and choose the most
likely predicted location based on the previous information,
hence, it still has the high positioning errors during devices’
traveling in this case.

The CDFs of the positioning errors of the three schemes
under blockages are shown in Fig. 8(b). The mean position-
ing errors of the PDR-RSS-based VLP, VLP-assisted PDR,
RSS-based VLP prediction, and PDR-fingerprint-based VLP
schemes under LOS blockage events are 5.13, 21.97, 16.35,
and 4.02 cm, respectively.

Fig. 9 shows the robustness of the three positioning schemes
against the LOS blockages. When the blocking probability
increases, the positioning error obviously increases for the
VLP-assisted PDR and RSS-based VLP prediction schemes
while it slightly increases for the PDR-RSS-based VLP
scheme. Moreover, the gap of the performances between them
becomes larger with the increased value of the blocking prob-
ability. The above positioning results indicate the effectiveness
of the proposed robust scheme against the LOS blockages in
the IoT networks.

The effect of the blocking probability of LOS links on
the sum data rate and the satisfied QoS level are shown
in Fig. 10. From Fig. 10(a), the data rate performances
of all approaches are decreased upon increasing the LoS
blocking probability. However, our proposed approach with
robust handover can still achieve a good performance and
it outperforms the LB RM approach when the blocking
probability is more than 0.3. In addition, the probability
of the satisfied QoS services decreases during this pro-
cess because the blockage significantly degrades the received
desired power or SINR, results in failing to guarantee the dif-
ferent QoS requirements of devices. However, for all blocking
probabilities, our proposed approach still outperforms other
approaches.
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Fig. 9. Average positioning error comparisons against the blocking proba-
bility of LOS links.

Fig. 10. Performance evaluations and comparisons against the blocking
probability of LOS links.

VII. EXTENDED APPLICATIONS OF THE

PRESENTED WORK FOR IOT

The presented integrated VLCP is capable of supporting
high-speed data transmission and content-intensive Internet
applications (e.g., photographs, messages, control information,
videos audio, videos transmission, and live streaming) for the
massive number of IoT devices in smart city, smart industry,
smart health, and smart building. The IoT networks can uti-
lize VLC medium to communicate between the IoT devices

and the associated cloud (Internet) with high-speed capacity,
resulting in fast data transmission and less data stored on the
cloud as well as the low transmission latency. In addition,
it is worth noting that big smart complexes, shopping marts,
airports, factories, hospitals, smart car parks, underwater com-
munications, and transportation entities need such presented
integrated VLCP architecture to support real-time applications
securely at high-speed and high-accuracy tracking.

1) Indoor Localization and Tracking: In the indoor IoT
networks, there still lacks an indoor localization solution
that can answer the needs of various location-based IoT
applications with desired simplicity, robustness, accuracy,
and responsiveness [20]–[25], [43]. VLC-based localization
has the ability to achieve the real-time localization with
high localization accuracy compared with RF-based position-
ing systems, which makes it suitable for real-time tracking
of IoT devices [20]–[25], [43]. VLP for IoT environments
can be used for indoor positioning of forklifts, tracking
of indoor robots or indoor vehicles, and aerial drones to
carry out autonomous tasks. For example, unmanned aerial
vehicles (UAVs), also known as drones, offer a safe and cost-
effective way for hard-to-reach areas for tasks such as visual
inspections [20]–[25], [43].

2) Energy Harvesting: In the indoor IoT environments,
there exist some energy-constrained devices, e.g., sensors for
monitoring, humidity and indoor air quality, etc. Hence, it is
important to extend the lifetime of the devices due to their
limited energy budget. In our presented VLCP network, at
each IoT device, light energy harvesting is achieved by using
PD and the harvested energy is used for collected data report-
ing through the RF uplink [14], [15]. Hence, the presented
integrated VLCP network-based light energy harvesting can
provide the potentials to charge the IoT devices in indoor
scenarios.

3) Provide Security and Safety for IoT: Our presented inte-
grated VLCP network provides inherent security, since visible
light signals do not penetrate walls [1]–[3]. Such a secrecy
feature is an important requirement for IoT applications such
as the ones for Industry 4.0. In addition, visible light sig-
nals do not generate the electromagnetic interference so it can
be applied in the electromagnetic interference-sensitive IoT
environments (e.g., hospitals, airports, and gas stations).

4) Underwater IoT Communication: Underwater commu-
nication is important for underwater observation and sea
monitoring. However, in underwater environments, conven-
tional RF-based systems do not effectively work due to the
high attenuation of RF signals, and acoustic (sonar) wave can-
not provide high data rate even though it has low attenuation.
By contract, visible light is capable of supporting the high data
rate over short distances in underwater, and this could enable
divers and underwater vehicles effectively communicate with
each other [44].

VIII. CONCLUSION

In this article, we presented a new integrated VLCP IoT
network to support the high-speed data transmission and
high-accuracy positioning services for indoor IoT devices.
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In order to satisfy different QoS requirements (ranging from
the minimum data rate and high positioning accuracy), a
QoS-driven optimized joint AP selection, SG allocation, adap-
tive modulation, and power allocation approach was proposed
in the integrated VLCP IoT network. After that, a low-
complexity iterative algorithm was presented to solve the RM
optimization problem. Furthermore, the robust handover mech-
anism and PDR-assisted VLCP scheme were presented to
maintain good network performance under blockages. The
simulation results verified the superiority in the performance of
the presented integrated VLCP IoT network and also showed
that the proposed approach and robust schemes outperform
other existing solutions in terms of improving the data rate and
guaranteeing devices’ QoS requirements. VLC-only networks
face some challenges, such as lack of uplink support, sus-
ceptibility to LOS blocking, and small coverage area, but
these challenges can be addressed by combining RF with
VLC. Hence, the co-deployment of RF and VLC networks
is a straightforward way to overcome the above-mentioned
shortcomings and highlight its advantages [1]–[3].
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