INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smali overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

RICE UNIVERSITY

QoS-Driven Server Migration for Internet Data
Centers

by

Supranamaya Ranjan

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

£ 22

Dr. ﬁﬁward}& . Knightlﬂ]hair

Assistant Professor of Electrical and
Computer Engineering

il

7
Dr. Petet{‘gruschel
AssociateProfessor of Computer Science

Dr. Willy @vaenepoel

Professor of Computer Science

Houston, Texas

May, 2002

UMI Number: 1408703

®

UMI

UMI Microform 1408703

Copyright 2002 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

QoS-Driven Server Migration for Internet Data Centers

by

Supranamaya Ranjan

Many organizations have chosen to host Internet applications at Internet Data
Centers (IDCs) located near network access points of the Internet to take advantage
of their high availability, large network bandwidths and low network latencies. Cur-
rent IDCs provide for a dedicated and static allocation of resources to each hosted
application. Unfortunately, workloads for these sites are highly variable, leading to
poor resource-utilization, poor application-performance, or both. The goal of this
thesis is to develop a framework for QoS-driven dynamic resource-allocation in IDCs.
Termed QulD (Quality-of-Service Infrastructure on Demand), the framework’s con-
tributions are threefold. First, we develop a simple adaptive algorithm to reduce the
average number of servers used by an application while satisfying its QoS-objectives.
Second, we develop an optimal off-line algorithm that bounds the advantage of any
dynamic policy and provides a performance benchmark. Finally, we perform an ex-
tensive simulation study using traces from large-scale E-commerce and search-engine

sites.

Acknowledgments

This thesis charts my journey into the world of research and encloses a sense of
achievement to spur me on and memories to look back at and smile.

I thank my advisor Dr. Edward Knightly for his guidance and constant encour-
agement throughout this process. I am also thankful to Jerry Rolia (HP Labs) for
his guidance and for those long discussions that we regularly had over the past one
year. I am also thankful to Huirong Fu (Rice University) for her help in developing
the QulID-optimal algorithm and her constant support all-throughout. I am really
lucky to have worked with such great researchers and words alone are insufficient to
express my gratefulness.

I thank Martin Arlitt (HP Labs) and Jeff Dean (Google) for their help in procuring
the EC and SE traces respectively. I am also thankful to Li Deng, Dr. Richard Tapia,
Cong Teng (Rice University), and Xiaoyun Zhu (HP Labs), for their suggestions and
comments on the QulD-optimal algorithm. I am also thankful to Dr. Robert Jump,
Dr. Bart Sinclair and Dr. Vijay Pai (Rice University) for their advice on yacsim
while developing the simulator for the QuID-online algorithm.

I am also thankful to my friends Aditya, Auleen, Feby, Hema and Shubha for their
active interest in my work and for being what they are; the best friends ever.

Most of all, I thank my parents and my sister for without them, I wouldn’t be

what I am and this work wouldn’t be what it is.

Contents

Abstract ii
Acknowledgments il
List of Illustrations vi
List of Tables vii
Introduction 1
1.1 Motivation 1
1.2 Contributions 2
1.3 Organization 3
System Architecture and Model 5
2.1 Architecture 5
22 System Model 7

An Algorithm for QoS-Driven Infrastructure on Demand 9

3.1 QulD-online 9
3.2 Discussion e 11
Optimal Off-line Algorithm 13
4.1 Problem Formulation 14
4.2 Linear Programming Solution 18
43 Relaxed Optimal 19

Trace-driven Simulation Experiments 21

5.1 Methodology
95.1.1 Traces

5.2 QulD Performance Gains
5.3 Control Time Scale and Migration time
5.4 Trace Characteristics

9.4.1 Methodology for Trace Transformation

5.4.2 Experiments with Transformed Traces
Related Work
Conclusions

Future Work

Bibliography

33

36

37

38

2.1
2.2

4.1

5.1
5.2
5.3

5.4
9.5
5.6
5.7

INlustrations

IDC Four Tier Architecture 6
System Model 7
Workload 2. 14
Trace Request Arrivals and Workload 23
QuID-online versus Static 25
Number of Servers in the Cluster vs. 95%-ile Response Time

(100%-ile for QuID-optimal) 27
Impact of 7 and M on QoS and Resource Savings 29
Original and Transformed EC Traces 30
Impact of Peak-to-Mean 31

Impact of Autocorrelation 32

Tables

5.1 Mean CPU Demands for Different Request Types of the EC-trace.
Demand values are relative to the mean CPU demand of a cache-hit

request on the application tier..

Chapter 1

Introduction

1.1 Motivation

Both large- and small-scale web content publishers and application service providers
are increasingly employing Internet Data Centers (IDC) to host their services. IDCs
provide physical resources and space for customer servers, systems management ser-
vices to help manage the servers, and high speed Internet access.

Clients of such hosted services have performance level expectations, including
request throughput, response time, transfer bandwidth, and probability of session
completion. In current IDC architectures with thousands of servers and hosted sites,
each service must be uniquely engineered to attain its desired performance profile.
This may be possible if each site’s workload remains static, or at least remains within
a pre-specified bound. However, evidence from workload analysis indicates that de-
mands are highly variable (often changing by a factor of between 2 and 20 throughout
the day) and unpredictable (with demand surges due to special events) [2]. Since cur-
rent IDC architectures are manually configured and cannot automatically adapt to
these workloads, they result in poor resource utilization or significant performance
degradation when loads exceed capacity.

To address these limitations, infrastructure-on-demand architectures have been
recently introduced to dynamically share the vast computing resources of IDCs [1,

18]). The central idea of such architectures is to securely and adaptively migrate

servers from one site to another according to workload demands. For example, if one
hosted application is experiencing a demand surge, servers can be migrated to this site
from a shared pool or away from underloaded sites. While such architectures are an
important step in the design of next-generation IDCs, dynamic resource management
techniques are still needed to exploit the efficiency gains of a dynamic policy while
ensuring application QoS requirements are satisfied. Furthermore the effectiveness of

migration techniques must be assessed.

1.2 Contributions

In this thesis, we introduce QulD (Quality of Service for Infrastructure on Demand),
a framework for QoS-driven dynamic resource allocation in IDCs. Our contributions
are as follows.

First, we devise a simple adaptive algorithm (QulD-online) to provide hosted
clients with the same or better performance profile as with a dedicated set of servers.
The key is to exploit long-time-scale variations in the hosted application workloads.
In this way, QuID-online provides a practical dynamic algorithm to realize significant
reductions in resource requirements as compared to static approaches.

Second, we devise an optimal off-line algorithm (QuID-optimal) that computes
the minimum resources required for a given application arrival and demand sequence.
In particular, QuID-optimal jointly optimizes the server allocation decisions, request
load balancing decisions, and CPU scheduling decisions. While QuID-optimal is
clearly not implementable in actual systems, it serves two important purposes. First,
it provides a performance benchmark for evaluating practical algorithms such as
QuID-online. Second, it allows us to explore the fundamental limits of dynamic

IDC architectures in that it provides a bound on the resource savings that can be

achieved by any dynamic allocation policy subject to satisfying an application’s QoS
requirements.

Finally, we perform an extensive set of simulation experiments using traces from
a large E-commerce site (EC trace) and a major search engine site (SE trace). With
trace-driven simulations, we (1) provide a proof-of-concept demonstration of QoS
infrastructure-on-demand and quantify the available efficiency gains; (2) compare the
available gains of QuID-online and QulD-optimal as compared to static allocation;
and (3) study the performance impact of key factors such as server migration time,
control time scale, and trace characteristics.

With the experimental study, we quantify the workload, system, and algorithm
characteristics essential to realizing significant gains using QuID. Example findings are
that for the EC trace with a peak-to-mean ratio near 1.5 and a strong autocorrelation
value above 0.99 at a lag corresponding to a 5 minute server migration time, QulD-
online reduces the resource requirements over a static allocation policy by 25%. For
traces with peak-to-mean ratios near 5, this reduction is increased further to 68%,
despite the traces having more rapidly decaying autocorrelation functions, as the
workload retains strong autocorrelation values at the key migration and control time

scales.

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we describe the
multi-tier IDC architecture and dynamic server-migration system model. In Chapters
3 and 4, we introduce the QuID-online and QuID-optimal algorithms, which we eval-
uate via trace-driven simulations in Chapter 5. In Chapter 6 we discuss the related

work. Finally, we conclude in Chapter 7 and discuss the potential research directions

in Chapter 8.

ot

Chapter 2
System Architecture and Model

In this chapter we describe the basic system architecture of an Internet Data Center
that can dynamically migrate servers among hosted applications. Moreover, we de-
scribe our system model that serves as an application-tier IDC abstraction to study
the QulD framework.

Throughout this thesis, a session refers to a sequence of affiliated requests for an
end user. For example, an e-commerce session would consist of a number of requests
including the download of catalog pages, searches for specific items, management of
a “shopping cart”, and purchase confirmation and payment authentication at “check

out”.

2.1 Architecture

Figure 2.1 depicts the four-tier architecture prevalent in today’s IDCs. To illustrate
this architecture, consider the requests of an e-commerce session. First, the access
tier routes requests to the correct server cluster and performs basic firewall functions
such as intrusion detection. Second, upon arriving at the web tier, load balancers
may parse the request’s URL and route it to a web server typically according to a
load-balancing policy (e.g., using round robin or more sophisticated policies as in
reference [5]). If the request is for a static web page, a server in the web tier serves

the requested page. If the request is for an e-commerce function, it is routed to

the application tier. The application tier stores the state of the request’s session
such as the contents of the shopping cart and performs operations such as purchase
processing. Finally, in cases where the session contains requests such as database

searches, the request is serviced by the database tier.

Figure 2.1 : IDC Four Tier Architecture

In scenarios such as the e-commerce example above, each session has associated
state information (e.g., shopping cart contents) that must be shared by all requests
of the session. Since it is inefficient to transfer session state between servers, each
session must be associated with a particular application server. This requirement is
referred to as session affinity. Sessions are assigned a unique identifier (session ID)

that is passed with each request. Web servers use the session ID to route requests

to the proper application server. To allocate new sessions to servers, the web servers
can use round robin or other more sophisticated measurement-based load balancing

techniques.

2.2 System Model

Session Requests QuiD
A Clusier
| v
Web T Mcasurements
l 7 = X | U.AX Stared Server Pool

D

N

delsy M
~
Figure 2.2 : System Model

In this thesis, we consider a simplified abstraction of the multi-tier IDC archi-
tecture to explore the issue of QoS-driven dynamic server migration. In particular,
we consider the system model illustrated in Figure 2.2. The system model depicts a
single application tier of servers as well as the dispatcher that allocates sessions and
requests to servers as described above. For a single hosted application, the system
can be viewed as dynamically migrating servers to and from a shared pool according
to the workload and QoS requirements of the hosted application.

Importantly, there is a migration time M associated with migrating a server from
the shared pool and into a particular application’s server cluster. There are several
ways this can be accomplished. For example a migration time could include the

booting of an operating system and start of an application, or it may include the

time needed to restore a paused/migrated image of an application in execution. We
consider migration times between 1 minute and 10 minutes in our experiments.

Similarly, releasing a server from a cluster also takes time, as even after web
servers stop sending new sessions to the application-tier server, all sessions currently
in progress at the server must be completed or timed out. Based on server logs, we
expect typical “warm-down times” to migrate out servers to be in the range of 1 to
15 minutes.

In this work, we consider the application tier to be the bottleneck as the work-
loads that we consider, namely a large e-commerce site and a popular search-engine
contain a large percentage of dynamic requests. Thus, even though our system model
considers server migration at the application tier only, it can be extended to migrate

servers in and out of the web and database tiers as well.

Chapter 3

An Algorithm for QoS-Driven Infrastructure on
Demand

In this chapter we present an algorithm for server migration in dynamic IDCs that
attains predictable Quality of Service. The purpose of the technique is to maintain
a targeted cluster-wide average CPU utilization by acquiring and releasing servers in
response to changes in load. With simple queueing theoretic arguments and simula-
tion experiments, we show that QulD-online’s utilization-target provides an effective
mechanism for maintaining cluster-wide QoS. Moreover, by time-averaging workload
variations and (necessarily) gradually migrating new servers into and out of the clus-
ter, the algorithm minimizes the impact of rapid fluctuations in load and instead

responds to long-time-scale trends.

3.1 QulD-online

To achieve these goals, the online algorithm requires measurements characterizing the
state of the system. Thus, the QuID-online cluster manager depicted in Figure 2.2
periodically queries the application servers for summary workload information. The
measurement interval, which we denote by 7, is typically on the order of minutes in
duration. Thus, every 7 the cluster manager queries servers for the following measure-
ments: X, the number of request completions in the previous measurement interval;

A, the number of request arrivals in the previous measurement interval; and U, the

10

average CPU utilization (over all servers) in the previous measurement interval.* Note
that average CPU utilizations are generally available from operating system monitors
and application level measures such as request arrivals and completions per interval
are typically available from server logs. In both cases, this information is summarized
at the servers and communicated to the cluster manager.

Given N, the current number of servers, as well as p, the target utilization, QuID-

online computes N’, the required number of servers for the next interval as follows:
1. D =U/X, compute the average demand per completion;

2. U' = max(A, X)D, compute the normalized utilization based on the current

number of servers and all arrivals;

3. N' = [NU'/p], compute the number of servers needed to achieve the target

utilization p.

Step 1 computes D using cluster-wide aggregate utilization and completion mea-
surements U and X, as well as the utilization relationship U = X D. Step 2 normalizes
the CPU utilization with respect to the current number of servers and the number of
arrivals for the measurement interval. When the system is under increasingly heavy
load, arrivals may exceed completions and the computation of U’ takes this into ac-
count. This allows QuID-online to react more quickly to increases in load than via
the use of X or U alone. Moreover, we use the maximum of A and X to avoid re-
leasing servers too quickly, thereby making the algorithm less sensitive to short-term
decreases in load. Thus, the aggregate CPU utilization U’ is the normalized utiliza-
tion. In Step 3, we compute the upper bound on the number of servers N’ needed to

maintain the target utilization p.

*Namely, U = (U1 + Uy +--- + Un)/N from the reported values of individual CPU utilizations.

11

QulD-online initiates requests to acquire or release servers whenever N' # N.
However, note that the overhead due to server migration time prohibits rapidly chang-
ing the number of servers. There are several aspects of the algorithm which mitigate
the effects of this overhead. First, the measurement interval can be increased to
average out short-term load fluctuations. Second, we note that the migration time
itself provides a damping mechanism and we employ an additional policy as follows.
If more servers are needed (N’ > N), servers previously warming down in preparation
for migration out of the cluster are reinstated into the cluster in a last-in-first-out
order before any requests are made to acquire additional servers. Similarly, if fewer
servers are needed (N’ < N), servers previously warming up in preparation to join
the cluster are released in a last-in-first-out order before any requests are made to
release servers doing useful work. Finally, we incorporate the overhead of migration
time by accounting for servers migrating to and from the cluster in the computations

of the average numbers of servers.

3.2 Discussion

QulD online’s use of a target CPU utilization p as a control parameter for QoS is
justified as follows. First, assume that servers have a large number of threads so
that requests rarely incur software blocking. Moreover, consider that threads are
scheduled in a first-in-first-out manner without preemption by their server’s CPU.
Furthermore, the individual sessions constituting the total workload can be considered
to be independent. In this scenario, a server cluster as in Figure 2.2 can be modeled

as a G/G/N system which has a mean response time R under heavy traffic given

12

by [16]: .
U o2+7%
R=x*aa-0)

where ¢2 and of are the variance of interarrival and service times, respectively, and
t is the mean interarrival time. Since, the response time R is determined by the
utilization U, we maintain a target utilization p by controlling the number of servers
N.

Regardless, QuID-online does not attempt to relate R and U directly and makes
no such assumptions about inter-arrival or service time distributions. However, the
relationship between response time and target utilization can be determined empiri-
cally for a particular workload. We utilize this methodology in Chapter 5 and show
how a proper setting of p can control cluster-wide QoS.

Finally, consider the following numerical example. Suppose the target utilization
is p = 0.5, the number of servers is N = 14. Moreover, consider that over the previous
measurement interval, we have X = 500 completions, A = 520 request arrivals, and a
measured cluster utilization of U = 0.6. In this case, we have D = 0.6/500 = 0.0012
and U’ = 520(0.0012) = 0.624 such that the required new number of servers is given
by N’ = [14(0.624)/0.5] = 18. Since N' > N a request is initiated to acquire

N' — N =4 additional servers for the cluster.

13

Chapter 4
Optimal Off-line Algorithm

In this chapter we develop QuID-optimal, an optimal off-line algorithm for resource
allocation in dynamic IDCs. QuID-optimal provides a benchmark for evaluation of
practical algorithms by computing the minimum number of servers required by a
server migration algorithm such that the application’s response time requirement
(QoS) is bounded cluster-wide. Consequently, it characterizes the maximal available
gain of any dynamic policy as compared to a static policy.

QuiD-optimal uses as its inputs a workload trace, i.e., a sequence of session and
request arrival times as well as the corresponding server CPU processing time required
to service each request. For a particular migration time and maximum response time,
the algorithm jointly computes the best sequence of dispatching decisions (allocation
of requests to servers), scheduling decisions (when to serve each request), and dy-
namic server allocation decisions (how many servers are required to ensure all request
response times are within the required QoS bound). The solution, while not realizable
in practice, provides the “best” decision sequence among all three dimensions in that
it provides the minimum server solution subject to the maximum response time QoS
requirement.

To solve this problem, we first formulate the dynamic server allocation problem
as a constrained optimization problem. Next we transform the non-linear problem
into a linear programming problem and show that the solutions of the two problems

are equivalent. Finally, we discuss a simplified and more computationally feasible

14

(but still not on-line realizable) bound that relaxes some of the most computationally

intense constraints.

4.1 Problem Formulation

Consider a set of requests I such that request i € I has arrival time a; and workload or
required server processing time w;. Moreover, consider that the system has migration
time M and control time scale 7, and that the application QoS requirement is a
maximum response time r*. Moreover, each request must be serviced by a single
server.

As described above, our objective is for each server to service all queued requests
according to an optimally computed non-preemptive schedule, optimally computed

dispatching, and a minimum number of servers.*

Figure 4.1 : Workload i

Define /; (I; = 1,2,--- ,r* — w; + 1) such that request i begins service at time
a; + l; and define r; such that request i completes service at time a; + ;. Thus, as

illustrated in Figure 4.1, r; is the response time and we say that request ¢ is being

*We consider a discrete time problem formulation with the time granularity representing a tradeoff
in the accuracy of the solution and the time required to compute the optimal solution. In the

experimental results of Chapter 5, we consider a granularity of 1 second.

15

serviced with schedule /;.! Let the indicator z/ be defined such that z/ = 1 if request
¢ is serviced by server j, and z-,’ = 0 otherwise. Moreover, let the indicator yf’ =1if
request ¢ is serviced by server j under schedule /. Finally, let the indicator 2:,’: =1if
at time ¢, request ¢ is being serviced by server j under server schedule .

Denote J as the set of servers, L; as the set of feasible schedules of request i,
T; = (@i, a; + r*] as the interval of arrival time to departure deadline of request i, S
as the set of sessions and s,, as the set of requests in session m, s,, € S. Let T be the
trace duration, K = § be the number of measurement intervals, N; be the number
of servers at the k-th measurement interval, and N; € {0,1,2,---}.

Our objective is to jointly optimize the request dispatching decisions z{', CPU
scheduling decisions y{", and dynamic server allocation sequence /V; that minimizes
the required resource C, expressed as

K K
min{M x Z(Nk ~Ni_))t+1x ZM}, (4.1)
k=1 k=1

subject to

Cn Ne2D NN 4,

icl jeJ leL;
(k—1)r+1<t<kr

ke{1,2,--- K}

tFor ease of notation, we henceforth drop the subscript i for /;, as the request indexed is clear

from the context.

€ 3 D di=w,

JEJ leL; teT;

1el
(C3) T’t=0y
t¢T:
1el
le L;
jed
) Yo+ Yedst
leL; leL,
ikelisk
jed
te {]_’ ’T}
(€5) YN ki =wix 2,
leL; teT;
el

jed

16

17

(C6) 2 =4,
1,k € sy,
Sm €S
jedJ
(€7 ol =Ty = = Togury =%
t=a;+1
le L;
jeJ
©c8) Y) =1
jed ek,
iel

where Ny = 0. The first term in Equation (4.1) represents the resource overhead
due to migration, while the second term represents the resource consumption when
servers are in active use. Constraint (Cl) is a system constraint that the cluster
has sufficient capacity during each measurement interval k to service all scheduled
requests. Constraints (C2) and (C3) are QoS (response time) constraints that each
request ¢ arriving at a; should be finished before a; + r*. Constraint (C4) guarantees
that a single server services no more than one request at any time instant t. Constraint
(C5) ensures that each request is serviced by a single server. Constraint (C6) is
the session-affinity constraint that requests belonging to the same session will be
serviced by the same server. Finally, constraints (C7) and (C8) are non-preemption

constraints, ensuring that each request is serviced continuously once it begins service.

18

4.2 Linear Programming Solution

The first term (Np — Ni_,)" in the objective function hinders us from solving the
problem with linear programming method. In this section, we first define a linear
programming problem Q, then prove that problems @ and C have the same solution.

First, we define a linear programming problem @ as follows
K K
min{M x Zak +7 X ZN"}’ (4.2)
k=1 k=1
subject to

(C9) Np— Ne— =ax — B,

ke{1,2,---,K}

and constraints (C1)-(C8), where ax > 0 and 8 > 0.

The following lemmas and theorem show that problems @ and C are equivalent.
Lemma 1 For any pair (Ni, Ni_;) with N, and Ni_, non-negative integers, there
exists a sequence (ay;, Ox;) with ag; > 0 and SB; > 0, such that N, — Ni_, = ag; — B

for all 7, and minay; = [N, — Ni_]*.

Proof: There are three relevant cases for N — Ni_;. If Np. — Nix_; = 0, then

[N — Ne1]¥ = 0, since B; > 0V 4, minag; = 0. If Ny — N, < 0, then
1

[Ne — Nx_1]¥ =0, since B; > 0 V i, minag; = 0. Finally, if Ny — Ni_, > 0, then

[Nk —Ni—1]* = Ni—Ni._,. Thus, since B;; > 0V i, we have that miin ari = Np—Ni_,.

0

Lemma 2 If a; and N is the optimal solution of problem @ such that @* = min@Q =

K K
{Mx Y ag+7x 35 Ng}, with the statement in Lemma 1, then a} = min aj; for all k.
k=1 k=1 t

19

Proof: For any pair (Ng, Ni_,), there exists a sequence (a};, 85;), ai; > 0, 8;; > 0,
such that N} — Ng_, = of; — B;;, for all k, i. We need to show that o} = miin o, V
k which we prove by contradiction as follows.

Assume that there exists an [€ [1,2,---, K] such that o] # minay;. Let & =
miina,‘,-. Then we have d; € {a;;}, and since o] € {af.}, we have ¢; < a]. Replacing
o] with d;, we have

-1 K K
Q={Mx(D ai+a+ Y ap)+7x> N}
k=1 k=1+1 k=1

Since M > 0, Q < Q* = min Q, which leads to a contradiction. Thus, af =minag. O
1

Theorem 1 Optimization problems @ and C have identical minimum values and

identical solutions in terms of z;*, 4", z/* and Nj.

Proof: From Lemmas 1 and 2, we have af = (Ny — N;_,)™ for all k. From Equations

(1)-(2), problems @ and C are equivalent. O

4.3 Relaxed Optimal

Given the high computational complexity of the above linear programming formula-
tion, we consider the following relaxed optimization problem in order to efficiently
compute optimal solutions to the large 24 hour traces described in Chapter 5. Namely,
for the experimental investigation of QuID-optimal, we consider system constraint
(C1), response time constraints (C2)-(C3) and constraint (C9) while relaxing con-
straints (C4)-(C8). While significantly reducing the computational complexity, re-
moving these constraints also results in a reduction in the computed minimal number

of required servers. For example, by relaxing the session-affinity constraint (C6),

20

requests within a session may be serviced by different CPUs, resulting in fewer re-
quired CPUs overall. Hence the reported QuID-optimal experimental results provide
a bound on the performance of an on-line algorithm.

In all cases, we use the linear programming package CPLEX [11] to compute the

optimal decision sequence.

21

Chapter 5
Trace-driven Simulation Experiments

In this chapter, we use workload traces from two large-scale commercial sites to
evaluate the performance of the QuID-online algorithm and to explore the limits of
dynamic server migration via the QuID-optimal algorithm. As a further base-line,
we also compare with the case of a static system in which the number of servers
in the IDC cluster remains fixed for all time. Finally, we explore the impact of
trace characteristics such as the workload’s peak-to-mean ratio and autocorrelation
function on performance by perturbing one of the traces via self aggregation and
log transforms. This methodology allows us to study the impact of various trace

attributes on the effectiveness of QulD.

5.1 Methodology
5.1.1 Traces

We use the two commercial traces depicted in Figure 5.1 for our evaluation. The
“EC trace”, studied in [3], is a 24-hour trace from a large-scale E-Commerce site
with a muiti-tier architecture as illustrated in Figure 2.1. The “SE trace” is a near
24-hour trace obtained from Google, a large scale Search-Engine website that relies

on a cluster of search servers. The SE trace was collected in early 2000 and consists

22

Request | Percentage Mean demand
type of requests
Request Response
Web | App | DB | App | Web
Static 18.7 10 0 0 0 0
Cache Hit 40.5 10 1 0 0 1
Cache Miss 17.4 10 | 500 { 60 1 1
Uncacheable 8.08 10 | 100 | 60 1 1
Search 10.2 10 | 40 [O 0 1
Other 5.07 10 | 20 [O 0 1

Table 5.1 : Mean CPU Demands for Different Request Types of the EC-trace. De-
mand values are relative to the mean CPU demand of a cache-hit request on the
application tier.

23

of request IDs and times to service requests (and not actual query information).* For
the two traces and a 20 minute aggregation granularity, Figure 5.1(a) depicts the rate
of request arrivals and Figure 5.1(b) depicts the workload which refers to the total
CPU demand arriving per second. Note that the SE trace has a smaller request rate
but a larger workload than the EC trace due to the larger mean CPU processing time

per request for searches as compared to e-commerce requests.

L
8

§
8

8
&

y & 8 8
Ammw(manmmm)

Request antval rate (mumber of requests per second)

Time (hours)

(a) Requests (b) Workload

o 2 4 1] a 10 12 14 18 18 20 2 24 a 2 4 L] 8 1612 14 18 18 20 2
Tina (hours)

Figure 5.1 : Trace Request Arrivals and Workload

The EC trace was gathered using web server logging mechanisms and is composed
of sessions that consist of at least one request per session. Each request has an arrival
time, a session-ID, and a classification type according to a static document, cache
hit or miss, search, etc. Using testbed measurements, we computed the mean CPU
demand (processing time required to serve such a request) for each type of request.
The resulting request types, percentage breakdown, and mean CPU demands are

summarized in Table 1. To associate a CPU demand (workload) with each request

*Neither trace is available in the public domain and for privacy concerns, both traces have been

scaled so that the depicted rates of Figure 5.1 differ by a constant factor from the actual traces.

24

in the trace, we determine the request’s classification and generate an exponentially
distributed random variable with mean according to Table 1.

The SE trace is based on search engine server logs obtained from a popular search-
engine website. The SE trace includes each request’s arrival-time and processing time.
As all requests are of the same type for the SE trace (search), classification is not
required. Thus, we compute the empirical distribution of request processing times

(discarding outliers) and generate CPU demands according to this distribution.

5.1.2 Simulation Preliminaries

We have implemented a trace-driven simulator based on YacSim [14]. The simulator
has three key functions as depicted in Figure 2.2. First, it implements the QuID-online
algorithm as described in Chapter 3.! Second, it performs round-robin allocation of
sessions to servers and ensures session affinity as described in Chapter 2. Third, the
simulator models servers according to a first-come-first-serve non-preemptive CPU
schedule, with request service times computed as above. Thus, the simulator neces-
sarily ignores many low level details of the server, but by using trace-driven inputs
and response time measurements, it allows us to study the performance of server
migration algorithms.

For both traces, we consider a single bottleneck tier, and study three factors.
First, we explore p, the target utilization for server CPUs which controls the request
response time. Second, we consider 7, the duration of the measurement interval.
As described in Chapter 3, 7 is the interval over which measurements are collected
by the QuID cluster manager. As the QuID cluster manager re-evaluates N’ (the

new number of required servers) each time it receives new measurements, 7 also

tThe initial number of servers is 16.

25

determines the system’s control time scale. We consider values of in the range of
0.5 to 20 minutes. Finally, we explore the impact of the migration time M required
for a server to join a cluster. We consider values for M in the range of 1 to 10 minutes.

Finally, as simulator outputs, we record the request response times (elapsed time
between request arrival and completion) and the number of servers in the cluster at
each interval 7. We report 95%-ile response times as our key QoS measure and the

average number of servers in the cluster as a measure of QulD’s efficiency.

12000 2
o000 1%
-z ! 12«
£3 1% ¢

£ 8000

§E :ggE
BE 6000 183
gz 4000 -;5%
x ,] E
* 200 © 1 [—— Requestamval-rate [perminute) 18 =

0 1 v 4 g igeeeeer Number of servers (QuiD-oniine) O 2

0 100 200 300 400 500 €00 700 800 900 1000 1100 1200 1300 1400 1500

Time (in minutes)

(a) Request arrival rate and variation in number of servers for QuID-

online

B fg ID-online — i i i J
3% 18 tatic (fixed at 21 servers) = | 4
222 — -
D;EE 12 .
§§-§ 13 i
228 ¢ i
i _

@ 2

0

Time (in minutes)

(b) Request response time for QuID-online and Static (21 servers)

Figure 5.2 : QulD-online versus Static

Figure 5.2 shows the simulator outputs for QuID-online and Static for an experi-

ment in which the QuID-online parameters are M=1 minute, 7=1 minute and p=0.7

26

and the number of servers for Static is fixed at 21. Figure 5.2(a) shows the variation
in the number of servers in the cluster for QuID-online which can be seen to closely
follow the variation in request arrivals. Figure 5.2(b) shows the variation in request
response times (aggregated over requests completed per minute) for QuID-online and
Static with 21 servers. The request response time for Static rises upto as high as 18
seconds, the reason being that 21 servers is not enough for serving this peak workload.
On the other hand, QuID-online still maintains the request response time around 4-5

seconds by increasing the number of servers when the workload increases.

5.2 QulD Performance Gains

Here, we explore the resource savings and QoS improvements available due to QuID
as compared to a static approach. Figure 5.3 depicts the average number of servers
vs. the response times for the QuID-online algorithm, and presents comparisons with
QulD-optimal and static allocation as baselines.? Consider first the QulD-online
curve of the EC trace in Figure 5.3(a). Each point on the curve represents the result
of a simulation for a different target utilization p, with measured utilization values
depicted next to each point. For example, the figure shows that for a utilization of
0.66, QuID-online achieves a 95%-ile response time of less than 5 seconds and requires
17 servers on average. In contrast, for a static allocation, 24 servers are required to
achieve this same 5 second response time. Hence, for this response-time QoS target,
QulD-online has reduced the required number of servers by 29%. An equivalent
interpretation is that for a fixed number of servers, QulD-online improves QoS as
compared to a static approach. For example, for the EC trace and 20 servers, QulD-

online achieves a 95%-ile response time of 3.7 sec vs. 7.4 sec for static allocation, a

*For the figure, 7 = 5 minutes and M = 1 minute.

27

50% reduction. Moreover, as IDC operators would likely be required to over-provision
servers to address unknown and highly variable workloads, the gains of QuID-online

as compared to a static approach may be even more pronounced in practice.

i ol
£ i
E 9
40; Ld s‘
L [
"ntz’e:.‘n;'-:n“;-’7cs 'uzde;“u:';"xhu,mnua
(a) EC trace (original) (b) SE trace

Figure 5.3 : Number of Servers in the Cluster vs. 95%-ile Response Time (100%-ile
for QuID-optimal)

Next, consider the QuID-optimal curve in Figure 5.3(a). As described in Chapter
4, this represents the fundamental limits of the efficiency of a dynamic migration
policy. For example, the figure shows that for a 100%-ile response time of 5 sec,}
QulD-optimal utilizes 12 servers as compared to 17 for QuID-online and 24 for static
allocation; hence, a further resource savings of 21% is available in theory. Next, notice
that with increasing response times, the QulD-optimal curve approaches a limit for
the minimum number of servers needed to serve the entire workload without any
response-time constraints. This limit is given by Ny, =), w;/T (recall that w; is
the workload of request ¢ and T is 24 hours) which for the EC trace is 11 servers
and for the SE trace is 24 servers. Finally, we observe that it would be impossible to

realize the complete gains of QuID-optimal in practice. In particular, QuID-optimal is

§It is not computationally feasible to compute the 95%-ile for QuID-optimal. Thus, the figure
shows the 95%-iles for QuID-online and static, and the 100%-ile for QuiD-optimal.

28

a non-causal algorithm that can (in effect) anticipate future increases in demand and
migrate servers to be ready at precisely the right moment. Moreover, QuID-optimal
ignores session affinity, optimally schedules CPU time, divides the load of individual
requests across multiple servers, etc. (Chapter 4 details the complete scenario for
QuID-optimal.) Regardless, QuID-optimal provides a lower bound on the number of
servers needed to support the workloads.

Next observe that for the SE trace of Figure 5.3(b), the general trends are the
same whereas for higher response times, the resource savings for QulD-online are
larger as compared to static and QuID-online performs more closely to QuID-optimal.
However, as with Figure 5.3(a), with very low utilizations and response times, the
static and QuID-online curves converge to an asymptote quite different than QulD-
optimal. This situation is explained as follows. When the server utilizations are
very low, the 95%-ile of the response times are approaching the 95%-ile of the CPU
demand times such that each server is normally serving a single session at a time. In
such a case, there is no advantage of a dynamic migration policy over a static one.
However, QuID-optimal still shows a resource savings in this regime as it divides
requests among multiple servers thereby reducing response times for a given number

of servers.

5.3 Control Time Scale and Migration time

In this set of experiments, we fix p and study the effects of the migration time M
and the measurement interval 7 on the performance of QuID-online as compared to
static allocation.

Figure 5.4(a) depicts the results for experiments with p = 0.7 and M = 1 minute,

and 7 varied in the range of 0.5 to 20 minutes. In the algorithm, 7 functions as

29

both a measurement interval and the control-time-scale of migration. Thus, if T is
too small, the algorithm is ineffectively attempting to track fast-time-scale demand
fluctuations. Similarly, if 7 is too large, the algorithm is not sufficiently responsive to
demand changes. The figure illustrates these general trends but indicates that most
of the performance gains are obtained across a wide range of 7, with the best value
being 5 minutes.

For the experiments of Figure 5.4(b), p = 0.7 and 7 = 10 minutes and the mi-
gration time M is varied in the range of 0 to 10 minutes. The figure illustrates that
migration time has a relatively minor impact on the performance of QuID-online, as
all of the considered migration times are significantly less than the time-scales of the
trace’s changes in workload demand. (See also the autocorrelation function of the

original trace in Figure 5.5(b).)

Y === . ' == &
s f& — i
i T :
1. . . i NE
b Rt I ‘)
I S N) w’ 3 b
2 M X . L s
: I
2 L . L] W.-'I:-. " " " x L] Al 2 3 ;u:-'”—" 7 1] . 10

(a) Measurement Interval T (b) Migration Time M

Figure 5.4 : Impact of 7 and M on QoS and Resource Savings

5.4 Trace Characteristics

Here we study the performance of the QuID-online algorithm as a function of the

peak-to-mean ratio and autocorrelation function of the trace. To explore this issue,

30

we generate a modified set of traces via a set of log transformations (to modify peak-

to-mean workload ratio) and temporal aggregations (to modify autocorrelation).

{u-‘.

ose7

thetd
bilig

Reques: arvtval rete (rumber of requests per second)

s S k-] F- o s 0 3 » L

k) F-]
Lags (meutes)

10 1
Tore (hows)

(a) Request Arrival Rate (b) Autocorrelation Function

Figure 5.5 : Original and Transformed EC Traces

5.4.1 Methodology for Trace Transformation

Given the limited number of available traces suitable for IDC simulations, we trans-
form the trace by taking the log of (one minus) the scaled number of arrivals and then
again rescaling the modified trace. By repeating this log transformation p times, in-
creasingly higher peak-to-mean ratios are obtained. The effect of this transformation
is illustrated in Figure 5.5(a). Also evident from Figure 5.5(b), the log transformation
modifies the trace’s autocorrelation function. To control the autocorrelation function
directly, we also self-aggregate the trace with different aggregation “batch” intervals
denoted by B. In particular, if the original trace is X, X,,---, a trace aggregated
with a batch interval B has Y; = (X;+ X, +-- - Xi;8-1)/B. Thus, a larger value of
B results in greater temporal correlation. The net effects of these two transformations

are illustrated in Figure 5.5(a,b).

31

!"' .

;

3 L

1 |

I :

ilc- 1
(a) Resource Savings (b) Response Time

Figure 5.6 : Impact of Peak-to-Mean

5.4.2 Experiments with Transformed Traces

Figure 5.6 depicts the results of the experiments with the transformed traces. In
these experiments, we consider p = .7, 7 = 5, and M = 1, and each of the 4 points in
the curve represents results of the log! to log* traces with B = 5 and B = 20. Figure
5.6(a) shows the resource savings of QuID-online as compared to static allocation for
the same 95%-ile response time. Similarly, Figure 5.7 depicts the response time as a
function of the modified traces’ autocorrelation coefficient at a lag of 5 minutes.

We make the following observations about the figures. First, note from Figure 5.6
that with an increasing peak-to-mean ratio, QulD-online is able to extract increased
resource savings. However, the relationship is not linear as the more widely varying
traces are also more difficult for the dynamic algorithm to track due to their more
rapidly decaying autocorrelation functions. For example, the demand surge of the
log* trace results in periods where an insufficient number of servers are allocated such
that response times increase (Figure 5.6(b)).

In summary, while the above log and aggregation transformations are not intended

to produce realistic traces, it results in an important conclusion: if IDCs experience

32

“flash crowds” or demand surges as represented by the log* trace, QuID-online can
track the widely varying load provided that the autocorrelation values are still rel-
atively high (e.g., above 0.9) at lags corresponding to the key time scales of the

system, namely the server migration time and the measurement window (e.g., 1 to

10 minutes).

Figure 5.7 : Impact of Autocorrelation

33

Chapter 6

Related Work

As described in the Introduction and illustrated in Chapter 5, static partitioning
of IDC resources results in under-utilization of resources. A number of related ap-
proaches have been proposed to address this issue [1,9,12,18,19]. Each offers a notion
of utility computing where resources can be acquired and released when/where they
are needed. Such architectures can be classified as employing shared server utility or
full server utility models. With the shared server utility model, many services share a
server at the same time, whereas with the full server utility model, each server offers
one service at a time.

An example of a shared server utility environment is MUSE [9] in which hosted
web sites are treated as services. All services are run concurrently on all servers in a
cluster, and a pricing/optimization model is used to determine the fraction of CPU
resources allocated to each service on each server. A special dispatcher, a level 4
load balancer, routes web page requests for all services only to those servers where
the service has a CPU allocation. The optimization model shifts load to use as few
servers as possible while satisfying service level agreements (SLA) for the services. A
major goal of the work is to maximize the number of unused servers so that they can
be powered down to reduce energy consumption.

Other mechanisms for shared server utilities include cluster reserves for multiple-
service performance isolation [4] and QoS-differentiation algorithms [20]. Examples of

commercial shared server utility computing products that partition server resources

34

in clusters of shared servers include [12,19], which have resource management systems
that aim to satisfy SLAs while better supporting increased resource utilization.

In contrast, a full server utility data center is presented in reference [18] and has
been realized as a product [13]. It exploits the use of virtual LANs and SANs for
partitioning of resources into secure domains called virtual application environments.
These environments support multi-tier as well as single-tier applications as in Figure
2.1 and can also contain systems that internally implement a shared server utility
model. In either case, such a system can make use of our QuID framework as a
resource migration algorithm.

A second example of a full server utility approach is Oceano [1], an architecture for
e-business applications. The security domains are dynamic as the resources assigned
to them may be augmented when load increases and reduced otherwise. Reference
[1] presents an overview of an SLA based management system for the multi-tier
environment that includes service levels for response time metrics gathered within
each domain. Service level violations trigger the addition and removal of servers from
clusters. The focus of [1] is the management architecture and measurements of key
actions such as server migration times. However, in both [1,18] migration algorithms
are not evaluated and no studies of the performance of dynamic migration policies
are presented.

Thus, unlike shared server utility approaches, QulD applies to full server utility
environments such as [1,18]. In particular, we have devised a QulD cluster manager
control algorithm and demonstrated its effectiveness in reducing the number of server
resources needed by hosted applications while satisfying application response time
objectives.

Finally, we note that the issue of web server QoS has received a great deal of

35

attention in contexts such as web server admission control [7,15,17], QoS-based server
selection among servers located at different network nodes [10], operating system
support [6, 8], networking support, etc. Such techniques represent mechanisms at
the request and session time scale whereas QulD operates on time scales of minutes.
Moreover, the granularity of resource control for QulD is the server, whereas such

techniques typically have a shared server utility model.

36

Chapter 7
Conclusions

This thesis presents QuID, a framework for QoS-driven server migration in Internet
Data Centers. We found via trace-driven simulation that the QuID-online algorithm
provides resource savings as compared to static allocation in the range of 25% for
E-Commerce and Search Engine traces with peak-to-mean workloads near 1.5, and
savings near 68% for workloads with peak-to-mean ratios near 5. This reduction is in
comparison with the smallest number of servers that can be statically provisioned to
achieve similar response time percentiles. In general, a static allocation would have to
over-provision additional servers since it is unlikely that the workload’s peak demand
would be known in advance.

The results of the technique also compare favorably with an off-line algorithm that
gives an upper bound on resource savings for a specific workload trace and a maximum
response delay requirement. Potential resource gains appear relatively insensitive to
reasonable values for measurement interval and server migration time.

We explored the sensitivity of the technique with respect to trace characteristics
by perturbing one of the traces. As the peak-to-mean increases greater resources
savings are achieved. However, as a side effect of our method, an increase in peak-to-
mean also causes decreases in autocorrelation of the system load. The decreases in
auto-correlation did not appear to have as significant an impact on resource savings
but do decrease QoS by increasing response time percentiles. In all cases our system

load autocorrelation values were above 0.9 for the time scales of interest.

37

Chapter 8

Future Work

In future work, we plan to consider the interactions of server tiers (i.e., clusters)
within an application as well as multiple applications within an IDC. Moreover, we
plan to explore overload policies, i.e., how to migrate servers in scenarios when the
entire resource pool is exhausted. Lastly, we plan to implement the algorithm in our

large-scale server-migration testbed to provide a proof-of-concept demonstration of

QulD.

[1]

8]

[4]

[5]

[6]

38

Bibliography

K. Appleby et al. Oceano — SLA based management of a computing utility. In
Proceedings of the IFIP/IEEE International Symposium on Integrated Network

Management, May 2001.

M. Arlitt and T. Jin. Workload Characterization of the 1998 World Cup Web
Site. Technical Report HPL-1999-35R1, HP Laboratories, September, 1999.

Trace available at http://ita.ee.lbl.gov.

M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the scalability of a
large web-based shopping system. ACM Transactions on Internet Technology,

1(1):44-69, August 2001.

M. Aron, P. Druschel, and W. Zwaenepoel. Cluster reserves: A mechanism for
resource management in cluster-based network servers. In Proceedings of ACM

SIGMETRICS 2000, June 2000.

M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scalable content-aware
request distribution in cluster-based network servers. In Proceedings of the

USENIX 2000 Annual Technical Conference, June 2000.

G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for
resource management in server systems. In Proceedings of the 3rd USENIX

Symposium on Operating Systems Design and Implementation, February 1999.

39

[7] N. Bhatti and R. Friedrich. Web Server Support for Tiered Services. IEEE
Network, 13(5):64-71, September 1999.

(8] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The eclipse operating
system: Providing quality of service via reservation domains. In Proceedings of

the 1998 USENIX Annual Technical Conference, New Orleans, Louisiana, 1998.

[9] J. Chase et al. Managing energy and server resources in hosting centers. In
Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP), October 2001.

(10] J. Chuang and M. Sirbu. Distributed network storage with quality-of-service
guarantees. Journal of Network and Computer Applications, 23(3):163-185, July
2000.

[11] CPLEX. Simplex optimizer for linear programming problems.

http://www.ilog.com/products/cplex/.

[12] Ejasent. Utility computing white paper, November 2001.

http://www.ejasent.com.

(13] Hewlett-Packard. HP utility data center architecture.
http://www.hp.com/solutionsl/infrastructure/solutions

/utilitydata/architecture/index.html.

(14] R. Jump. Yacsim reference manual version 2.1. ECE Department, Rice Univer-

sity.

[15] V. Kanodia and E. Knightly. Multi-class latency bounded web services. In

Proceedings of the 8th International Workshop on Quality of Service, Pittsburg,

40
PA, June 2000.

[16] L. Kleinrock. ”Queueing Systems, Volume II: Computer Applications”. Wiley,
1976.

(17] K. Li and S. Jamin. A measurement-based admission controlled web server. In

Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

(18] J. Rolia, S. Singhal, and R. Friedrich. Adaptive Internet Data Centers. In
SSGRR’00, L’ Aquila, Italy, July 2000.

[19] Sychron. Sychron Enterprise Manager, 2001. http://www.sychron.com.

[20] H. Zhu, H. Tang, and T. Yang. Demand-driven service differentiation for cluster-
based network servers. In Proceedings of IEEE INFOCOM’2001, Anchorage, AK,
April 2001.

