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Abstract—Usage-based pricing has been recognized as a net-
work congestion management tool. Internet Service Providers
(ISPs), however, have limited ability to set time-adaptive usage-
price to manage congestion arising from time-varying consumer
utility for data. To achieve the maximum revenue, ISP can set its
time-invariant usage-price low enough to aggressively encourage
consumer’s traffic demand. The downside is that ISP has to
drop consumer’s excessive traffic demand through congestion
management (i.e., packet dropping), which may degrade Quality
of Service (QoS) of consumer’s traffic. Alternatively, to protect
consumer’s QoS, ISP can set its time-invariant usage-price high
enough to reduce consumer’s traffic demand, thus minimizing the
need for congestion management through packet dropping. The
downside is that ISP suffers a revenue loss due to the inefficient
usage of its network. The tradeoff between ISP’s revenue max-
imization and consumer’s QoS protection motivates us to study
ISP’s revenue maximization subject to QoS constraint in terms of
the number of packets dropped. We investigate two different QoS
measures: short-term per-slot packet dropping constraint and
long-term packet dropping constraint. The short-term constraint
can be interpreted as a more transparent congestion management
practice compared to the long-term constraint. We analyze ISP’s
optimal time-invariant pricing for both constraints, and develop
an upper bound for the optimal revenue by considering the
specified packet dropping threshold. We quantify the impact of
consumer’s price elasticity on ISP’s optimal revenue and show
that ISP should carry out a differentiated QoS protection strategy
based on consumer’s price elasticity in order to mitigate the
revenue loss1.

I. INTRODUCTION

The rapid growth in Internet traffic requires Internet Ser-

vice Providers (ISPs) to carry out some forms of network

congestion management. Besides some technical forms of

congestion management, usage-based pricing, serving as an

alternative form of congestion management practice, can be

more attractive to ISPs because it is more transparent to public

and thus more acceptable by regulators. In fact, the Canadian

telecom regulator recognized that “economic practices are the

most transparent Internet traffic management practices” [1].

Consumer utility for data exhibits time variation [2], which

results in a time-varying aggregate traffic demand faced by ISP.

Ideally, ISP should adapt its usage-based pricing according

to this time-varying traffic characteristic. For example, the

usage-price should take the form of time-adaptive “congestion

price” to guarantee a full utilization of ISP’s network capacity,

thus maximizing its revenue. The associated billing cost and

1This work has been in part supported by NSF CNS-0720570 and CNS-
0905086 at the Princeton EDGE Lab.

technical complexity, however, restrict price variation over

time, which means that ISP’s practical pricing is actually

“time-constrained”.

Recent work [3] studied ISP’s revenue maximization with

time-constrained pricing. Two different time-invariant pricing

strategies were analyzed. Strategy (i): ISP can set its time-

invariant usage-price low enough to aggressively encourage

consumers’ traffic demand, and then drop packets of con-

sumers’ excessive traffic demand that exceeds ISP’s network

capacity2. In this case, ISP’s revenue is maximized and is equal

to that with the time-adaptive congestion pricing described in

section II.B. However, the downside is that ISP has to use the

congestion management to drop consumers’ traffic demand,

which may degrade QoS of consumers’ traffic 3. Strategy (ii):

ISP can conservatively set its time-invariant usage-price high

enough so that the peak demand from consumers’ aggregate

traffic is within its network capacity. Thus, ISP does not

have to invoke any congestion management. However, the

downside is that ISP may suffer revenue loss because its

network capacity is under-utilized during the off-peak periods.

A tradeoff exists between these two extreme strategies. In

fact, recent report indicates ISPs are slashing prices to gain

traffic and running into the tradeoff between overall revenue

maximization and per-user QoS protection [8]. A survey on

impact of QoS on ISP revenue is also being carried out by US

National Exchange of Carrier Association [19]. Based on these

motivations, in this paper we study ISP’s time-constrained

pricing with QoS measure in terms of the number of packets

dropped. A brief overview of this paper is as follows.

(1) We first formulate ISP’s revenue maximization prob-

lem with the time-constrained price and a packet dropping

constraint. We consider two schemes: (a) short-term per-slot

packet dropping constraint and (b) long-term packet dropping

constraint. We then determine the optimal pricing for revenue

maximization in both cases. Under certain conditions, we

can develop the upper bounds for ISP’s optimal revenues by

considering the specified packet dropping thresholds.

(2) We analyze the impact of consumer’s price elastic-

ity, a measure of the consumer’s change in demand with

2 [5] provides a comprehensive survey on different packet dropping policies
used in IP networks and their effects.

3Dropping too many packets impairs the performance of TCP connection
significantly, e.g., resulting in increase of delay and response time, and the
decrease of link throughput and link utilization [6]. Quality of real-time
application (which usually is built on UDP connection) is also severely
deteriorated if many packets are dropped [7].
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change in price, on ISP’s optimal revenue. We show that

in order to mitigate the revenue loss ISP should carry out

a differentiated QoS protection policy based on consumer’s

price elasticity. Specifically, ISP can minimize revenue loss

by providing a weak QoS protection (e.g., long-term packet

dropping constraint or a loose packet dropping threshold) if

consumer price elasticity is high. In contrast, ISP can afford

to provide a strong QoS protection (e.g., short-term per-slot

packet dropping constraint or a stringent packet dropping

threshold) if consumer price elasticity is low. We also find

that the flat-price is a dominant component in ISP’s revenue

when the packet dropping constraint is loose.

(3) We investigate the dependence of revenue loss on traffic

type, each with its own price elasticity, and show that the

congestion management is more suitable for best-effort traffic

than real-time video traffic. Our analysis captures that the

revenue loss can be marginal for best-effort traffic, but can be

substantial for real-time video traffic. This result is consistent

with the intuition that best-effort traffic has a larger tolerance

to packet dropping (and so is more suitable for the congestion

management) compared to real-time video traffic.

Pricing in communication networks has attracted a lot of

research interests in recent years [11]. In general, two threads

of works exist. The first thread of works focus on efficient

network resource allocation. Specifically, pricing serves as

a control mechanism which can convey the scarcity of re-

source [12]. [13] provided a comprehensive study on how

the economic-driven behaviors of users and network operators

influenced the network performance. The second thread of

works focus on revenue maximization. Specifically, pricing

serves as a revenue reaping mechanism when the network

resource is limited [14] [15]. [16] [17] studied pricing strategy

with multiple ISPs. This paper provides a new angle to study

revenue maximization considering the impact of resource

constraint, and explicitly characterizes the impact of pricing

on the tradeoff between QoS and revenue.

II. PRELIMINARY FORMULATION

A. Each Flow’s Net-Surplus Maximization

We assume that there exists a set F = {1, 2, ..., F} of F
flows requiring bandwidth from a monopolistic access ISP

through a link with capacity C. We treat flow and consumer

interchangeable in the rest of the paper. Given ISP’s pricing

decision, each flow f aims to maximize its net-surplus utility

over a time horizon T = {1, 2, ..., T}

max
{zt

f
}t

∑

t

(σt
fuf (zt

f ) − (ht
fzt

f + gt
f )), (1)

where zt
f denotes flow f ’s traffic rate demand at time slot t

and σt
f denotes flow f ’s utility level at time t. Specifically,

σt
f represents f ’s happiness in using the network at time slot

t, which can be measured by [9]. Meanwhile, ht
f , gt

f denote

ISP’s usage-price and flat-price for flow f at time slot t,
respectively. In this work, ISP is assumed to be monopolistic

and has the pricing power, which means (i) ISP can adopt

the linear combination of usage-price and flat-price to transfer

consumer’s entire net-surplus into its revenue [10], and (ii)

ISP can carry out price differentiation cross different flows.

These assumptions are the most favorable conditions to ISP,

and the outcome represents the maximum revenue ISP can

expect. For clear presentation, in the following we presume

that flow index f ∈ F and time index t ∈ T unless an

additional specification is used. Followed by [3], the utility

function uf (zt
f ) = 1

1−αf
(zt

f )1−αf when 0 ≤ αf < 1(such

uf (zt
f ) is similar to the Cobb-Douglas utility function which

has been widely used in the classic demand theory [20]). Flow

f ’s net-surplus maximization problem (1) can be separated

into individual time slot, and the corresponding traffic rate

demand function can be expressed as: Dt
f (ht

f ) = (
σt

f

ht
f

)
1

αf ,∀t.

Moreover, flow f ’s price elasticity [20] can be calculated as

ξf =
dDt

f (ht
f )

dht
f

ht
f

Dt
f
(ht

f
)

= 1
αf

, which is a normalized metric

representing how much the demand changes as the price

changes.

The price elasticity can be intuitively connected to traffic

type. Specifically, when flow f is price inelastic (i.e., αf

is close to 1), then its utility function approaches to a log

function, which captures the utility of best-effort traffic. In

comparison, when flow f is price elastic (i.e., αf is close to

0), then its utility function approaches to a linear function,

which captures the utility of real-time video traffic [18]. This

is because the operating bitrate for networked video is usually

low considering the available bandwidth and the network

congestion. Hence, the concave utility can be approximated

by a roughly linear function in this regime. In reality, scalable

video codec and adaptive-rate servers are used to achieve

various operating points depending on network status.

B. ISP Revenue Maximization with Time-Adaptive Pricing

ISP’s Revenue Maximization Problem (RMP) with time-

adaptive pricing can be expressed as follows:

(RMP): max
{xt

f
,ht

f
,gt

f
}f,t

∑

f

∑

t

(ht
fxt

f + gt
f ) (2)

subject to: xt
f ≤ Dt

f (ht
f ) = (

σt
f

ht
f

)
1

αf ,∀t, f (3)

∑

f

xt
f ≤ C,∀t (4)

σt
fuf (xt

f ) ≥ xt
fht

f + gt
f ,∀t, f (5)

Specifically, xt
f denotes ISP’s rate allocation for flow f at time

period t. Constraint (3) represents that ISP’s rate allocation

for flow f at time period t cannot exceed flow f ’s demand

according to its traffic rate demand function. Constraint (4)

represents that ISP’s total rate allocation cannot exceed its

access link capacity C. Constraint (5) represents that ISP’s rate

allocation and price decision should guarantee a nonnegative

surplus for flow f .

The above presentation of problem (RMP) makes it difficult

to solve because it is a nonconvex problem. However, by

putting the self-incentive constraint (5) into the objective func-
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tion4, problem (RMP) can be transformed into the following

ISP Utility Maximization Problem (UMP):

(UMP): max
{xt

f
}f,t

∑

f

∑

t

σt
fuf (xt

f ) subject to: constraint(4).

Let {xt∗
f }f,t denote the optimal rate allocation for problem

(UMP). Meanwhile, let {λt∗}t denote the set of optimal dual

prices for constraints (4). There exists xt∗
f = (

σt
f

λt∗ )
1

αf ,∀t, f
and λt∗ is chosen so that

∑
f xt∗

f = C,∀t. Thus, to solve the

original problem (RMP), ISP’s optimal pricing {ht∗
f , gt∗

f }f,t

can be given by (1) ht∗
f = λt∗,∀t, f and (2) gt∗

f =
σt

fuf (xt∗
f )−ht∗

f xt∗
f ,∀t, f . With {ht∗

f , gt∗
f }f,t, ISP can transfer

the optimal network utility
∑

f

∑
t σt

fuf (xt∗
f ) into its revenue.

Meanwhile, since constraint (3) is strictly binding, ISP does

not have to drop any flow’s traffic demand.

C. ISP Revenue Maximization with Time-Constrained Pricing

Considering the practical billing system, [3] studied

ISP’s Revenue Maximization Problem with Time-Constrained

(RMP-TC) pricing, i.e., ISP cannot change its price within the

time horizon T . The problem is as follows:

(RMP-TC): max
{hf ,gf}f ,{xt

f
}f,t

∑

f

((
∑

t

xt
f )hf + gf ) (6)

subject to:xt
f ≤ Dt

f (hf ) = (
σt

f

hf

)
1

αf ,∀t, f (7)

∑

f

xt
f ≤ C,∀t (8)

∑

t

σt
fuf (xt

f ) ≥ (
∑

t

xt
f )hf + gf ,∀f (9)

Problem (RMP-TC) can be solved with the similar method as

that for problem (RMP). Specifically, by putting constraint (9)

into the objective function, problem (RMP-TC) can be trans-

formed into the exactly same utility maximization problem

as problem (UMP) (described in section II.B). Therefore, let

{x̃t
f}f,t denote the optimal rate allocation profile for prob-

lem (RMP-TC), there exists x̃t
f = x∗

f ,∀f, t. Meanwhile, let

{h̃f , g̃f}f denote the optimal pricing for problem (RMP-TC),

then any pricing decision is optimal for problem (RMP-TC)

if the following two conditions are met:

h̃f ≤ min
t
{ht∗

f } = min
t
{

σt
f

(xt∗
f )αf

},∀f, (10)

g̃f =
∑

t

σt
fuf (xt∗

f ) − h̃f

∑

t

xt∗
f ,∀f. (11)

Condition (10) guarantees constraint (7), and condition (11)

guarantees the binding of constraint (9). Thus conditions (10)

and (11) together can guarantee the feasibility of {x̃t
f}f,t.

Although in problem (RMP-TC) ISP’s pricing is time-

constrained, ISP can still achieve the same maximum revenue

as that of problem (RMP) (because of
∑

f,t σt
fu(x̃t

f ) =

4Notice that by using the combination of usage-price and flat-price, ISP can
completely transfer each flow’s utility into its revenue [10]. Thus constraint
(5) is always binding at the optimum.

∑
f,t σt

fu(xt∗
f )) by using the optimal pricing decision satis-

fying conditions (10) and (11).

The downside of using the price strategy according to (10)

and (11), however, is that ISP has to drop flow’s excessive

traffic demand. It is because constraint (7) is not always strictly

binding at the optimum. For example, assume that ISP uses

the optimal usage-price h̃f = mint{h
t∗
f },∀f , then the dropped

traffic rate can be expressed as:

∆t
f =

(σt
f )

1

αf

(h̃f )
1

αf

− xt∗
f =

(σt
f )

1

αf

mint{
(σt

f
)

1

αf

xt∗
f

}

− xt∗
f ≥ 0,∀f, t. (12)

The rationale behind the above strategy is clear, i.e., ISP lowers

down its usage-price as much as possible to encourage con-

sumer’s traffic demand, and then drop consumer’s excessive

traffic demand that exceeds its capacity afterwards.

Although with strategy (10) and (11), ISP does not suffer

any revenue loss even its pricing is time-constrained, dropping

consumer’s packets causes severe QoS deterioration [6] [7].

Special Case: Assume that αf = α and ISP uses the optimal

usage-price h̃f = mint{h
t∗
f },∀f , then the dropped traffic rate

(12) can be further expressed as:

∆t
f = (

(σt
f )

1

α

mint{
∑

f (σt
f )

1

α }
−

(σt
f )

1

α

∑
f (σt

f )
1

α

)C,∀f, t. (13)

Therefore, if consumer f has a large fluctuation in its utility-

level profile {σt
f}t, then ISP has to drop a large traffic demand

to avoid the revenue loss. Our numerical result in Figure 7

verifies this point.

In the following we consider the optimal usage-price for

problem (RMP-TC) as h̃f = mint{h
t∗
f },∀f , which serves

as a benchmark strategy because ISP aggressively aims to

maximize its revenue regardless of how many packets are

dropped.

III. TIME-CONSTRAINED PRICING AND PACKET

DROPPING CONSTRAINT

A. Time-Constrained Pricing with Short-Term Per-Slot Packet

Dropping Constraint

We consider ISP time-constrained pricing with short-term

per-slot packet dropping constraint in this subsection. The

problem is as follows (where “PS” stands for per-slot):

(RMP-PS): max
{hf ,gf}f ,{xt

f
}f,t

∑

f

((
∑

t

xt
f )hf + gf ) (14)

subject to: xt
f ≤ Dt

f (hf ) = (
σt

f

hf

)
1

αf ,∀t, f (15)

(
σt

f

hf

)
1

αf − xt
f ≤ Γt

f ,∀t, f (16)

∑

f

xt
f ≤ C,∀t (17)

∑

t

σt
fuf (xt

f ) ≥ (
∑

t

xt
f )hf + gf ,∀f (18)
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Specifically, constraint (16) guarantees at time slot t, the

number of dropped packets for flow f (i.e., the gap between

flow f ’s instantaneous traffic rate demand (
σt

f

hf
)

1

αf and ISP’s

rate allocation xt
f ) cannot exceed the threshold Γt

f .

Problem (RMP-PS) is a nonconvex problem. By putting

constraint (18) into the objective function, and then combining

constraints (15) and (16) together, problem (RMP-PS) can

be transformed into the following ISP utility maximization

problem5:

(UMP-PS): max
{xt

f
}f,t

∑

f

∑

t

σt
fuf (xt

f ) (19)

subject to:
(σt′

f )
1

αf

xt′

f + Γt′

f

≤
(σt

f )
1

αf

xt
f

,∀t, t′, f (20)

∑

f

xt
f ≤ C,∀t (21)

Given the packet dropping thresholds Γt
f ,∀t, constraint (20)

imposes the restriction on the rate allocation profile (i.e.,

{xt
f}t) for flow f so that at least a feasible hf exists.

Remark 1: One of the sufficient conditions for problem

(RMP-PS) to be equivalent to problem (RMP-TC) can be given

as: Γt
f ≥ ∆t

f ,∀f, t (∆t
f is given in (12)). As described in

section II.C, ∆t
f denotes the minimum traffic rate that ISP has

to drop in order to avoid any revenue loss (when its pricing

is time-constrained).

Because of the concavity of the objective function and

linearity of the constraints, problem (UMP-PS) is a convex

problem, and thus KKT condition is applicable. Let µtt′

f

denote the dual price for constraint (20). Let λt denote

the dual price for constraint (21). The optimal solution

for problem (UMP-PS) can thus be expressed as: x̃t
f =

(
σt

f

−
P

t′ 6=t(eµt′t
f

−eµtt′

f
)(σt′

f
)

1

αf +eλt

)
1

αf , where µ̃tt′

f denotes the op-

timal dual price for constraint (20). Notice that, different from

xt∗
f = (

σt
f

λt∗ )
1

αf , in problem (UMP-PS) each flow’s optimal

rate allocation also depends on the corresponding dual price

for the packet dropping constraint. For notational simplicity

we still use {x̃t
f}f,t, {h̃f , g̃f}f to denote the optimal solution

for problem (RMP-PS). Notice that for each flow f and any

pair of t, t′, there exists µ̃tt′

f µ̃t′t
f = 0 if Γt

fΓt′

f > 0.

Based on the optimal rate allocation {x̃t
f}f,t, the maximum

sum-utility for problem (UMP-PS) can be transferred to ISP’s

revenue. Specifically, any value of usage-price satisfying the

following condition can be used by ISP to extract all flows’

utilities:

max
t

{
σt

f

(x̃t
f + Γt

f )αf
} ≤ h̃f ≤ min

t
{

σt
f

(x̃t
f )αf

},∀f. (22)

5Notice that constraint (15) actually requires that hf ≤ mint{
σt

f

(xt
f
)
αf

}

and constraint (16) requires that hf ≥ maxt{
σt

f

(xt
f
+Γt

f
)
αf

}. Thus, by

combining them together we can get constraint (20), which guarantees the
existence of a feasible hf for flow f .

Meanwhile, the corresponding flat-price can be set as: g̃f =∑
t σt

fuf (x̃t
f ) − (

∑
t x̃t

f )h̃f ,∀f .

Remark 2: For each flow f , if the packet dropping threshold

Γt
f ,∀t, is large enough so that the optimal dual price µ̃tt′

f =
0,∀t, t′, i.e., constraint (20) is slack (we provide a sufficient

condition for it in Remark 1), then maxt{
σt

f

(ext
f
+Γt

f
)αf } <

mint{
σt

f

(ext
f
)αf } (i.e., the value of optimal usage-price h̃f can

be chosen from an interval). Otherwise, maxt{
σt

f

(ext
f
+Γt

f
)αf } =

mint{
σt

f

(ext
f
)αf } (i.e., the value of optimal usage-price h̃f

can only be chosen from a single value). The reason is

as follows. If flow f has the optimal dual price µ̃tt′

f =

0,∀t, t′, then
σt′

f

(ext′

f
+Γt′

f
)αf

<
σt

f

(ext
f
)αf ,∀t, t′, which means that

maxt{
σt

f

(ext
f
+Γt

f
)αf } < mint{

σt
f

(ext
f
)αf }. On the contrary, as-

sume that there exists a particular pair of slots t, t′ for flow

f , which has µ̃tt′

f 6= 0, i.e.,
σt′

f

(ext′

f
+Γt′

f
)αf

=
σt

f

(ext
f
)αf , then

maxt{
σt

f

(ext
f
+Γt

f
)αf } ≥

σt′

f

(ext′

f
+Γt′

f
)αf

=
σt

f

(ext
f
)αf ≥ mint{

σt
f

(ext
f
)αf }.

Followed by the feasibility of constraint (20), there exists

maxt{
σt

f

(ext
f
+Γt

f
)αf } = mint{

σt
f

(ext
f
)αf }, which means that h̃f can

only be chosen from a single value.

Let V =
∑

f

∑
t σt

fuf (x̃t
f ) denote ISP’s optimal revenue

for problem (RMP-TC). Let VPS =
∑

f

∑
t σt

fuf (x̃t
f ) denote

ISP’s optimal revenue for problem (RMP-PS)6. We provide a

bound of revenue loss for per-slot packet dropping constraint

as follows (with proof in Appendix I).

Proposition 1: Assume that the homogeneous rate dropping

constraint Γt
f = γ,∀f, t is used. Further assume that both

flow’s price elasticity and utility level are flow independent,

i.e., ξf = 1
αf

= 1
α
,∀f , and σt

f = σt,∀f, t, then 1 ≥ VP S

V
≥

P
t(

σt

maxt{σt}
)

1

α

P
t(

σt

maxt{σt}
)

.

However, the value of VP S

V
is difficult to derive for arbitrary

γ. We can only provide a upper bound for it as follows.

Proposition 2: Assume that the homogeneous packet dropping

constraint Γt
f = γ,∀f, t is used in problem (RMP-PS). If both

flow’s price elasticity and utility level are flow independent,

i.e., ξf = 1
αf

= 1
α
,∀f , and σt

f = σt,∀f, t, then

VPS

V
≤

∑
t∈Ω1

σt

∑
t σt

+
(C

F
+ γ)1−α

(C
F

)1−α

∑
t∈Ω2

(σt)
1

α

maxt{(σt)
1

α }∑
t

σt

maxt{σt}

, (23)

where Ω1 and Ω2 are two complementary sets of time slots

defined in the proof in Appendix II.

Remark 3: According to (23), the upper bound of VP S

V
is

nondecreasing with respect to the value of γ until constraint

(16) becomes slack7. This is consistent with the intuition that

the larger the value of γ, the larger the feasible region, thus

ISP’s optimal revenue cannot decrease.

6Notice that the optimal rate allocation {ext
f
}f,t for problem (RMP-PS) is

different from the optimal rate allocation for (RMP-TC).
7For example, γ satisfies the sufficient condition provided in Remark 1.
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Remark 4: According to (23), the upper bound of VP S

V
is

decreasing with respect to each flow’s price elasticity ξ (i.e.,

increasing with respect to the value of α). The proof is given in

Appendix III. The decreasing property of the right hand side of

(23) with ξ is consistent with the intuition. Specifically, if each

flow has a high price elasticity, then a low usage-price should

be used to maximize the revenue [20]. However, the packet

dropping constraint restricts ISP from using the low usage-

price, resulting in that ISP suffers a revenue loss. Moreover,

the higher the price elasticity, the larger the revenue loss.

Figure 1 shows the performance of ISP’s revenue upper

bound (23) for problem (RMP-PS). For numerical illustration,

we consider a network scenario with F = 3 flows and T = 20.

The access link capacity is C = 2. Meanwhile, we set the

optimal usage-price as h̃f = mint{
σt

f

(ext
f
)αf },∀f according to

(22), which corresponds to the least packets dropped.

Figure 1 shows that our derived upper (23) is tight. The

tightness can be explained by showing that xt0 = C
F

(notice

that t0 = arg maxt{(σ
t)

1

α }) for any value of γ ≥ 0. It can

be intuitively explained as follows. Constraint (20) requires

that xt

xt0+γ
≤ (σt)

1

α

(maxt{σt})
1

α

. As described before, when γ = 0,

xt0 = C
F

. Meanwhile, when γ increases (i.e., γ > 0), xt0 =
C
F

can still hold and all the other xt, t 6= t0 can increase

accordingly until they are bounded by C
F

(it is clear that in

order to maximize the objective function
∑

f

∑
t σt

fuf (xt
f ),

{xt}t∈T ,f∈F needs to be set as large as possible).
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Fig. 1. Performance of the revenue upper bound (23) for problem (RMP-PS).
We change αf = α = 0.4, 0.5, 0.6, and set σt

f
= σt, ∀f , which follows the

same uniform distribution u(0.2, 1).

Remark 4 leads to a policy implication for ISP. Specifically,

in order to mitigate the revenue loss due to its time-constrained

pricing, ISP should provide different levels of QoS protec-

tion according to different price elasticities. Specifically, ISP

should use a large packet dropping threshold (i.e., weak QoS

protection) if consumer’s price elasticity is high. However, if

consumer’s price elasticity is low, then ISP can use a small

packet dropping threshold (i.e., strong QoS protection) without

suffering a large revenue loss. The results shown in Figure 2

and Figure 6 also imply this policy.

Figure 1 also shows that the revenue loss depends on the

traffic type. Recall that when α is close to 1, then the utility

function roughly captures the utility of best-effort traffic. In

comparison when α is close to 0, then the utility function

roughly captures the utility of real-time video traffic. As shown

in Figure 1, given the same packet dropping threshold, real-

time video traffic incurs a larger revenue loss than best-effort

traffic does. In practice, real-time video traffic can only tolerate

a small number of packets dropped, thus the revenue loss could

be substantial. By contrast, best-effort traffic can tolerate a

large number of packets dropped, thus the revenue loss could

be even marginal. These results confirm our intuition that the

congestion management via packet dropping is more suitable

for best-effort traffic than real-time video traffic.

B. Time Constrained Pricing with Long-Term Packet Drop-

ping Constraint

We also consider ISP’s time-constrained pricing with long-

term packet dropping constraint as follows (where “LT” stands

for long-term):

(RMP-LT): max
{hf ,gf}f ,{xt

f
}f,t

∑

f

((
∑

t

xt
f )hf + gf ) (24)

subject to:xt
f ≤ (

σt
f

hf

)
1

αf ,∀t, f (25)

∑

t

max{(
σt

f

hf

)
1

αf − xt
f , 0} ≤ Γf ,∀f (26)

∑

f

xt
f ≤ C, ∀t (27)

∑

t

σt
fuf (xt

f ) ≥ (
∑

t

xt
f )hf + gf ,∀f (28)

Constraint (26) guarantees that in long-term the number

of dropped packets for flow f (i.e.,
∑

t max{(
σt

f

hf
)

1

αf −

xt
f , 0}) cannot exceed the threshold Γf . Compared to problem

(RMP-PS), problem (RMP-LT) has a larger flexibility in

dropping each flow’s traffic rate demand (i.e., ISP has the

freedom to allocate its packet dropping budget over time).

Thus, if the threshold Γf =
∑

t Γt
f ,∀f (Γt

f is the packet

dropping threshold in problem (RMP-PS)), then there exists

VLT ≥ VPS , where VLT denotes the optimal revenue for

problem (RMP-LT). For fair comparison, we set Γf =
∑

t Γt
f

in the following numerical experiments.

Problem (RMP-LT) is a nonconvex problem. By putting

constraint (28) into the objective function, and then combining

constraints (25) and (26) together, problem (RMP-LT) can

be transformed into the following ISP utility maximization

problem:

(UMP-LT): max
{xt

f
}f,t

∑

f

∑

t

σt
fuf (xt

f ) (29)

subject to:

∑
t(σ

t
f )

1

αf

Γf +
∑

t xt
f

≤
(σt

f )
1

αf

xt
f

,∀t, f (30)

∑

f

xt
f ≤ C,∀t (31)
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Given the packet dropping thresholds {Γf}f , constraint (30)

imposes the restriction on the rate allocation profile for flow

f so that a feasible hf exists for constraints (25) and (26).

Remark 6: One of the sufficient conditions for problem

(RMP-LT) to be equivalent to problem (RMP-TC) can be given

as: Γf ≥
∑

t ∆t
f ,∀f .

Problem (UMP-LT) is a convex problem and KKT condition

is applicable. Let ψt
f denote the dual price for constraint

(30). Let λt denote the dual price for constraint (31). The

optimal solution for problem (UMP-LT) can thus be expressed

as: x̃t
f = (

σt
f

−
P

t′ 6=t(
eψt′

f
− eψt

f
)(σt′

f
)

1

αf +eλt

)
1

αf ,∀f, t. Based on

the optimal rate allocation {x̃t
f}f,t, the maximum sum-utility

for problem (UMP-LT) can be transferred to ISP’s revenue.

Specifically, any value of usage-price satisfying the following

condition can be used by ISP to extract all flows’ utilities:

(

∑
t(σ

t
f )

1

αf

Γf +
∑

t x̃t
f

)αf ≤ h̃f ≤ min
t
{

σt
f

(x̃t
f )αf

},∀f. (32)

Meanwhile, the corresponding value of flat-price can be set

as: g̃f =
∑

t σt
fuf (x̃t

f ) − (
∑

t x̃t
f )h̃f ,∀f .

Remark 7: For flow f , if the packet dropping threshold Γf

is large enough so that ψ̃t
f = 0, i.e., constraint (30) is slack

(we provide a sufficient condition for it in Remark 6), then

(
P

t(σ
t
f )

1

αf

Γf +
P

t ext
f

)αf < mint{
σt

f

(ext
f
)αf } (i.e., the value of h̃f can

be chosen from an interval). Otherwise, (
P

t(σ
t
f )

1

αf

Γf +
P

t ext
f

)αf =

mint{
σt

f

(ext
f
)αf } (i.e., the value of h̃f can only be chosen from a

single value). The explanation is similar to that in Remark 2.

Let VLT =
∑

f

∑
t σt

fuf (x̃t
f ) denote ISP’s optimal revenue

for problem (RMP-LT) 8. We provide a revenue loss bound as

follows (the proof is similar to that for Proposition 1).

Proposition 3: Assume that the homogeneous rate dropping

constraint Γf = η,∀f is used. If both flow’s price elasticity

and utility level are flow independent, i.e., ξf = 1
αf

= 1
α
,∀f ,

and σt
f = σt,∀f, t, then 1 ≥ VLT

V
≥

P
t(

σt

maxt σt )
1

α

P
t(

σt

maxt σt )
.

However, the exact value of VLT

V
is difficult to derive for

arbitrary η. We only provide a upper bound for it as follows.

Proposition 4: Assume the homogenous packet dropping

constraint Γf = η,∀f , is used in problem (RMP-LT). If both

flow’s price elasticity and utility level are flow independent,

i.e., ξf = 1
αf

= 1
α
,∀f , and σt

f = σt,∀f, t, then

VLT

V
≤

∑
t∈Π1

σt

∑
t σt

+
(C

F
T + η)1−α

(C
F

)1−α

∑
t∈Π2

(σt)
1

α

P
t(σ

t)
1

α

∑
t

σt

(
P

t(σ
t)

1

α )α

, (33)

where Π1 and Π2 are two complementary sets of time slots

defined in the proof in Appendix IV.

8Notice that the optimal rate allocation {ext
f
}f,t for problem (RMP-LT) is

different from the optimal rate allocation for problem (RMP-TC).

Remark 8: According to (33), the upper bound of VLT

V
is

nondecreasing with respect to η until constraint (26) becomes

always slack.

Remark 9: According to (33), the upper bound of VLT

V
is

decreasing with respect to each flow’s price elasticity (i.e.,

increasing with respect to the value of α). The proof is given

in Appendix IV. The decreasing property of VLT

V
with respect

to ξ can also be intuitively explained with the similar reason

as that in Remark 4.

Figure 2 shows the performance ISP’s revenue upper bound

(33) for problem (RMP-LT). We also set the optimal usage-

price as h̃f = mint{
σt

f

(ext
f
)αf },∀f according to (32), which

corresponds to the least packets dropped. Figure 2 shows that

the derived upper bound for VLT

V
is tight when Γf = η is

large. Figure 3 further shows the relative error of the provided

revenue upper bound. It shows that the upper bound (33) is

more accurate when (i) T is small, (ii) η is large, and (iii)

ξ is small. The looseness of the upper bound is because we

make some aggressive assumption in derivation as described

in Appendix IV.
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Fig. 2. Performance of the revenue upper bound (33) for problem (RMP-LT).
We change αf = α = 0.4, 0.5, 0.6, and set σt

f
= σt, ∀f , which follows the

same uniform distribution u(0.2, 1).
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Fig. 3. Relative error of the upper bound (33). αf = α = 0.4, 0.5 and
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in the figure is averaged over 100 random realizations of {σt}t.

Remark 9 also suggests the differentiated QoS protection

policy for ISP. Specifically, to mitigate the revenue loss due

to the time-constrained price strategy, ISP should only provide
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a weak QoS protection if consumer’s price elasticity is high.

Considering the traffic type, Figure 2 also suggests that given

the same packet dropping constraint, best-effort traffic incurs

a smaller revenue loss than real-time video traffic does.

C. Impact of Packet Dropping Constraint on Usage-Based

Revenue

Both short-term per-slot and long-term packet dropping

constraints impose restrictions on ISP’s usage-price, thus in-

fluencing ISP’s usage-based revenue.

Proposition 5: For problem (RMP-PS), let V usage
PS =∑

f (
∑

t x̃t
f )h̃f denote ISP’s optimal usage-based revenue. If

all flows have the same price elasticity (i.e., ξf = 1
αf

=

1
α
,∀f ), then

V
usage

P S

VP S
≤ 1 − α, and the equal sign is ob-

tained when ISP cannot drop any flow’s rate demand, i.e.,

Γt
f = 0,∀f, t. (The proof is in Appendix V.)

Similarly, we also have the following proposition.

Proposition 6: For problem (RMP-LT), let V usage
LT =∑

f (
∑

t x̃t
f )h̃f denote ISP’s optimal usage-based revenue. If

all flows have the same price elasticity (i.e., ξf = 1
αf

=

1
α
,∀f ), then

V
usage

LT

VLT
≤ 1 − α, and the equal sign is ob-

tained when ISP cannot drop any flow’s rate demand, i.e.,

Γf = 0,∀f .

Notice that the upper bound of
V

usage

P S

VP S
and

V
usage

LT

VLT
are

both increasing with respect to each flow’s price elasticity.

This is consistent with the intuition that usage-based revenue

is dominant in the entire revenue if consumer has a high

price elasticity. Similar result also appeared in [3]. The exact

values of
V

usage

P S

VP S
and

V
usage

LT

VLT
with arbitrary packet dropping

thresholds, however, are difficult to derive, and they depend

on the detailed choices of h̃f (according to (22) and (32)).

Figure 4 shows the comparison between
V

usage

P S

VP S
and

V
usage

LT

VLT
.

For both problems, we set the optimal usage-price as h̃f =

mint{
σt

f

(ext
f
)αf },∀f according to (22) and (32). Figure 4 shows

that
V

usage

P S

VP S
decreases when Γt

f = γ,∀f, t increases. Mean-

while,
V

usage

P S

VP S
is lower bounded as Γt

f = γ → maxf,t{∆
t
f}

(12). Specifically,
V

usage

P S

VP S
is lower bounded by the corre-

sponding value of V usage

V
for problem (RMP-TC), where

V usage denotes the optimal usage-based revenue for problem

(RMP-TC). The intuitive explanation is as follows. If Γt
f = γ

is so small that h̃f = mint{
σt

f

(ext
f
)αf } = maxt{

σt
f

(ext
f
+Γt

f
)αf },

then h̃f decreases when Γt
f increases, which implies that

ISP can lower down its usage-price more aggressively. As a

result, the value of
V

usage

P S

VP S
decreases. However, if Γt

f = γ

is so large that h̃f = mint{
σt

f

(ext
f
)αf } > maxt{

σt
f

(ext
f
+Γt

f
)αf },

then according to our previous description in section III.A,

problem (RMP-PS) has already become equivalent to problem

(RMP-TC). Therefore, there exists
V

usage

P S

VP S
= V usage

V
. We can

observe a similar property of
V

usage

LT

VLT
. The value of

V
usage

LT

VLT

is lower bounded by V usage

V
as Γf = η → maxf

∑
t{∆

t
f}.

Figure 4 indicates that the flat-part revenue (i.e., flat-price)

is important to ISP’s revenue retention. Specifically, the more

loose the packet dropping constraint, the more heavily ISP has

to rely on its flat-price to achieve the maximum revenue.
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Fig. 4. Comparison of the usage-based revenue ratio between problem
(RMP-PS) and problem (RMP-LT)

D. Tradeoff between Per-Slot and Long-Term Constraints

Figure 5 shows the comparison of the optimal revenues

and average number of packets dropped among problems

(RMP-TC), (RMP-PS), (RMP-LT). Specifically, the horizontal

axis denotes the packet dropping threshold Γt
f = γ,∀f, t

for problem (RMP-PS). Meanwhile, for fair comparison the

packet dropping threshold for problem (RMP-LT) is set as

Γf = η = Tγ. The top subfigure shows the comparison

between VP S

V
and VLT

V
. It shows that ISP can always achieve a

smaller revenue loss with long-term packet dropping constraint

than with short-term per-slot constraint (until both problems

(RMP-PS) and (RMP-LT) become equivalent). This result is

consistent with the intuition. Because ISP has a larger flexi-

bility in dropping flows’ traffic rate with long-term constraint,

it can obtain a no smaller optimal revenue.
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Fig. 5. Comparison of the optimal revenue and the average number of

packets dropped. Top subfigure: the comparison between
VP S

V
and

VLT
V

.
Bottom subfigure: the comparison of the average number of packets dropped.

The downside of long-term packet dropping constraint,

however, is that it can only provide a weak QoS protection.

The bottom subfigure in Figure 5 verifies this point by showing

the average number of packets dropped for the three problems.

Figure 5 presents the tradeoff faced by ISP, i.e., between using
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short-term per-slot packet dropping constraint to provide a

strong QoS protection but suffering a large revenue loss and

using long-term constraint to provide a weak QoS protection

but suffering a small revenue loss.

E. Impact of Price Elasticity and Utility Level Fluctuation

Figure 6 shows the impact of flow’s price elasticity on ISP’s

optimal revenue. Figure 6 shows that ISP will suffer a large

revenue loss if each flow has a high price elasticity (for both

short-term per-slot packet dropping constraint and long-term

packet dropping constraint). These results are consistent with

our previous Remark 4 and Remark 9.
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Fig. 6. Impact of flow’s price elasticity on ISP’s optimal revenue. We change
αf = α = 0.4, 0.5, 0.6, ∀f .

Figure 7 shows the impact of the fluctuation of flow’s utility

level {σt
f}f,t on ISP’s optimal revenue. Figure 7 shows that

if each flow’s utility level has a small fluctuation, then ISP

will suffer a small revenue loss. Intuitively this is right since

a small fluctuation of utility level implies that ISP can more

aggressively lower down its usage-price, thus attracting more

consumer’s traffic rate demand. For example, according to

(13), if
∑

f (σt
f )

1

α is a constant within T , then ISP can avoid

the revenue loss without dropping any flow’s packets.
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Fig. 7. Impact of flow’s utility level fluctuation on ISP’s optimal revenue.
αf = α = 0.6, ∀f . Every point in the figure is averaged over 100 random

realizations of {σt
f
}f,t. We test three cases, i.e., {σt

f
}t,f follows the uniform

distributions u(0.2, 1), u(0.3, 0.9) and u(0.4, 0.8), respectively.

IV. CONCLUSION

This paper studies ISP’s revenue maximization trading

off with QoS measure (in terms of the number of packets

dropped). We consider two QoS time horizons (i.e., short-term

per-slot constraint and long-term packet dropping constraint),

and quantify the tradeoff between QoS protection and revenue

maximization faced by ISP when its pricing has to be “time-

constrained”. In particular, we demonstrate the impact of

consumer’s price elasticity on ISP’s optimal revenue, and

show that in order to mitigate the revenue loss ISP should

carry out a differentiated QoS protection strategy based on

consumer’s price elasticity. We analyze the optimal time-

constrained pricing for both cases and identify the importance

of ISP’s flat-price in reaping revenue as the QoS protection

constraint becomes loose.

APPENDIX I: PROOF OF PROPOSITION 1

Proof: The optimal revenue VPS for problem (RMP-PS) is

nondecreasing with respect to the value of γ until constraint

(16) becomes slack, and thus V = VPS . On the other side,

the lower bound of VP S

V
is obtained when γ = 0. Specifically,

constraint (20) becomes that
(σt′

f )
1

αf

xt′

f

=
(σt

f )
1

αf

xt
f

,∀f, t, t′ when

γ = 0. Let t0 = arg maxt{σ
t} (we omit the flow index here

for clear presentation). With the assumption that αf = α,∀t

and σt
f = σt,∀f, t, there exists x̃t0 = C

F
. Thus, ISP’s optimal

rate allocation can be expressed as: x̃t = ( σt

maxt{σt} )
1

α
C
F

,∀t
when γ = 0. Therefore, ISP’s optimal revenue is:

VPS =
∑

f

∑

t

σt
fuf (x̃t

f )

= FαC1−α 1

1 − α
(max

t
{σt})1−

1

α

∑

t

(σt)
1

α

= V

∑
t(

σt

maxt{σt} )
1

α

∑
t(

σt

maxt{σt} )
. (34)

APPENDIX II: PROOF OF PROPOSITION 2

Proof: We drop the flow index here for clear presentation.

Constraint (16) requires (σt

h
)

1

α ≤ xt + γ,∀t. Therefore, there

exists h
1

α ≥ maxt{
(σt)

1

α

xt+γ
} ≥ maxt{(σ

t)
1

α }
xt0+γ

≥ maxt{(σ
t)

1

α }
C
F

+γ
,

where t0 = arg maxt{(σ
t)

1

α } (notice that xt0 ≤ C
F

because all

flows are symmetric). Thus, according to constraint (15), xt ≤

min{C
F

, (σt)
1

α

maxt{(σt)
1

α }
(C

F
+ γ)},∀t. Therefore, by substituting

this expression into ISP’s revenue function (which is equal to

all flows’ sum-utility), we can get:

VPS

V
≤

∑
t∈Ω1

σt

∑
t σt

+
(C

F
+ γ)1−α

(C
F

)1−α

∑
t∈Ω2

(σt)
1

α

maxt{(σt)
1

α }∑
t

σt

maxt{σt}

, (35)

where Ω1 = {t| (σt)
1

α

maxt{(σt)
1

α }
(C

F
+ γ) ≥ C

F
}, and Ω2 =

{t| (σt)
1

α

maxt{(σt)
1

α }
(C

F
+ γ) < C

F
}, and Ω1 ∪ Ω2 = T .2
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APPENDIX III: PROOF OF DECREASING OF (23) WITH ξ

Proof: Let Φt(α) = (
C
F

+γ
C
F

)1−α( σt

maxt{σt} )
1

α ,∀t ∈ Ω2. To

show the upper bound (23) is increasing with α, it is sufficient

to show that Φt(α) is increasing with α.

dΦt(α)

dα
=

(
C
F

+ γ
C
F

)1−α(
σt

maxt{σt}
)

1

α (− ln(
C
F

+ γ
c
F

) −
1

α2
ln(

σt

maxt{σt}
)).

Thus, to show
dΦt(α)

dα
≥ 0,∀t ∈ Ω2, it is equivalent to show

(
C
F

C
F

+γ
)α2

/( σt

maxt{σt} ) ≥ 1. This always holds for t ∈ Ω2

because (
C
F

C
F

+γ
)α2

≥ ( (σt)
1

α

(maxt{σt})
1

α

)α2

= (σt)α

(maxt{σt})α ≥

(σt)
(maxt{σt}) . The first inequality comes from the definition for

the set Ω2, which guarantees that
(σt)

1

α

(maxt{σt})
1

α

(C
F

+ γ) < C
F

.

The last inequality holds because α < 1. 2

APPENDIX IV: PROOF OF PROPOSITION 4

Proof: We drop the flow index here for clear presentation.

Constraint (26) requires
∑

t
(σt)

1

α

(h)
1

α

≤
∑

t xt + η. Therefore,

there exists (h)
1

α ≥
P

t(σ
t)

1

αP
t xt+η

≥
P

t(σ
t)

1

α

T C
F

+η
(because all flows

are symmetric, there exists xt ≤ C
F

,∀t). T denotes the length

of the entire time horizon 9. Thus, according to constraint

(25), xt ≤ min{C
F

, (σt)
1

α

P
t(σ

t)
1

α

(C
F

T + η)},∀t. Therefore, by

substituting this expression into ISP’s revenue function (which

is equal to all flows’ sum-utility), we can derive the upper

bound of VLT

V
as follows:

VLT

V
≤

∑
t∈Π1

σt

∑
t σt

+
(C

F
T + η)1−α

(C
F

)1−α

∑
t∈Π2

(σt)
1

α

P
t(σ

t)
1

α

∑
t

σt

(
P

t(σ
t)

1

α )α

, (36)

where Π1 = {t| (σt)
1

α

P
t(σ

t)
1

α

(C
F

T + η) ≥ C
F
}, and Π2 =

{t| (σt)
1

α

P
t(σ

t)
1

α

(C
F

T + η) < C
F
}, and Π1 ∪ Π2 = T . 2

APPENDIX V: PROOF OF DECREASING OF (33) WITH ξ

Proof: The second part of the right hand side of (33) is equal

to
( C

F
T+η)1−α

( C
F

)1−α (
∑

t∈Π2
σt( (σt)

1

α

P
t(σ

t)
1

α

)1−α) 1P
t σt . Thus, the in-

creasing property of (33) with α is equivalent to the increasing

property of
( C

F
T+η)1−α

( C
F

)1−α ( (σt)
1

α

P
t(σ

t)
1

α

)1−α,∀t ∈ Π2 with respect to

α, which is always true. It is because that
C
F

T+η
C
F

(σt)
1

α

P
t(σ

t)
1

α

< 1

always holds for t ∈ Π2 according to its definition. 2

9Notice that this lower bound of (h)
1

α is loose since we aggressively

assume that ext = C
F

, ∀t. Thus, the derived upper bound (33) is more tight
when η is relatively large as shown in Figure 2. Meanwhile, the upper bound
is more accurate when the time horizon length T is small.

APPENDIX VI: PROOF OF PROPOSITION 5

Proof: According to the feasible region of the usage-price h̃f ,

i.e., (22), there exists

V usage
PS =

∑

f

(
∑

t

x̃t
f )h̃f ≤

∑

f

(
∑

t

x̃t
f )min

t
{

σt
f

(x̃t
f )αf

}

≤
∑

f

∑

t

σt
f (x̃t

f )1−αf .

If αf = α,∀f , then V usage
PS ≤ VPS(1 − α). The equal

sign holds when
σt

f

(ext
f
)αf ,∀t is a flow dependent constant

(i.e.,
σt

f

(ext
f
)αf = h̃f ,∀t), which corresponds to the case that

Γt
f = 0,∀f, t for problem (RMP-PS). 2
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