
IP-based networks were never

designed for real-time traffic,

yet QoS support in such

networks is needed to

accommodate both global 

use and the more demanding

applications now emerging.

Changes in packet handling, in

particular, will help provide

QoS support in IP networks.
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Imagine a network technology that routinely loses information, expe-
riences variable and unpredictable delay in data delivery, and makes
no distinction between applications with different communication

requirements. Next, imagine that the use of this technology is growing
exponentially and that, even as networks become increasingly congested,
its applications are being extended to global-scale voice and video. 

This scenario describes the situation we face in supporting real-time
applications over an IP-based infrastructure. Such applications involve
data flows that have quality-of-service (QoS) requirements. A QoS-sensi-
tive data flow cannot readily tolerate the effects of packet loss, delay (and
delay variation, or jitter), and fluctuations in network throughput. 

In this article, we examine the problems in attempting to make the
existing IP infrastructure do what it was never designed to do—provide
QoS support for integrated services to both real-time and non-real-time
applications. We concentrate on the issues and principles concerning
router modification for IP packet handling.

PACKET HANDLING IN 
TRADITIONAL IP NETWORKS
IP offers a connectionless datagram service that gives no guarantees con-
cerning data delivery and has no notion of flows, in which many datagrams
form a sequence meaningful to an application. For example, an audio appli-
cation can package 40-millisecond audio time slices in individual datagrams.
The sequence and timeliness of the datagrams has meaning to the applica-
tion, but the IP network treats them as individual and unrelated. There is
no signaling at the IP level—no way to inform the network that it is about
to receive traffic with particular handling requirements, and no way for IP to
tell users to back off when there is congestion. 

IP routers forward individual datagrams on the basis of single metrics and
network destination addresses. The routing is dynamic, not fixed, allowing
IP packets in a single flow to change network paths in case of router over-
loads or failures. The absence of a fixed path for traffic of a single flow means,
in practice, that the network cannot guaranteed consistent QoS during a
session. Even if the path remains stable, the connectionless datagram ser-
vice, does not protect the packets of one flow from those of another. 

Packets in output queues are serviced in a simple first-come, first-serve
(FCFS) order, with the packet at the front of the queue transmitted first.
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Figure 1 describes how  packets are processed in a
traditional IP router. This traditional IP forward-
ing mechanism provides the current best-effort IP
service. To modify routing behavior so that it can
support QoS, we must establish the key parame-
ters of a real-time packet flow and determine how
we might control them.

INTEGRATED SERVICE CONCEPTS
AND REQUIREMENTS
The Internet protocol architecture was designed
to provide robust and scalable support for appli-
cations that require not much more than reliable
end-to-end data transfer,1 for example, FTP and
telnet. In 1992, Clark et al.2 described a way to
evolve the original Internet architecture to an inte-
grated services network that could support tradi-
tional applications as well as emerging real-time
applications. They identified four architectural
components: a service level, a service interface, an
admission control mechanism, and scheduling
mechanisms. 

The following is a simple description of the inter-
actions between the components: 

� A service level is defined. This includes all the ser-
vice semantics: descriptions of how packets
should be treated within the network, how the
application should inject traffic into the net-
work, and how the service should be policed.
Knowledge of the service semantics must be
available within routers and applications.

� An application invokes a service using the service
interface and a signaling protocol. The invoca-
tion includes specific information about the
traffic characteristics required for the flow, such
as data rate. The network indicates if the ser-
vice invocation was successful and might also
inform the application of any service violation,
either by the application’s use of the service or
from a network failure.

� Admission control uses the information in the ser-
vice invocation, plus knowledge about other ser-
vice requests it is currently supporting, to deter-
mine if it can accept the new request. Admission
control, typically implemented in the routers,
polices service use to ensure that applications do
not use more resources than they have requested.

� Once a service invocation has been accepted, the
network employs router mechanisms for schedul-
ing and queue management to ensure that the
packets within the flow receive the requested
service.

A critical feature of this integrated-services architec-
ture is signaling—talking to the network. Signaling
is required in connection-oriented networks, and the
signaling part of such networks offers a natural point
for communicating particular application require-
ments. But datagram networks are connectionless,
and typically don’t require signaling. Any signaling
mechanism introduced to IP networks should be
compatible with current Internet operation and
should not constrain or change the operation of exist-
ing applications and services. 

SCHEDULING AND 
QUEUE MANAGEMENT 
As application traffic moves from the end systems
toward the network’s center, packets from different
flows are intermixed. Figure 2 (on the next page)
shows how the traffic patterns of three flows (voice-
over-IP, FTP, and Web traffic) are disrupted when the
flows are aggregated. The flows arrive at a router on
three different input lines but are destined for the
same output line. The router forwards them in the
order they arrive, which causes the packets to experi-
ence variable delay. This may not be a problem in
FTP, but it can be for VoIP. While some delay cor-
rection is possible at the end systems (through buffers
to smooth the delay variations), the overall effect lim-
its real-time applications on the Internet.

To correct this, we must protect QoS-sensitive
flows, giving them priority handling in routers but

IP packet

1. Check IP destination
address

2. Look up in routing 
tables

3. Select forwarding 
path

4. Send packet to 
output queue

Figure 1. Packet processing in a traditional IP router. When a packet
arrives at a router, the router (1) looks at the destination address, (2)
identifies routing-table entries that may offer a forwarding path for
it, (3) selects the best match from the candidate entries using longest-
prefix matching for the IP address, and (4) sends the packet to the
output queue for the correct outgoing interface.
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still maintaining fairness so that other, nonpriority
traffic is also served. This is the scheduling policy.

Figure 3 shows a simple router schematic. The
role of the scheduler is primarily to decide in what
order service requests (incoming packets) are
allowed access to resources (output queues and out-
put lines). Secondarily, it manages the service queues
(output buffers). The secondary role reflects the
need to manage the server’s finite resources in a way
consistent with the router’s established policy, even
in the face of excessive service requests. 

Scheduling Disciplines 
The scheduler implements policy through an algo-
rithm called a scheduling discipline. In a traditional
IP router, the scheduler uses a first-come, first-serve
(FCFS) scheduling policy. This policy is simple to
implement, and the main concern of most FCFS-
scheduled routers is queue management of excessive
packet bursts and finite buffer space. 

FCFS is a work-conserving scheduling discipline,
which means that the router is never idle when there
are packets waiting to be serviced. In an important
theorem, Kleinrock proved that it also means sched-
ulers based on such disciplines cannot give one flow
preferential treatment without hurting the others.
For more information on this phenomenon, see the
sidebar, “Kleinrock’s Conservation Law.”

Keshav3 describes four main requirements for
scheduling disciplines:

� Ease of implementation. Keeping the algorithmic
complexity and the state information require-
ments low makes it is easier to implement in
hardware and thus more suitable for high-speed
networking.

� Fairness and protection. All other things being
equal, no flow should receive les than any other
flow requesting use of the same resources. The
max-min fairness criterion (detailed in the side-
bar, “Max-Min Fairness Criterion,” p. 52), lets
us precisely allocate resources by allowing per-
hop local fairness for each flow, which results in
global fairness for all flows. The protection
requirement states that no flow should suffer
due to the misbehavior or characteristics of any
other flow.

� Performance bounds. To support QoS in networks,
it should be possible to specify performance
bounds to ensure that the network handles the
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Figure 2. Traffic flow aggregation. When several flows arrive at a router on different input lines, the
router forwards them in the order they arrive, without regard to QoS requirements. 

First come, first serve (FCFS) is a work-conserving scheduling policy.
According to such policies, the router is never idle when packets are
waiting to be serviced. The Conservation Law, an important theorem
developed by Kleinrock,1 helps in analyzing scheduling disciplines. 

Consider N flows arriving at a scheduler, so that the traffic rate
of connection n is λn, where 1 ≤ n ≤ N, and λ is the mean packet
rate. If we assume that flow n has a mean service time of µn, then
its mean utilization of a link is λn µn. Let ρn represent this mean link
utilization, and let qn be the mean waiting time caused by the sched-
uler for the packets of flow n.

According to the Conservation Law, the following expression
holds true for work-conserving schedulers:

where C is a constant. Thus, if we give one flow a lower delay or
higher data rate in a work-conserving scheduler, it must be by
increasing the delay or reducing the data rate for another flow.

Reference
1. L. Kleinrock, Queuing Systems, Vol. 2: Computer Applications, Wiley Inter-

science, New York, 1975.
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flow appropriately. If a scheduler is providing a
guaranteed service, it must be able to work with
deterministic performance bounds. If relative pri-
orities for flows were being specified, then the
scheduler should allow performance bounds to
be specified statistically or probabilistically.

� Admission control. Where deterministic perfor-
mance bounds are specified, the network might
need to perform admission control before it
begins flow transmission.

It is difficult to find a scheduling discipline that ful-
fills all these requirements. Among the disciplines
being deployed, many are based on the generalized
processor sharing reference model.4,5 GPS is a work-
conserving scheduler that provides max-min fairness
and flow protection. It can establish probabilistic/
statistical (relative) as well as deterministic perfor-
mance bounds. Unfortunately, it cannot be imple-
mented, as the analysis requires that each flow serve
only an infinitesimally small amount of data. 

For scheduling disciplines that can be imple-
mented, Golestani6 describes two fairness bounds
for assessing the performance of a scheduler that
emulates GPS: relative fairness bound (RFB) and
absolute fairness bound (AFB). The RFB assesses
fairness by comparing the service given to flows
served by the same scheduler.

Alternatives to FCFS Scheduling
A number of alternatives to first-come, first-serve
scheduling have been developed, some of which use
mechanisms that emulate the GPS properties. We
describe three  of the more widely used ones here.
They are mainly rate-based schedulers that control
the data rate allocated to a flow. 

Priority scheduling. The simplest non-FCFS sched-
uler is priority scheduling. There is a queue for each
flow, and queues are serviced in order of priority
(higher numbers before lower numbers). Busy high-
er priority queues could thus prevent lower priority
queues from being serviced, a situation known as
starvation. This system is easy to implement but not
max-min fair, and it must be used with some other
mechanism to police traffic into the queues. 

Weighted round-robin. The simplest GPS emula-
tion is weighted round-robin (WRR), in which
queues are serviced round-robin in proportion to a
weight assigned for each flow or queue. Each queue
is visited once per round. Normally, at least one
packet is transmitted from each nonempty queue.

The assigned weight is normalized by dividing it by
the average packet size for each flow/queue. If this
is unknown beforehand, then WRR might be
unable to offer the correct service rate for the flow.
For long-lived flows, WRR service is fair; however,
for short-lived flows, flows with small weights, or
many flows, WRR might exhibit unfairness.

Deficit round-robin. DRR bypasses the requirement
to know the average packet size for each flow.7 Each
nonempty queue has a deficit counter that begins
at zero. As the scheduler visits each nonempty
queue, it reads the packet at the head of the queue
and tries to serve one quantum of data. If the
counter for a queue is zero, then a packet at the
head of the queue is served if it is less than or equal
to the quantum size. If a packet cannot be served,
then the value of the quantum is added to the
deficit counter for that queue. 

DRR works best for small packet sizes and a
small number of flows; it suffers from unfairness
behavior similar to that for WRR.

Weighted fair queuing. WFQ, part of Parekh and
Gallagher’s original work,4 is a GPS emulation that
uses a computation to tag packets in flows with a fin-
ish number, indicating approximately when the
packets would have finished being served had they
been subject to true GPS scheduling. WFQ approx-
imates GPS by using a bit-by-bit round-robin ser-
vice. A packet of size N bits at the head of a queue

Input
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Output
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Forwarding/
routing policy

Forwarding/
routing
tables

Scheduler

Switching
fabric

Output
buffer(s)

Packet
classifier(s)

Figure 3. A simple router schematic. The scheduler keeps track of
when to transmit the next packet.
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will have complete service after the scheduler has per-
formed N rounds of visiting all other queues. Pack-
ets cannot, however, be transmitted one bit at a time
from multiple queues, so finish number tags indicate
when they would have completed service if they had
been served bit by bit. Packets with the smallest fin-
ish number are thereby the ones that should be trans-
mitted first. 

The WFQ scheduler applies weights to the fin-
ish number. WFQ can also be used to attach spe-
cific performance bounds to individual flows for
data rate by adjusting the flow’s weight. A flow with
a higher weight gets a lower delay.

The finish time depends on the round number R,
a counter that tracks how many times all queues have
been visited. F and R are both functions of absolute
time t. As the number of flows changes, so does the
rate of change for R. The R rate of change decreases
as the number of flows increases and increases as the
number of flows decreases. This latter property leads
to a problem called iterated deletion. A flow is delet-
ed if it has completed (becomes empty). When a flow
empties, R increases at a faster rate, so the value of R
approaches the finish number of other packets,
already queued, faster than originally evaluated. This

might cause some of the other flows to complete also,
leading to a further increase in R ’s rate of change. To
keep track of R, a WFQ system must recompute the
value of R whenever a packet arrives or leaves.

Although WFQ provides max-min fairness, pro-
tection, and the potential for specific (quantitative)
QoS bounds, it is also relatively complex to imple-
ment and has a high per-packet processing over-
head. Nevertheless, it is used as the basis for many
routers offering QoS control (such as some from
Cisco and Lucent). 

Non-Work-Conserving Disciplines
Work-conserving schedulers are never idle if there
are packets waiting. A non-work-conserving sched-
uler, however, can be idle even if packets are waiting
to be serviced, because the scheduler waits for pack-
ets to become eligible for transmission. Packet
transmission eligibility is determined in different
ways. One way is to ensure that it always spends
only a fixed time at a router; another is to establish
a fixed end-to-end delay for a packet. The main
advantage of non-work-conserving disciplines is
that they reduce jitter, making downstream traffic
more predictable, but the cost is higher overall end-
to-end delay. Such systems are also complex to
build. Consequently, non-work-conserving disci-
plines are not used widely and are still considered
a research issue.

PACKET CLASSIFICATION
AND FLOW MARKING
To handle a packet correctly at the router, a sched-
uler must be able to determine the flow to which a
particular packet belongs. Potential packet infor-
mation a scheduler could use includes:

� Existing IP headers. These are obvious candidates
for flow identifiers. Routers make forwarding
decisions by looking at the existing IP-header
fields, so looking at other IP-header fields pre-
sents less computational and implementation
overhead than other options.

� Additional headers. The IETF could change the
packet header format to introduce a specific
flow identifier. However, this would require
changes to the basic protocol, and, even if addi-
tional header extensions were used, they might
not be recognized or implemented everywhere.

� Transport-level headers. Routers could use port
numbers and/or other transport-level identi-
fiers. However, the router would have to first
locate the transport-level header, which might

In max-min fair share, resources are allocated according to some
simple rules. The demands of the resource flows are ordered in
increasing demand so that flows with the lowest demands are allo-
cated resources first. This means that resources with small demands
are likely to be allocated all that they ask for, as indicated in the
example below:

It is possible to assign weights to the resource demands so that some
demands receive a greater share of the resources than others. In
this case, the rules for max-min fair share are modified as follows:
� Flows are allocated resources in order of increasing weighted

demand (demands are normalized by the weight).
� No flow gets more than it needs.
� Flows that have not been allocated as they demand get a weighted

share of the available resources.
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be behind optional IP-level headers, resulting
in additional overhead. More importantly,
transport-level information by itself may not be
sufficiently unique to identify a flow.

� Application-level headers. This information, in
the packet payload, can identify flows; howev-
er, adding application-specific information to
packet payloads requires the routers to know
about the many application-level protocols.
The routers would also need to be upgraded
when applications change or when new appli-
cations are introduced into a network. 

Figure 4 shows the packet headers for IPv4 and
IPv6. Various combinations of header fields (such
as IP address and protocol number) can serve as
flow identifiers. 

The type of service (ToS) byte in IPv4 could also
provide a limited form of packet marking. In fact, the
IETF DiffServ working group is redefining the use
of the IPv4 ToS byte (along with the IPv6 traffic-class
byte) to include the ability to re-mark the value of
this byte as a packet travels through the network,
thereby dynamically changing how subsequent
routers handle that packet. IPv6 has an explicit flow-
label, but its use is not yet fully defined. 

There are two key points for flow marking and
packet classification: 

� Any per-packet processing above the normal
forwarding functions is overhead and will slow

down a packet’s progress through the router.
� For classification information to be available for

flows as they are created and destroyed, the
router must hold and maintain state informa-
tion for the flow. This, too, is overhead, requir-
ing extra memory and processing.

Packet classification can involve various IP and
transport-level header-field values. Processing these
fields and identifying flows can incur a large pro-
cessing overhead at the router. Over the past few
years much work has gone into developing high-
speed packet classification mechanisms via new
data structures and algorithms (see, for example,
Srinivasan et al.8 and Gupta and McKeown9).

DiffServ Model
The IETF DiffServ working group (http://www.
ietf.org/html.charters/DiffServ-charter.html) is look-
ing at a more scalable model for identifying flows,
based on traffic aggregation rather than individual
per-application instance flows. In the DiffServ model,
packets are classified as belonging to a flow if they
have the same marking in their ToS byte (IPv4) or
traffic-class byte (IPv6), as shown in Figure 4. The
DiffServ work specifies new, common syntax and
semantics for these differentiated-services (DS) bytes. 

Different DS-byte values—DS code-points—
distinguish one flow from another. The meanings
of some code-points are fixed, although work is in
progress to set up dynamic bindings using the
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Figure 4. Packet headers for (a) IPv4 and (b) IPv6. There are various fields, such as the IP address and protocol number in
IPv4, that can identify a flow. IPv6 has an explicit flow-label, but no agreement has been reached on its exact usage.
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resource reservation setup protocol (RSVP). Back-
bone providers and ISPs link to each other’s net-
works with well-defined service-level agreements
specifying the handling requirements for each
code-point. Packet classification, marking, and
policing based on the code-point and perhaps
other header fields is performed at network edges,
and in the core of the network only the code-point
determines packet handling requirements, reduc-
ing the processing required for each packet at the
network core. 

Figure 5 shows the main functions of the DiffServ
packet processing scheme. Here, meters (which can
be token bucket specifications) monitor traffic with
each code-point. The markers, droppers, and shapers
implement the service-level policy for each code-
point. After the packets have left the traffic condi-
tioners, they must still be processed as in Figure 1 to
determine their forwarding path. 

DiffServ does not use per-flow admission con-
trol. Instead, applications must be aware that avail-
able capacity for a given DS code-point may fluc-
tuate depending on users and applications.
Applications, therefore, might need to adapt—for
example, by being responsive to congestion signals
(see the section, “Congestion Control”).

DiffServ makes a trade-off: Protection and fair-
ness for individual per-application instance flows is
not necessarily guaranteed, but DiffServ scales bet-
ter and is likely to be easier to implement than

IntServ/RSVP. If fine-grained, per-flow classifica-
tion is done at the network edges, then as long as
service-level agreements are adhered to, there should
be some reasonable approximation to fairness and
protection across a DiffServ-capable network. 

TRAFFIC DESCRIPTIONS 
AND ADMISSION CONTROL
Scheduling mechanisms can give fairness and pro-
tection, but developers have been striving to pro-
duce mechanisms that are easy to implement. The
two other requirements for scheduling disci-
plines—performance bounds and admission con-
trol—offer a way to specify, respectively, a user’s
intended flow requirements and a network’s test to
see if the performance bounds can be met.

Important flow parameters often have end-to-
end significance. These include data rate, delay, jit-
ter, ordered delivery, loss, and error rates. End-to-
end delay is hard to control on an IP-based
infrastructure, because end-to-end paths cannot be
fixed. However, it is possible to find the end-to-end
delay for a given network path and report it to the
upper layers. 

Error detection or correction tends to be appli-
cation-specific. For example, file transfer cannot
tolerate any bit errors, but packet audio—depend-
ing on its encoding—can tolerate a few. Coping
with errors at the network level requires knowledge
about the application at the network level, which
is undesirable for the reasons mentioned earlier.
Ordered delivery is also hard to provide at the net-
work level unless there is state for per-flow packet
sequence at the network level and sequence num-
bers at the IP level. Moreover, packets can instead
be reordered at the receiver using transport- or
application-level sequence numbering.

Part of the IntServ work includes a widely
accepted traffic description of a token bucket,
illustrated in Figure 6. A bucket of “credits,” or
tokens, provides opportunities for transmission.
The bucket of size b (bytes) fills with tokens at a
rate r (Bps), and data packets consume these
tokens as they are transmitted. However, there is
also a peak rate, p (Bps), and bursts of data pack-
ets can be sent at this rate so long as enough
tokens are available. At any time t, the source
should not have sent more data than rt + b. A
meter can use this property to monitor the flow,
and routers can police a flow by ensuring that
packets do not violate this expression. 

To ensure that the network always has sufficient
capacity to service all its flows, a flow might need
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Packet
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Control information
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Figure 5. DiffServ packet processing scheme. Meters monitor code-
point traffic, while markers, droppers, and shapers implement the
service-level policy for each code-point.
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to “ask” permission to use specific resources. In
telephone networks, we ask the network for per-
mission to attempt a connection, and the network
says yes (or no) by sending a dial tone (or not).
Unlike a phone network, which offers only one
service with a specific, fixed-resource requirement,
an integrated services network could provide
resources for a diverse range of services. Using a
description of the flow’s traffic (and perhaps other
information), a network can control a flow’s
admission to the network. 

Admission control is still a research area.
Indeed, a body of research is developing on net-
work calculus, which provides mathematical tools
to determine characteristics of network perfor-
mance and assist in admission control, capacity
planning, and performance management. (See the
Network Calculus Project pages at the Institute for
Computer Communications and Applications,
http://icawww.epfl.ch/.)

IP uses RSVP to advise the network of a flow’s
requirements. RSVP also provides a means of sig-
naling admission control decisions back to the
user.10 Currently, RSVP is specified mainly for the
IETF IntServ working group, but it has some
severe scaling problems. One of the main problems
is that RSVP provides a flow granularity to the level
of interaction between individual applications. For
this mechanism to succeed, backbone routers must
hold per-flow state. RSVP uses the destination IP-
address, port number, and protocol number to
identify a flow. The thought of backbone routers
trying to hold state for millions of voice and video
calls, as well as forwarding packets and keeping
routes updated, borders on overwhelming.

CONGESTION CONTROL
Congestion is the excessive delay or loss of data due
to excess traffic. For real-time applications, we con-
sider a maximum one-way delay to be 150 ms.
Routers can run out of buffer space and be forced
to drop packets. Even if all sources obey their
respective token bucket specifications, several of
them can peak at once, and the burst of data could
cause congestion.

In TCP, the loss or delay of an ACKnowledgment
packet indicates congestion and causes the TCP flow
to slow its transmission rate. Random Early Detec-
tion is a queue management system that uses this
TCP behavior to prevent congestion. As the queues
(buffers) at a router start to fill, the probability that
RED will drop a packet grows. Eventually RED
drops a packet at random from a queue, before the

queue is actually full. When a packet is dropped, the
TCP flow the packet belongs to backs off. This pack-
et drop exploits TCP’s response to a lost packet to
prevent congestion before it occurs.

What about real-time applications that do not
use TCP? Work is in progress to make real-time
applications TCP-like (see http://www.psc.edu/
networking/tcp_friendly.html), but they rarely have
the kind of timely feedback an ACKnowledgment
system offers. An alternative is explicit congestion
notification (ECN) in IP-packet headers. The
scheme would see routers set one- or two-bit flags
in IP-packet headers when those packets pass
through a congested part of the network. Of
course, there is still the problem that the direction
of such a signal is wrong (received by the destina-
tion and not by the source), but it is hoped that
applications will adapt their signaling to report
congestion to the source. 

Another problem for applications that use ECN
is that all packets passing through the congested
part of the network—not just the misbehaving
flows—will see the ECN signal. To improve on this
behavior, some per-flow state would be required,
though this might be undesirable.

OTHER ISSUES
At least two other major issues concern support for
real-time applications and integrated services:

� modifications to routing for QoS and for multi-
party communication, and

� the extra functionality required at the transport
and application levels.

Data

Tokens, rate r

b

Peak rate, p

Figure 6. The token bucket. The token bucket
specification describes the traffic pattern from a
source but can also meter function in routers. 
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QoS and Multicast Routing
There is some interest in using multiple routing
metrics such as delay and throughput, rather than
just the single, unitless (policy-specific) number
used on most networks today. Multiple metrics will
cause routing protocols to become more complex,
and routing updates become bigger, requiring more
processing. Also, recall that at the level of backbone
interconnection, the individual networks—
autonomous-system networks—do not exchange
routing metrics but exchange “reachability” infor-
mation. Providing QoS-based routing across the
wide area, therefore, becomes difficult to architect.
Crawley et al.11 provide an overview of QoS-based
routing for IP-based networks.

The efficient transmission of multicast infor-
mation to allow multipoint communication has yet
to be widely accepted in the commercial sector.
Currently, an experimental multicast backbone—
the Mbone—is all that exists for Internet-wide
multicast. See Diot et al. for a survey of multicast
routing protocols.12

Integrating multicast provisioning with QoS
routing is still a research issue. Most multipoint
access solutions rely on mechanisms other than
multicast to provide multipoint connectivity across
the wide area, and such mechanisms are often not
sufficiently scalable.

Transport- and 
Application-Level Signaling
To support real-time applications, the transport and
application levels must provide new functionality.
The real-time transport protocol (RTP) is the stan-
dard for real-time data transmission on an IP-based
network. RTP provides no QoS capability but
implements specific framing for real-time media,
which can be treated as if it were a set of header
fields extensions (such as sequence numbers and
time stamps) to the user datagram protocol (UDP).
RTP is allied with the real-time control protocol
(RTCP), which provides feedback about the flow’s
performance (such as loss information and end-to-
end delay). It does this via special report packets
called sender reports—generated by a flow’s
source—and receiver reports—generated by the
flow’s destination host or hosts. 

At the application level, there is a need for appli-
cation-specific signaling. For example, there is cur-
rently much interest in providing VoIP with sig-
naling capabilities to implement such features as
call forwarding and busy signals. These are appli-
cation-level protocols in IP networks but appear as

IP- and QoS-Related RFC Documents

Automatic flow-control and congestion control
M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC 2581, Apr. 1999; http://www.ietf.org/rfc/rfc2581.txt.

Explicit congestion notification in IP headers
K. Ramakrishnan and S. Floyd, “A Proposal to add Explicit Con-
gestion Notification (ECN) to IP,” RFC 2481, Jan. 1999;
http://www.ietf.org/rfc/rfc2481.txt.

IETF DiffServ Working Group
M. Carlson et al., “An Architecture for Differentiated Services,”
RFC 2475, Dec. 1998; http://www.ietf.org/rfc/rfc2475.txt.

Internet protocol architecture
B. Carpenter, “Architectural Principles of the Internet,” RFC 1958,
June 1996; http://www.ietf.org/rfc/rfc1958.txt.

Open Shortest Path First
J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998; http://www.ietf.
org/rfc/rfc2328.txt.

QoS-based routing
E. Crawley et al., “A Framework for QoS-based Routing in
the Internet,” RFC 2386, Aug. 1998; http://www.ietf.org/
rfc/rfc2386.txt.

Real-time transport protocol
H. Schulzrinne et al., “ RTP: A Transport Protocol for Real-Time Appli-
cations,” RFC 1889, Jan. 1996; http://www.ietf.org/rfc/rfc1889.txt.

Resource reservation protocol
R. Braden, ed., L. Zhang et al., “Resource ReSerVation Protocol
(RSVP)—Version 1 Functional Specification,” RFC 2205, Sept.
1997; http://www.ietf.org/rfc/rfc2205.txt.

RSVP and the IETF Intserv Working Group
J. Wroclawski, “The Use of RSVP with IETF Integrated Services,”
RFC 2210, Sept. 1997; http://www.ietf.org/rfc/rfc2210.txt.

RSVP and scaling problems
A. Mankin, ed., F. Baker et al., “Resource ReSerVation Protocol
(RSVP) — Version 1 Applicability Statement: Some Guidelines
on Deployment,” RFC 2208, Sept. 1997; http://www.ietf.org/
rfc/rfc2208.txt.

Routing information protocol
G. Malkin, “RIP Version 2,” RFC 2453, Nov. 1998; http://
www.ietf.org/rfc/rfc2453.txt.
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network-level signaling in traditional telco net-
works.13 For coordination of multiparty scenarios,
such as teleconferencing, distributed floor-control
mechanisms might be required.

CONCLUSIONS
A traditional IP-based network needs many modifi-
cations to support real-time applications and inte-
grated services. This article focuses on only one area
of QoS provisioning: modifying routers for packet
handling such that networks can provide perfor-
mance better than the current best-effort service.

Routers must recognize that many packets may
be related and treat packets belonging to real-time
flows with priority. This involves marking such
packets so that they can be recognized, classifying
the packets based on the markings so that they can
be given the correct treatment, and allowing the
scheduling mechanisms in the routers to transmit
the packets in a timely fashion. The process requires
a large overhead, involving mechanisms to perform
the packet marking, classification, and scheduling.
Therefore, before introducing QoS mechanisms
into an IP-based network, routers may need to
undergo hardware as well as software upgrades.

There are still many research issues concerning
the development and deployment of technology for
a QoS-enabled IP infrastructure. Many of these are
technical issues concerned with the kind of things
discussed in this article. However, an extremely
important issue (not only for researchers but in gen-
eral)—the resolution of which will be vital in deploy-
ing QoS mechanisms on a wider scale—is this: How
do we charge for a QoS-enabled Internet? �
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