
QoSOnt: a QoS Ontology for Service-Centric Systems

Glen Dobson Russell Lock Ian Sommerville
Lancaster University, UK Lancaster University, UK Lancaster University, UK

g.dobson@lancs.ac.uk r.lock@lancs.ac.uk is@comp.lancs.ac.uk

Abstract

This paper reports on the development of QoSOnt:
an ontology for Quality of Service (QoS). Particular
focus is given to its application in the field of service-
centric systems. QoSOnt is being developed to promote
consensus on QoS concepts, by providing a model
which is generic enough for reuse across multiple
domains. As well as the structure of the ontology itself,
an example application currently in development -
SQRM (Service QoS Requirements Matcher) - is
discussed. This application is used to highlight some of
the advantages of the ontology including
standardisation and the level of machine
understanding of QoS specifications which can be
achieved.

1. Introduction

A service provider's business relies upon customers
being able to trust the services they provide. There are
many elements which contribute towards trust in this
context, one of which is the availability of Quality of
Service (QoS) information. In this paper the term QoS
will be used to denote all non-functional aspects of a
service which may be used by clients to judge service
quality. This extends other more restrictive QoS
definitions such as the common interpretation of QoS
to mean network performance attributes. QoS data is of
particular importance in service-based systems because
services are generally black-box – being exposed
purely through their WSDL [1] interface. Moreover, in
the situation where a service marketplace exists, quality
will be traded off against cost by customers, making
the judgment of service quality a key issue.

Simply having QoS data available is not quite
enough in itself to achieve client trust. The provenance
of the data is of utmost importance. In this paper, we
assume that we have some trusted source of data,
although we accept that achieving this is a non-trivial
problem to which there is currently no complete
solution.

As well as simply retrieving QoS data, customers
may wish to query the data and select services based

upon their QoS requirements. In order to enable the
client, provider and intermediaries to intercommunicate
about QoS, a common QoS vocabulary is needed. For
this purpose we have designed QoSOnt - a QoS
ontology.

The structure of the remainder of the paper is as
follows: Section 2 examines background technologies
relevant to QoSOnt. Section 3 presents the structure of
QoSOnt. Section 4 examines the SQRM tool developed
in parallel to QoSOnt. Section 5 examines the
evaluation mechanisms for QoSOnt and SQRM.
Finally section 6 provides information on future work
and conclusions.

2. Background

2.1. Service-Oriented Architectures

Service-Oriented Architectures (SOAs) are
exemplified by the Web Services Architecture (WSA)
[2] and Open Grid Services Architecture (OGSA) [3].
One of the key selling points of these architectures is
interoperability through the use of already ubiquitous
technologies such as XML and HTTP.

Systems based upon SOA have much in common
with component-based systems. The development of
SOA technologies, like component frameworks such as
DCOM and CORBA, has been driven primarily by the
need for improved business agility and greater
emphasis on more dynamic service offerings. SOAs
should be technology agnostic (not relying on given
hardware, platforms, transport etc), and in doing so,
eclipse the limitations of more rigid, costly interaction
mechanisms. A certain vision of SOAs sees a
marketplace where services conforming to the same
interface compete for business. This vision is
particularly popular with those who believe in the
concept of “Virtual Organizations”, e.g. [3].

To have confidence in services, clients will require
service monitoring, service negotiation, and the
formation of legally binding documents (which could
take the form of service level agreements or service
usage contracts).

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

With the possibility of so many interacting parties
and technologies, it becomes increasingly difficult to
maintain understanding between them. Shared
vocabularies and explicitly stated semantics are
required. It is this requirement which has led to the
increasing attention on ontologies in SOAs, and in
particular on a QoS ontology for SOAs.

2.2. Ontologies in Software Engineering

In software engineering, an ontology can be defined
as “a specification of a conceptualization” [4]. More
precisely, an ontology is an explicit formal
specification of how to represent the objects, concepts,
and other entities that exist in some area of interest and
the relationships that hold among them. In general, in
order to be useful, an ontology must represent a shared,
agreed upon conceptualization.

1. They facilitate interoperability.
2. They facilitate machine reasoning.

In its simplest form an ontology is simply a
taxonomy of domain terms. However, taxonomies by
themselves are of little use in machine reasoning. The
term ontology also implies the modeling of domain
rules. It is these which provide an extra level of
machine “understanding”.

Ontologies are already used to aid research in a
number of fields. One example is the National Cancer
Institute Thesaurus [5], which contains over 500,000
nodes covering information ranging from disease
diagnosis to the drugs, techniques and treatments used
in cancer research. Ontologies are also often used in the
development of thesauri which need to model the
relationships between nodes.

Problems that could be addressed through careful
ontological design pervade much of our lives.
Worldwide deaths are recorded through referencing to
the ICD-10 WHO taxonomy [6], the complexity of
which should not be underestimated. The code X35.2.0
is given for a death involving a volcanic eruption
whilst water-skiing in a public library. Given the level
of detail possible, one can imagine that using the
taxonomy manually for classification, as well as
searching it and extending it are difficult. Ontologies
allow precise definition of classes and polyhierarchies
and have the advantage that a reasoner can be used to
aid in all of the above tasks.

2.3. OWL

OWL [7] is the Web Ontology Language - an XMl-
based lnaguage designed for publishing and sharing
ontologies via the web. There are three ‘species’ of
OWL – but the most useful for reasoning - OWL-DL -

corresponds to a description logic. [8] gives a good
introduction as to what this means.

OWL provides the base constructs for building an
ontology. The two most important are Class and
Property. The majority of the other OWL constructs
exist to allow Classes to be defined. Defining a Class
consists of precisely stating the requirements for
individuals to be members of that class. A class
definition is therefore synonymous with the set of all
individuals meeting its membership requirements. A
key feature of OWL and other description logics is that
subsumption relationships can be automatically
computed by a reasoner.

OWL works under an open world assumption. This
means that no assumptions are made about anything
unless they are explicitly stated or can be inferred from
asserted facts. Open world reasoning is often counter-
intuitive to those used to closed-world data modeling.
For instance, a class definition does not act as a
constraint on instances of that class. Any facts not
asserted about a class in its definition could be true of
its instances.

The following snippet from QoSOnt gives a flavor
of OWL. It defines a Class MeasurableAttribute,
stating that it is exactly equivalent to the QoSAttribute
class intersected with the set of all individuals which
have a property “hasMetric”, with at least one value
which is a “Metric”; intersected with the set of all
individuals which have a property “hasMetric” with
only values which are “Metrics”. Finally it states that
the class MeasurableAttribute and
UnmeasurableAttribute are disjoint.

<owl:Class rdf:about="#MeasurableAttribute">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:allValuesFrom rdf:resource="#Metric" />
<owl:onProperty>

<owl:InverseFunctionalProperty rdf:ID="hasMetric" />
</owl:onProperty>

</owl:Restriction>
<owl:Restriction>
<owl:someValuesFrom rdf:resource="#Metric" />
<owl:onProperty>

<owl:InverseFunctionalProperty rdf:about="#hasMetric" />
</owl:onProperty>

</owl:Restriction>
<owl:Class rdf:about="#QoSAttribute" />

</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>
<owl:disjointWith>

<owl:Class rdf:ID="UnmeasurableAttribute" />
</owl:disjointWith>

</owl:Class>

Clearly this is not particularly human-readable,
especially because the classes and properties referenced
(Metric, hasMetric, UnmeasurableAttribute) could be

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

defined anywhere in the file. Editing OWL manually
can be difficult for the same reason. Many advantages
are gained by using an appropriate editor and reasoner
in the construction of an ontology. We used Protégé [9]
and its OWL plug-in in our development of QoSOnt.

2.4. OWL-S

OWL-S [10] is an OWL ontology for describing
web services. Along with OWL and RDF it is a core
“semantic web” technology. The semantic web is a
movement to make the semantics of web-content
accessible to machines. It has been summarized by its
originators as:

"an extension of the current web in which
information is given well-defined meaning, better
enabling computers and people to work in
cooperation” [11]

The OWL-S ontology is structured around the class
Service, which consists of one or more “profiles”,
“groundings” and a single “model”. The profile
describes what a service requires and provides. The
model is a functional model (i.e. it describe how the
service works), whilst the grounding describes how to
actually use a service (most commonly linking between
the OWL-S and WSDL description).

The “profile” is the class of relevance to QoS. It is
here that a service’s non-functional parameters can be
defined. QoSOnt is best used as an extension to OWL-
S by the service provider, since OWL-S provides the
ability to describe the non-QoS aspects of services.
This also unifies the service specification so that it is
accessible through a single point. How to link the
OWL-S and QoSOnt ontologies for the purposes of
service QoS description is touched upon in Section 4.

3. The QoSOnt Ontology

QoSOnt was developed by a process of examining
existing QoS specification languages [12], [13]. The
majority of detail in QoSOnt is in our specific area of
interest, which is dependability, where we have built
upon existing work by making use of an existing
taxonomy [15] and modeling commonly used metrics.

QoSOnt represents many of the commonalities
discovered between the QoS specification languages
examined. Unlike most of these languages however,
QoSOnt aims to be generic enough to be used no
matter what one’s particular view of QoS is. Our
approach has been to provide a base set of useful
constructs which cover common cases. These also exist
as an example to others who wish to model their own
QoS viewpoint on top of the basic QoSOnt Classes.

To facilitate reusability and extensibility the
ontology has been designed from the beginning to be
modular in nature. Each “module” is an ontology in
itself. Ontologies in higher layers will specialize and
build upon those from lower layers. The ontologies fall
into three layers as shown in Figure 1.

Base QoS
Units

Attributes

Usage Domains

Dependability

Time

Network Service

Performance

Figure 1. Layers of the ontology

The structure is designed to allow third parties to
replace parts of the ontology as needed. For instance
they may have a different view of dependability to
ours, or have produced a time ontology which suits
their purposes better. Obviously this is only useful if
the relevant ontologies are shared with the community
they wish to interact with.

The base QoS layer contains generic concepts
relevant to QoS. Unit ontologies also logically reside in
this layer. Time is the most relevant unit in QoS, and is
therefore the only unit ontology defined at the moment.
It represents units of time and how to convert between
them. This means that an inference engine could
establish, for instance, that 1 minute is the same as
60,000 microseconds. This is particularly useful if
clients use the same metric as providers - but different
units.

The attribute layer contains ontologies defining
particular QoS attributes and their metrics. On top of
this is the domain-specific layer, which links the lower
layers to specific types of computer system. For
instance, the network ontology defines that certain QoS
attributes are specific to a particular network route and
the service ontology that QoS attributes sometimes
refer to particular services, service operations, etc. It is
the service ontology which provides links with OWL-
S.

3.1. The Base QoS Ontology

The base QoS ontology represents a set of generic
QoS concepts (as shown in Figure 2). We introduce the
concept of a QoS attribute, and its unmeasurable and

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

measurable subclasses. In using the ontology it is
entirely optional whether one chooses to use these sub-
classes or create one's own. Ontologies allow multiple
inheritance, so many different classifications are
possible. Indeed, a QoSOnt specification will always
subclass something from the attribute layer as well as
from the domain layer (e.g. to say that what is being
referred to is the attribute reliability, and it is
specifically the reliability of service X).

Unmeasurable in this context relates to attributes
which cannot be measured from a given viewpoint. An
example of this could be adherence to a particular
standard. Anything which is measurable has a metric
(as the OWL in Section 2.3. shows). A metric
represents one way of measuring a specific QoS
attribute. It must result in a numerical value and must
be calculable in practice as well as theory. For instance,
a statement that a service has transactional throughput
of 1000 transactions per second can be falsified by a
single party (be they a client, provider or monitoring
service) but cannot generally be measured by a client
or third party as they have no access to the traffic
statistics for the service.

Measurable attributes have one or more associated
metrics. At this level we do not prescribe individual
metrics or even classes of metric; these are defined in
more specific attribute ontologies. We define a metric
to consist of a description, an acceptability direction
and zero or more values. The acceptability direction
indicates whether higher or lower values are preferable
for the metric (e.g. A low probability of failure on
demand is more desirable). It must be remembered that
these classes can be extended or constrained by their
subclasses, so being over-specific at this base level is
undesirable.

A “physical quantity” has one or more associated
“units”. In many cases a numerical value alone cannot
be understood without its unit type (e.g. You need to
know whether “time to complete” is quoted in seconds,
microseconds, milliseconds, etc.). Many metrics in
QoS involve time, which is why we have included the
time –ontology in QoSOnt. Other types of physical
quantity are rare in QoS – but the structures are there to
model them when they are required. Percentages can
also be modeled as units in QoSOnt. This gives the
ability to understand that availability of 0.99 is the
same as availability of 99% for instance.

For metrics which have values with simple types
(e.g. alphanumeric strings or integer counts) a new
datatype property would be included in that sub-class
of Metric.

Note that Figure 2 shows the Properties and Classes
of the ontology, but one may question how the domain
rules talked about in Section 2.2 are modeled. In OWL
(and therefore QoSOnt), it is the Class definitions
which constitute the domain rules. These definitions

not only define the Class in terms of necessary and
sufficient conditions for membership, they also
constrain the use of Properties and therefore the
interrelationships between classes.

Figure 2. The Base QoS ontology

These Class definitions consist of OWL constructs
such as those detailed for MeasurableAttribute in
Section 2.3. There is no succinct way of representing
these. For the sake of QoSOnt most Classes are defined
in a pragmatic manner. That is, they are defined with
sufficient rigor to be identified within the confines of
QoSOnt (e.g. a MeasurableAttribute is any
QoSAttribute with a hasMetric property which is a
Metric). However, philosophical questions of the
defining nature of the concepts modeled have not been
considered. Since the ontology is an engineering
artifact this is deemed to be a sensible approach.

3.2. The QoSOnt Attribute Layer

Figure 3 shows some attributes from both the
dependability and performance ontologies (prefixed by
d: and p: respectively).

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

Figure 3. Example Classes from the
attribute layer

The full dependability ontology is largely based
upon the taxonomy defined in [14]. It not only includes
the ability to represent dependability attributes – but
also means of achieving dependability and
dependability threats. These latter may be of less
relevance to QoS – but will find use in other forms of
specification. There is therefore an overarching concept
of dependability, as shown in Figure 3.

The ability, given a particular Metric, to find the
QoS attribute it measures through the isMetricOf
Property (see Figure 2) allows other Metrics for that
attribute to be found. With the overarching concept of
Dependability, a further step may be made through the
isPartofDependability Property. This Property gives
access to the Dependability Class and therefore all
information relevant to dependability (threats, means,
etc.). This shows how the attribute layer provides a
good point at which to provide hooks to non-QoS
concepts. Doing so allows the integration of ontologies
for further types of system description.

As well as the reusable dependability (or other
attribute) ontology, a further ontology contains actual
metrics (e.g. probability of failure on demand, mean
time between failures, mean availability, etc.). It is this
level of detail which is perhaps the most important; as
it is only once specific metrics are added that QoSOnt
is usable for QoS specification.

3.3. The QoSOnt Usage Domain Layer

Ontologies in the usage domain layer link QoS to a
particular class of system. Currently QoSOnt supports
networks and services as types of system that QoS may
refer to. As with all layers, this can easily be expanded
upon.

The most important part of the service ontology
simply links the concept of “QoS attribute” and
“service”. Since we are working in the web services
arena we use the Service class from the OWL-S
ontology. Our ontology can also enhance the OWL-S
ontology by providing concrete Classes to act as its
“ServiceParameters”. An example is shown in Figure
4.

Figure 4. Example of the QoSOnt/OWL-S
link

The prefixes in the figure refer to the following
namespaces: s: OWL-S Service, p :OWL-S Profile,
bqos: QoSOnt Base QOS, sqos: QoSOnt Service QoS,
dm: DIGS metrics (Which contains our dependability
metrics in the Attribute Layer). The solid lines labeled
io indicate “instance of”. The instances are the part
which would actually be visible in a specification. The
Service instance (ephemerisService in the figure)
would be the point of entry to the OWL-S
specification. The figure shows that a service presents a
profile and that a profile has a parameter. Also depicted
is how such a service parameter can make use of
QoSOnt in this case by specifying a ServiceParameter
which is Probability of Specific Failure on Demand.
The unusual terminology is to distinguish it from
probability of any failure on demand. “Specific
Failure” refers to the fact that it represents the
probability of one particular service failure defined
using the dependability ontology.

As well as service-specific, certain QoS attributes
are also operation-specific (e.g. time-to-complete,
accuracy) and therefore reference the OperationRef
class from OWL-S. Other attributes, e.g. reliability,
may be best modelled as workflow specific since they
are specific to a usage pattern. OWL-S provides a
Process class which is much like a workflow. However
it would be preferable to also be able to reference other
types of workflow definition.

A provider (or QoS measurement service) publishes
QoS data as part of their OWL-S description or directly
using QoSOnt alone. The former is the preferred option
as it gives a standard way of referring to the service,

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

operation, etc. in question. It also provides a single
point of access for the complete specification.

The following section describes a tool which
differentiates between comparable services by
matching user requirements against published service
QoSOnt specifications.

4. SQRM: A QoSOnt Application

To demonstrate the use of the ontology, and aid in
its evaluation, a tool for service discovery,
differentiation and selection based upon QoS
requirement has been developed. We have named the
tool the Service QoS Requirements Matcher (SQRM).
SQRM is designed to showcase a range of different
situations in which QoSOnt can be utilised within the
service domain. The tool supports the following service
cycle:

• Service Discovery
• Requirement Specification
• Service Querying – Differentiation

Beyond these stages service negotiation, service
agreement generation and service monitoring (and
mediation) are required for a full QoS enabled system.
Though we have not yet implemented any solutions in
these areas, they should make use of QoSOnt, as they
are likely to reference many of the QoS attributes used
in service discovery and differentiation. The following
sections give an introduction to the different parts of
the tool and their relationship to QoSOnt.

4.1. Service Discovery

Service discovery in SQRM consists of querying a
UDDI registry [15]. This consists of a keyword search
(as shown in Figure 5). The user can discover broadly
similar services (or functionally identical services by
examining the WSDL).

The QoSOnt data may be accessed by examining
extensions in the WSDL or via references held in the
UDDI registry directly. Note that the QoSOnt
specification that is pointed to may, in practice, be
provided by a third party.

4.2. Requirement Specification

QoS Requirement and capability specification
affects all clients and services. Without a way to
specify requirements a client could not differentiate
between services; without capability specification a
service could not advertise its resources. The SQRM
tool currently concentrates on the client viewpoint –
providing a graphical means of specifying QoS

requirements. Much of it however, could be reused for
a provider-side specification and publishing tool.

Figure 5. Service discovery in SQRM

To demonstrate what forms QoS requirements may
take we briefly introduce one of the scenarios used to
evaluate QoSOnt. The example used is based upon the
field of epidemiology, and the study of pandemics. The
computation of the projected spread of diseases on
given population models is both time consuming and of
interest to multiple bodies, ranging from governments
to international collaborative organizations including
the World Health Organization (WHO), and individual
research institutions and universities. Different
algorithms can be used to analyze data and the time
taken for the analysis process makes QoS of great
importance.

Some techniques for analysis of epidemiology are
more applicable to some situations than others, and
may depend on the time available for computation. For
example, for a given sample size the use of a MCMC
(Markov Chain Monte Carlo) computation may yield
unacceptably inaccurate results if not run for a large
enough quantity of time. For other algorithms perhaps
a final result is attainable, and cutting computation
short would render results useless. Information of this
type can be built into an ontology, creating a rich
information resource.

Our scenario pictures a situation where; given a
number of possible services, capable of supplying a
number of different formula computations; service
differentiation and requirement matching tools play an
important role.

Client software for analyzing epidemiology data
could potentially have a number of different QoS
requirements. For example, the requirement of certain

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

degrees of accuracy dependent on the algorithm used
for analysis i.e.:

Algorithm A Accuracy > S Using Metric N
or
Algorithm B Accuracy < P Using Metric M

In SQRM, a QoS requirement is basically a
predicate (represented in XML), the truth value of
which depends upon the asserted facts in the QoS
descriptions of the user selected services. The subjects
of the predicates are instances or Classes defined in
QoSOnt.

In contrast to requirements, the provider's
description of their QoS capabilities consists of
asserted propositions. These often simply say "QoS
Metric X has been measured to have value Y". QoSOnt
alone is sufficient to express these. If a provider wishes
to use more complex forms of proposition then the
same hybrid approach as for requirements may be used.
For instance, the XML schema includes the ability to
represent service classes (i.e. set offerings of the same
service with different service levels). This is not
currently possible with QoSOnt, although it is
something which is likely to be incorporated in the
future. The provider may also wish to express the
inherent interdependence of certain metrics/attributes
(e.g. server load and transactional throughput).

Requirement predicates are visualized as a tree – the
leaves of which are Values or Classes of Metric
expressed in QoSOnt. The inner nodes are logical and
arithmetic operators. Figure 6 illustrates this with a
screenshot of a requirement expression as it is created
(MTTC is an abbreviation for Mean Time to
Complete). QoSOnt allows constraints on the Values a
Metric can support to be taken into account
dynamically as the expression is constructed.

Figure 6. Requirement construction

The expression shown in the figure states the
following requirement: ((MTTC<500 milliseconds)
AND (Mean Availability>0.9)) OR ((MTTC<1 second)
AND (Mean Availability>0.99)). This shows how
trade-offs can be expressed: That time to complete can
be traded off in favor of availability.

4.3. Requirements Matching

Requirements matching is a bottom up evaluation
process, which starts from the leaves. That is, for each
service being considered, the asserted values of Metrics
can first be established from the published capabilities.
The truth value (or arithmetic result) these produce in
the parent sub-tree can then be established, and this can
continue to filter up until a truth value is established at
the root of the tree indicating whether the requirements
has been matched.

As an example of the matching process consider the
requirement shown in Figure 6. If MTTC for a service
under consideration is found to have a published value
of 600ms then the left hand sub-tree immediately
evaluates to false. This is because plugging a value of
600ms into the MTTC leaf makes its immediate parent
(<) evaluate to false. Since its grandparent is an AND
operator no further evaluation is needed to assign false
to the left sub-tree rooted at AND. On the other hand,
the opposite is true of the right sub-tree. Plugging
600ms in (and using QoSOnt to convert the units)
makes > evaluate to true, the second child of the AND
sub-tree therefore also needs to be evaluated. If
MeanAvailability is found to be >0.99 then the whole
requirement will be met and “true” will propagate up to
the root of the tree.

Where the requirement is strict (i.e. it "must" hold
true) this provides a simple yes or no match. It will also
be more efficient as not all terms will always need to
be evaluated (as for the left sub-tree in the above
example). If insufficient information is available to
make a conclusion this must also be taken as a non-
match. For instance, if no specification for
MeanAvailability was provided for a service then no
truth value could be assigned.

Specifying the requirement as non-strict will allow
for a more detailed comparison than simply matching
or not matching. Non-strict matching might be useful,
for instance, when a lot of required data is missing or if
no strict match can be found. However, if the
requirement is non-strict then there are a number of
issues as to how to judge how well a particular service
matches it.

The approach we propose involves assigning a score
based upon the level of match achieved. A lower score
would have more required terms which evaluate to
false or are missing. The score filtered up to the root of

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

the tree could then be used to assess the relative
suitability of services.

The ability to create QoS requirements involves
understanding the underlying meaning of the attributes
and their metrics. QoSOnt can supply much of the
information needed for human inspection as well as
providing UI constraints to avoid misuse of terms. For
example, acceptability direction for a given metric (is
high or low better), unit type, and so on. For non-strict
matching we hope to produce advice and warnings
based upon the semantics of the requirements created
as well as an indication of how well the services match.

5. Evaluation

The evaluation of an ontology such as QoSOnt
ultimately relies upon its application by the research
community. We see QoSOnt as something which may,
in the future, form the basis of a standard QoS ontology
for use across the community. During development, we
have simulated its usage by generating a set of
scenarios, one of which was introduced in the form of
the epidemiology example in Section 4.2.

QoSOnt aims to provide a common QoS
conceptualization for use by client, provider, and third
party intermediary systems. We have therefore
attempted to consider the scenarios from each of these
viewpoints, although we have initially concentrated on
the client and provider point of view.

SQRM’s implementation has given concrete
examples of QoSOnt’s use by the client for service
differentiation, by the provider for publishing QoS
data, as well as by intermediate software in the
matching process. Whilst there are extensions we wish
to make in terms of the metrics we have modeled in
QoSOnt, we have found that QoSont has not restricted
us in modeling those we have already considered.
However, to reduce the work required to model new
Metrics, the possibility of providing some generic base
Metrics has arisen.

We also accept that real world examples may pose
us with unexpected situations. We are therefore seeking
to collaborate with real world service users in order to
further evaluate and improve QoSOnt.

6. Conclusion & Future Work

In conclusion, this paper has put forward a workable
QoS ontology, outlining its objectives with reference to
the service cycle as a whole, and specifying both its
overall design and implementation.

In the future we hope to continue our efforts in the
expansion of QoSOnt in parallel with our work on
SQRM. An avenue we have begun to explore is

expressing, on top of QoSOnt, how metrics aggregate
under various forms of composition.

We also plan to explore the way in which QoSOnt
could be further leveraged in more complex QoS
specification scenarios. In particular we wish to address
certain limitations of common dependability metrics.
The issue of moving beyond UDDI to find the best way
to publish and make QoS specifications easily
discoverable and queryable is also on our agenda, as is
addressing the outstanding area of QoS monitoring.

In terms of developing SQRM there are many user
interface enhancements which we are considering,
including, among other things, adding the ability to
check the availability of services upfront; a wizard for
requirements creation; and a visualization of the
matching process so that non-strict cases can be judged
by user.

7. References

[1] Erik Christensen et al (W3C), "Web Services Description
Language (WSDL) 1.1", http://www.w3.org/TR/wsdl
[2] David Booth et al (W3C), "Web Services Architecture",
http://www.w3.org/TR/ws-arch/
[3] Ian Foster et al, "The Physiology of the Grid",
http://www.globus.org/alliance/publications/papers/ogsa.pdf
[4] T. R. Gruber, “A translation approach to portable
ontologies”, Knowledge Acquisition, 1993, 5(2):199-220,
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html
[5] National Cancer Institute (NCI) Thesaurus,
http://www.mindswap.org/2003/CancerOntology/
[6] ICD-10 WHO Ontology,
http://www.who.int/classifications/icd/en/
[7] Sean Bechhofer et al (W3C), "OWL Web Ontology
Language Reference", http://www.w3.org/TR/owl-ref/
[8] Franz Baader, Ian Horrocks, Ulrike Sattler. “Description
logics as ontology languages for the semantic web”, Lecture
Notes in Artificial Intelligence. Springer, 2003.
http://www.cs.man.ac.uk/~horrocks/Publications/download/2
003/BaHS03.pdf/
[9] The Protégé Ontology Editor and Knowledge Acquisition
System, http://protege.stanford.edu/
[10] DAML, “DAML Services”,
http://www.daml.org/services/owl-s/
[11] Glen Dobson, "Quality of Service in Service-Oriented
Architectures”, http://digs.sourceforge.net/papers/qos.pdf
[12]Glen Dobson, Russell Lock,
http://wiki.nesc.ac.uk/read/pa9?ParametersOfQoS
[13]Tim Berners-Lee, James Hendler, Ora Lassila, “The
Semantic Web”, Scientific American, May 2001
[14] Jean-Claude-Laprie, Brian Randell, Carl Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing”, IEEE Transactions on Dependable & Secure
Computing, Vol. 1, No. 1, pp. 11-33.
[15] Tom Bellwood et al, “UDDI Version 3.0.2”, edited by
Luc Clement et al,
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

