
Mon. Not. R. Astron. Soc. 368, L35–L38 (2006) doi:10.1111/j.1745-3933.2006.00155.x

QPOs during magnetar flares are not driven by mechanical normal modes
of the crust

Yuri Levin1,2�
1Leiden Observatory, PO Box 9513, NL-2300 RA Leiden, the Netherlands
2Lorentz Institute, PO Box 9506, NL-2300 RA Leiden, the Netherlands

Accepted 2006 January 24. Received 2006 January 18; in original form 2006 January 3

ABSTRACT
QPOs have been observed during three powerful magnetar flares, from SGR 0526−66, SGR

1806−20 and SGR 1900+14. These QPOs have been commonly interpreted as being driven

by the mechanical modes of the magnetar’s solid crust which are excited during the flare.

Here we show that this interpretation is in sharp contradiction with the conventional magnetar

model. Firstly, we show that a magnetar crustal mode decays on the time-scale of at most 1 s

due to the emission of Alfvén waves into the neutron star interior. A possible modification is

then to assume that the QPOs are associated with the magnetars’ global modes. However, we

argue that at the frequencies of the observed QPOs, the neutron star core is likely to support

a continuum of magnetohydrodynamic normal modes. We demonstrate this on a completely

solvable toy model which captures the essential physics of the system. We then show that

the frequency of the global mode of the whole star is likely to have a significant imaginary

component, and its amplitude is likely to decay on a short time-scale. This is not observed.

Thus we conclude that either (i) the origin of the QPO is in the magnetar’s magnetosphere, or

(ii) the magnetic field has a special configuration: either it is expelled from the magenta’s core

prior to the flares, or its poloidal component has very small coherence length.
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1 I N T RO D U C T I O N

In a prophetic paper, Duncan & Thompson (1992) argued that mag-

netars – a class of neutron stars with super-strong (1014–1015 G)

magnetic fields – must exist. Treated at first with some skepticism,

the magnetar paradigm has proved extremely successful in explain-

ing the rich phenomenology of anomalous X-ray pulsars (AXPs)

and soft gamma-ray repeaters (SGRs: e.g. Thompson & Duncan

1995, hereafter TD). In particular, one phenomenon which has an

appealing explanation within the magnetar paradigm is that of gi-

ant flares from SGRs. They are thought to be powered by an im-

pulsive release of magnetic energy stored in the neutron star. The

release may be triggered by a fracture in the magnetically stressed

crust (TD) or by a sudden reconnection in a twisted magnetosphere

(Lyutikov 2003). So far, three giant flares have been observed: from

SGR 0526−66 (Mazets et al. 1979), SGR 1900+14 (Hurley et al.

1999; Feroci et al. 1999) and SGR 1806−20 (Hurley et al. 2005;

Palmer et al. 2005). In each of the flares’ light-curves, there is in-

triguing evidence for QPOs with frequencies of tens of Hz. Firstly,

the 43.5-Hz QPO was reported by Barat et al. (1983) in the 1979

flare from SGR 0526−66. Then recently Israel et al. (2005) have
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found several QPOs in the 2004 giant flare from SGR 1806−20, with

frequencies from 18 to 90 Hz. These QPOs were detected with very

high signal-to-noise ratios and lasted for ∼100 s; their presence was

recently confirmed by Watts & Strohmayer (2006, hereafter WT)

who used data from a different satellite. WT have also detected a

relatively high-frequency QPO, of 625 Hz. Lastly, prompted by the

Israel et al. observations, Strohmayer & Watts (2005) have found

multiple QPOs in the light-curve of the 1998 giant flare from SGR

1900+14.

The QPOs have been widely associated with torsional modes of

the neutron star crust (Barat et al. 1983 made the first suggestion,

which was followed by the more detailed analyses of Duncan 1998,

Israel et al. 2005; Strohmayer & Watts 2005 and Piro 2005). Indeed,

it is attractive to associate a stable QPO with a mechanical mode of

a neutron star, and the frequencies of crustal torsional modes are of

the right order of magnitude.1 However, we argue below that this

1 The 625-Hz QPO found by WT is already somewhat problematic for the

crustal mode picture. One can associate it with a crustal shear mode which

has one radial node (n = 1; see e.g. Piro 2005). However, a large multitude

of l < 5, n = 1 shear modes exist around that frequency, with spacings of

several Hz. There is no physical reason why just one of them should be

excited, and not many.
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interpretation is not viable within the magnetar paradigm. In the next

section, we show that the crustal mode of a magnetar is not stable

but decays within seconds by emitting Alfvén waves into the core.

This in direct contradiction with the observations. Chris Thompson

(private communication) has suggested that one may associate the

QPOs with the magnetohydrodynamics (MHD) elastic modes of

the whole neutron star. However, in Section 3 we argue that the

frequency of such a global mode is likely to have an imaginary

component, and the mode decays on a short time-scale. This is due

to the continuous spectrum of MHD modes supported by the liquid

core.

2 D E C AY O F M AG N E TA R C RU S TA L M O D E S

Magnetic fields mechanically connect the elastic crust with the liq-

uid core. Both media can be considered as perfect conductors, and

ideal MHD is applicable with magnetic field lines frozen into the

media. The Alfvén wave speed in the core is given by

va =
√

B Bcr

4πρη
� 3 × 107

√
B15

ρ14η
cm s−1. (1)

Here B = 1015 B 15 G is the magnetic field inside the core, ρ =
1014ρ 14 g cm −3 is the density, B crit � 1015 G is the field inside su-

perconducting flux tubes, and η is the fraction of the neutron star core

involved in the Alfvén wave motion. If the neutrons are superfluid,

then they decouple from the Alfvén wave and η ∼ 0.1. If protons

do not form a superconducting fluid, B crit should be substituted by

B in the above equation.

The time-scale of an Alfvén wave crossing the neutron star core

is ∼0.05 s. Therefore, even if the oscillation was initially localized in

the crust, the rest of the core will get involved in less than a second.

It is instructive to estimate the power W radiated in the Alfvén waves

from the crust:

W ∼ ρω2ζ 2va A, (2)

where ω is the angular frequency of the oscillation, ζ is the amplitude

of the crustal oscillation at the crust-core interface, and A is the

inner surface area of the crust. The time-scale on which the energy

is drained from the crustal mode is given by

τ ∼ M

ρva A
∼ 0.01 s. (3)

Here M is the mass of the crust.

In a completely rigorous treatment of the problem various correc-

tions of the order of 1 would occur. Partial reflection of the Alfvén

waves is possible, but it will not be a major correction since the wave-

length and the relevant scaleheights (density, magnetic pressure) are

comparable to the neutron star radius, and thus there is no impedance

mismatch which is needed for significant reflection. We note that

the situation here is qualitatively different from that considered by

Blaes et al. (1989), who considered small-wavelength shear waves

propagating from the depth of the crust into the neutron star magne-

tosphere, and found large reflection coefficients. Here we deal with

global modes of the crust, which feature almost radius-independent

horizontal displacements. The motion of the inner surface of the

crust, together with frozen-in magnetic field-lines, should be con-

sidered as the boundary condition for launching the Alfvén waves

into the core.

The geometry of the magnetic field is another obvious factor, but

for a generic configuration we do not expect a qualitative change

in radiated Alfvén-wave power. If, however, the magnetic field was

confined to the crust or had a very small coherence length in its

poloidal component, then the radiated Alfvén-wave power could

decrease significantly. We do not know any compelling argument

for either. Thus we conclude that even if the crustal mode was origi-

nally excited, magnetic stresses would significantly reduce the mode

amplitude in a fraction of a second and redistribute the energy within

a liquid core. Therefore, barring special magnetic-field geometry, a

pure crustal mode cannot be associated with a stable QPO during

the flare. One may hope to associate the global MHD–elastic mode

with the QPO. This proposal (due to Chris Thompson) runs into

potential difficulties, which we discuss in the next section.

3 G L O BA L M O D E S

Computing the global MHD modes of a star is clearly a difficult

task. In recent tour-de-force study Reese, Rincon & Rieutord (2004,

hereafter RRR) have found the eigenmodes of a shell of a conductive

incompressible fluid with a dipole magnetic field (see also Rincon

& Rieutord 2003, and Levin & D’Angelo 2004). However, we are

not just limited by purely computational difficulties. In a magnetar

core the magnetic pressure is subdominant, and there is virtually

no conversion of the Alfvén waves into magnetosonic waves. The

core responds to the wave as an incompressible fluid, and the wave

propagates along the field lines. As different field lines have different

lengths in the core, and different average Alfvén velocities along

them, one might suspect that the core supports a continuum of the

Alfvén modes. This is hard to prove generally, but below we, in the

spirit of appendix B in RRR, present a toy model example where

the Alfvén-mode spectrum can be computed explicitly.

Consider a perfectly conducting, incompressible fluid sand-

wiched in a box, with top and bottom plates also being perfect

conductors (see Fig. 1).

The magnetic field B(y) is vertically directed and is a function

of y only, threading both top and bottom plates. Gravity is zero,

and magnetic pressure gradient is trivially compensated by the fluid

pressure gradient. Consider now a z-independent Lagrangian dis-

placement ζ (x , y) in the z direction. The equation of motion is

∂2ζ

∂t2
= c2(y)

∂2ζ

∂x2
− γ

∂ζ

∂t
, (4)

where c(y) = √
T (y)/ρ(y) and γ is a small damping constant

added for generality; here T = B2/(4π) is the magnetic tension
[in a superconducting fluid T = BBcrit/(4π)] and we have allowed

y-dependence of the fluid density ρ. Clearly, equation (4) separates

Figure 1. A toy model of the magnetar core. Perfectly conducting incom-

pressible fluid is sandwiched between perfectly conducting top and bottom

plates. The magnetic field - -shown by thin arrows – is vertically directed

and is a function of y only. The z-axis is perpendicular to the page.
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in x and y, with eigenfunctions

ζny0
(x, y) = sin(nπx/lx )δ(y − y0) exp(iωny0

t), (5)

with eigenfrequencies

ωny0
= ±

√
(nπ/lx )2T (y0)/ρ(y0) − γ 2/4 + iγ /2. (6)

Here lx is the box height, n is the integer number, and y0 is the

y-coordinate where the eigenfunction is localized. The spectrum is

continuous!

It is notable that for a spherical shell numerical results of RRR

indicate that the spectrum of toroidal modes is also continuous (and

the eigenmodes are singular, as in equation 5 above). The continu-

ity of part of the spectrum is a topological property, which should

remain when external parameters (the shape of the box, density pro-

file, etc.) change continuously. Because the basic MHD physics in

our example, in the fluid shell of RRR and in the magnetar core are

similar, we believe that the magnetar core supports a continuum of

MHD modes.

We started this section by asking whether a global magnetar

MHD–elastic mode can be responsible for an observed QPO. We can

now see that such a mode of the whole magnetar will be coupled

to a continuum of the MHD modes in the core. Experience from

quantum mechanics tells us that a mode coupled to a continuum

of other modes decays if its frequency lies within the continuum

(cf. Fermi’s Golden Rule). This is probably the situation here: the

frequencies of the QPOs are tens of Hertz, above the base Alfvén-

mode frequency (but obviously below that of an infinite number of

higher-order Alfvén modes). Let us illustrate explicitly the decay

of a global mode by returning to the simple example in Fig. 1. We

now model the presence of a crust by assuming that the top plate

is allowed to move in the z-direction but is also a harmonic oscil-

lator (with restoring force provided by some external spring). The

equation of motion of the top plate is given by

d2 Z

dt2
= −ω2

0 Z − F/M, (7)

where Z is the displacement of the top plate, ω0 is the proper fre-

quency of the oscillator, F is the force due to magnetic stresses from

the fluid below and M is the mass of the plate. When the top plate

participates in a global mode of frequency ω, then Z = Z 0 exp

(iωt). It is straightforward, by using equation (4), to solve for the

fluid motion:

ζ (x, y) = sin[k(y)x]

sin[k(y)lx ]
Z , (8)

where

k(y) =
√

ω2 − iωγ /c(y) � ω

c(y)

(
1 − i

γ

2ω

)
. (9)

The back-reaction force F can now be computed:

F = −
∫

T (y)

(
∂ζ

∂x

)
x=lx

dydz

= −lzζ

∫
T (y)k(y) cot[k(y)lx ]dy (10)

where l z is the z-dimension of the top plate. Let γ = 0. Then if ω

is real and is in resonance with at least one of the continuum modes

then cot klx will have a pole singularity at some y = y0 in the range

of integration. The singularity is lifted if γ is non-zero; in the limit

of γ � ω the integration will produce an imaginary component of

the amplitude of F:

�[F exp(−iωt)] = −lzζ0

T (y0)k(y0)π

|lx k ′(y0)| . (11)

Comparing the above equation with the equation (7), we see that

our assumption that ω was real was not self-consistent. Within an

order of magnitude, the imaginary part of ω is

�(ω) ∼ T lzly

lx Mω
. (12)

Substituting the parameters relevant for a magnetar (B = 1015, l z =
ly = lx = 106 cm, M = 3 × 1031 g, ω ∼ 300 rad s−1), we get

�(ω) ∼ 10 s−1. (13)

Even allowing for several corrections of the order of 1, we see that

a global mode is expected to decay within a second. This is much

shorter than the time-scale on which the QPO is observed, ∼100 s.

One can ask the following question: is it possible that a global

mode is not coupled to the MHD continuum in the core? After all,

along with the MHD continuum the core can probably support dis-

crete MHD modes as well (such modes are seen in RRR’s numerical

work). However, while some global mode may be decoupled from

the continuum, the mode of our interest must involve the motion

of the crust, in order to produce the observed QPO. Unless the

magnetic field in the core has a high degree of symmetry (which

seems unlikely, especially if one believes that it was generated by a

turbulent dynamo), this crustal motion is bound to couple the QPO-

generating global mode to the continuum of the core’s MHD modes

via the field-lines that thread the crust. Thus the decay of a global

mode seems generic.

4 M AG N E TA R : A T U N I N G F O R K O R W E T
S PAG H E T T I ?

Observations argue for the former: QPO frequencies are stable over

tens of seconds, something strongly indicative of a mechanical

mode. However, we have shown that the theory argues for the latter.

Strong MHD crust-core coupling destroys the stability of a purely

crustal mode, and the presence of a continuum of MHD modes in

the core makes a global crust-core mode decay within a second. So

what is the origin of the magnetar QPOs? It can still be mechanical,

but only if the magnetic field geometry is very different from what

has been assumed – for example, if the magnetic field is largely

confined to the crust or has an extremely incoherent poloidal com-

ponent. Alternatively, the QPOs may have a magnetospheric origin;

this was mentioned as a possibility in Barat et al. (1983), but has

remained unexplored.
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