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Abstract: We design a quadrature phase-shift keying training sequence (QPSK-TS) for
monitoring both optical signal-to-noise ratio (OSNR) and chromatic dispersion (CD) in a
dense wavelength division multiplexing (DWDM) system. By applying fast Fourier transform
on the QPSK-TS, a comb-like spectrum with discrete peaks can be obtained. OSNR can be
calculated by measuring the power of the amplified spontaneous emission (ASE) noise in the
gaps between these peaks. Moreover, we search the optimal order in the fractional domain
to calculate the CD after applying fractional Fourier transform on the QPSK-TS signal. The
proposed method shows large ASE noise and optical nonlinearity tolerance in simulation
results (<1.0 dB error within 24 dB after transmission over 1000 km with 3 dBm per channel
launch power, and <90 ps/nm error within 33400 ps/nm). Furthermore, the experimental
results demonstrate high accuracy of the proposed method (≤1.0 dB error within 28 dB and
<40 ps/nm error within 1670 ps/nm after 100 km single channel transmission).

Index Terms: Training sequence, fractional domain, fiber optics systems.

1. Introduction

OSNR and CD are two important factors affecting the quality of optical network communications

[1], [2]. Several OSNR measurement methods have been proposed [3]–[6]. In [4], [5], the method of

measuring OSNR in the frequency domain based on the QPSK training sequence and the 16-QAM

training sequence was proposed and experimentally demonstrated, which has high accuracy in

measuring OSNR as ASE noise can be separated from other nonlinear noise. A method based

on linear-frequency modulation (LFM) signal measuring OSNR is proposed recently [6]. Accurate

measurement of CD is critical for evaluating system performance and subsequent signal processing

[7]. The current state of the art of performance monitoring indicates that there is a decreased

interest in how to monitor CD, since as mentioned in [8], coherent receivers can compensate up to

100000 ps/nm of CD. However from an academic point of view the interest still remains due to the

expected increase in the dynamic behavior of optical networks in order to improve efficiency. There
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have been reported CD estimation or monitoring techniques by taking training sequence or LFM

signal as a pilot [9]–[12]. The method of blind CD estimation based on FrFT has been proved to

be feasible by simulation and experiment [8], [13]. However, the mentioned measurement methods

above are only capable of measuring one of OSNR and CD, which cannot meet our requirement

when we have only one type of data samples for measuring OSNR or CD.

In this paper, we design a QPSK-TS for monitoring both OSNR and CD in DWDM systems. The

QPSK-TS has periodic phase shifting and the spectrum of the QPSK-TS is a comb-like spectrum

with different frequency components. The peaks of the comb-like spectrum are discrete. The power

of the ASE noise in the gaps between these peaks is measured to calculate the OSNR. On the

other hand, after applying FrFT on the QPSK-TS, the energy concentration of the QPSK-TS signal

corresponding to different orders is different in the fractional domain. By searching for the optimum

order of the signal, the accumulated CD can be obtained. With the QPSK-TS design, it is allowed

to calculate both OSNR and CD from the same set of data samples, which will reduce the sampling

data types and save our sampling time. The QPSK-TS can also be used as a time domain pilot as

done in [4] if needed. In this paper, we focus on the design of the QPSK-TS and the performance

of monitoring OSNR and CD. In our simulation, we analyze the NL tolerance of the method when

OSNR is monitored in a 28 Gbaud QPSK system. The ASE noise tolerance and NL tolerance are

explored while monitoring CD in the simulation. At the end of the paper, we conduct an experiment

with 20 GBaud 100 km single-channel optical fiber transmission based on our proposed method.

2. Monitoring Principle

2.1 QPSK-TS Designing Principle

The general QPSK signal can be expressed as:

x (t) = A cos (ωt + θ) (1)

where A is the amplitude, ω is the signal angular frequency, and θ is the initial phase.

From [4], we can use a QPSK training sequence with one single spectrum component as a time

pilot, and then the ASE noise power can be measured by the spectrum components different from

dedicated pilot frequencies, so that we can calculate OSNR. However, due to the single-frequency

property of the training sequence, we cannot obtain optimum order which is used to calculate

CD after FrFT. Using the FrFT method to measure CD requires that the signal has many spectral

components, such as QPSK signal [8] and LFM signal [12]. For us, we try to measure the CD

while ensuring the measurability of OSNR. And the training sequence we designed can meet this

requirement very well.

As shown in Fig. 1(a), the QPSK-TS we designed is generated by controlling the phase of QPSK

signals for periodic migration. The phase shift first rotates anticlockwise in the first quadrant. The

phase migration trajectory in the quadrant can be expressed as 11223344−11443322, where the

number represents the I/Q coordinates of the quadrant. Its corresponding spectrum is shown in

Fig. 1(b). This is a comb-like spectrum with different frequency components, whose peaks are

discretely arranged cyclically and symmetrical about the center frequency of the signal. The period

of QPSK-TS is 16 symbols, so that the peak component is at an integer multiple of ±Rs/16, where

Rs is the baud rate. How to use the QPSK-TS to calculate OSNR and CD will be detailed in the

next two subsections.

2.2 OSNR Monitoring Principle

OSNR can be calculated according to the following definition [6]:

O SN R = 10 × lg

[

(PTotal − PA SE ) B A M

N A M B R

]

(2)

PA SE = B Samp leN A M /B A M (3)
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Fig. 1. (a) QPSK-TS phase shift trajectory. (b) QPSK-TS comb-like spectrum and ASE noise distribution.

where PTotal is the total power of the received signal, PA SE is the total power of ASE noise in the

received signal, N A M is the power of noise in ASE measurement zone as shown in Fig. 1(b), B A M is

the bandwidth of ASE measurement zone and B R is the standard OSNR measurement bandwidth

(12.5 GHz), B Samp le is the bandwidth of the sampled signal.

As shown in Fig. 1(b), in the linear transmission model, the spectrum consists of the QPSK-TS’s

spectral components and a flat pedestal which is ASE noise. We measure the power of the ASE

noise in these gaps to separate the ASE noise from the received signal and then calculate the

OSNR. In addition, the nonlinear phase noise appears around the peaks of the spectrum and

the large power peak suffers more nonlinear phase noise than the smaller one [4], [5]. Therefore,

we select the gap with low peak and large spacing in the edge of the spectrum for ASE noise

measurement to reduce the influence of nonlinearity on ASE noise measurement.

2.3 CD Monitoring Principle

Corresponding to different orders of FrFT, the signal has a different degree of energy aggregation.

The signal’s highest degree of energy concentration corresponds to the optimum order (p op t) after

FrFT. For the same signal, different accumulated CD correspond to different p op t . Therefore, we can

calculate the accumulated CD of the received signal by searching the p op t after FrFT.

The FrFT is defined with the help of the transformation kernel K α as [14], [15]:

K α (u, t) =

⎧

⎪

⎨

⎪

⎩

A α exp
[

j
(

1
2
u2 cot α − ut csc α + 1

2
t2 cot α

)]

, α �= nπ

δ (u − t) , α = 2nπ

δ (u + t) , α = (2n ± 1) π

(4)

with
{

A α =

√

1−j cot α
2π

α = p π/2, p �= 2n
(5)

where n is the integer, α is the rotation angle, p is the order of FrFT.

The FrFT of x (t) is defined using the kernel and denoted by X α (u) :

X α (u) =

∫ +∞

−∞

K α (u, t) x (t) dt (6)

According to the energy conservation law, the optimum order of FrFT can be calculated by a

statistical parameter E C (p ) which can be used to describe the energy concentration of the signal
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Fig. 2. (a) E C (p ) vs p orders for QPSK-TS with a specific CD. (b) E C (p ) vs p orders for QPSK-TS with
different CD.

in different order p [16]:

E C (p ) =

∫ +∞

−∞

∣

∣X p (u)
∣

∣

4
du (7)

where X p (u) is the p order of FrFT of the signal x (t) and the fourth power in the formula is to make

the energy concentration effect more obvious. For QPSK signal, we can get the p op t of FrFT by

searching the minimum of E C (p ).

The p op t of the signal x (t) has the following relation with the accumulated CD [13]:

D L =
2πc

λ2
cot

[

(

p op t − 1
) π

2

] dt

dω
(8)

where D is the dispersion coefficient of the fiber, L is the transmission fiber length, c is the vacuum

speed of light, λ is the carrier wavelength, and p op t is the optimal order after FrFT of x(t). Thus, we

can calculate the CD when the p op t of the QPSK-TS signal is obtained.

Taking QPSK-TS signal with a specific CD as an example. We first apply FrFT with different order

on the received signal, and then scan the orders by a step size of �p = 0.001, so we can get a

E C (p )-p plot, as shown in Fig. 2(a). The minimum of E C (p ) corresponds to the p op t . As shown in

Fig. 2(b), the p op t increases with an increase in the accumulated CD.

Notice that there must be estimation error caused by the step size which can be expressed as:

|�p est | =
∣

∣p op t−est − p op t−r ef

∣

∣ (9)

where p op t−est is the estimated optimum order by scanning, p op t−r ef is the reference optimum order

corresponding to the reference CD. When 0 ≤ |�p | < 0.001, the resulting CD estimation error is

considered acceptable. We can improve the accuracy of the measurement by reducing the step

size �p , but it will increase the computational complexity accordingly. In addition, we can use the

method in [16] to search the optimum order by dividing the search process into coarse stage with

fewer samples and fine stage with more samples, which will reduce computational complexity when

we need higher measurement accuracy.

2.4 System Setup and Parameter Setting

To evaluate our method for simultaneously monitoring OSNR and CD, the system set up using

commercial software Virtual Photonics Inc. (VPI) is shown in Fig. 3. We set up a maximum of

5 channels with 50 GHz channel spacing, and the middle channel is QPSK-TS signal, while the

other four channels transmit the standard QPSK signal. The center frequency of the laser is set to

193.1 THz and the laser linewidth is 300 kHz. The symbol rates of all signals are both 28 GBaud. The

signals transmit over single-mode fiber (SMF) link after multiplexed. The SMF link with chromatic
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Fig. 3. Schematic diagram of simultaneously monitoring OSNR and CD.

dispersion coefficient 16.7 ps/nm/km, fiber loss 0.2 dB/km and each span 100 km are used in

our system. The nonlinear coefficient is set to 2.6 × 10−20 m2/W when we need to consider

the nonlinear noise. The erbium-doped optical fiber amplifier (EDFA) in each span amplifies the

power of the signal with a fixed power, completely compensating for the energy loss caused by

the fiber link. At the end of the link, we use the Set OSNR module to control the ASE noise of the

transmission. The QPSK-TS signal is received coherently after an optical band-pass filter (OBPF),

whose bandwidth is set to 50 GHz. We use the digital signal processing (DSP) method to process

the coherently received signal data off-line. The OSNR in band is calculated by measuring the

power of the ASE noise in the frequency domain. On the other hand, we calculate the CD in the

fractional domain. The sampling rate is 56 GSa/s and the total number of the sampled data is

only 2048 for OSNR and CD monitoring in simulation. For each simulation condition, there are 20

frames for calculating the mean, maximum, minimum, and standard deviation of the OSNR and CD

measurements.

3. OSNR Monitoring Simulation Results

The ASE noise power with a bandwidth zone of 1 GHz is measured to calculate the OSNR, as

shown in Fig. 1(b), and the OSNR range is 10 to 30 dB. The mean of OSNR estimation error M O SN R

is calculated by Eq. (10) ,and the standard deviation σO SN R is calculated by Eq.(11).

M O SN R =
1

M

M
∑

j=1

(

O SN R est,j − O SN R r ef,j

)

(10)

σO SN R =

√

√

√

√

√

1

M

M
∑

j=1

⎛

⎝O SN R est,j −
1

M

M
∑

j=1

O SN R est,j

⎞

⎠

2

(11)

where O SN R est,j is the estimated OSNR, and O SN R r ef,j is the reference OSNR. As shown in Fig. 4(a),

for each OSNR, the points of the error bars represent the maximum, mean, and minimum of the 20

OSNR measurements, and the black lines represent the reference OSNR.

To confirm the feasibility of the proposed OSNR monitoring method, we first measure the OSNR

at B2B. The neighboring channels lasers are all turned off and the OSNR value is controlled by the

Set OSNR module. From the Fig. 4, we can get that the M O SN R < 0.2 dB, and the σO SN R < 1.0 dB

at B2B, which proves that this method is feasible for measuring OSNR.

To further verify the anti-nonlinear performance of the OSNR monitoring method, we measure

the OSNR after the signals transmit over a 1000 km optical fiber in five channels. The launch power

is from 0 to 4 dBm for per channel, which will change the inter-channel NL. As show in Fig. 4, as

the inter-channel NL interfere with the ASE noise power in the measurement zone, the estimation

error increases with OSNR. When we keep other conditions fixed, increasing the OSNR means

that the ASE noise power decreases. In this case, the effect of the inter-channel NL on the OSNR

measurement will be relatively strengthened, resulting in an increase in the measurement error.
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Fig. 4. Both at B2B and after five channel transmission over 1000 km with 0-4 dBm per channel launch
power, (a) the maximum, mean, and minimum of the 20 OSNR measurements, (b) the mean of OSNR
estimation error, and (c) the standard deviation of OSNR measurement.

In addition, with the increase of launch power, the NL effect in the fiber is enhanced, and more

noise caused by NL covers the zone of our measurement, result in the estimation error increasing

gradually. From Fig. 4(c), as the OSNR increases and the launch power decreases, the standard

deviation of the measurement decreases. The M O SN R is less than 1.0 dB with the OSNR range

within 24 dB and the σO SN R is less than 1.0 dB. It proves that the proposed method has large NL

tolerance to measure OSNR.

4. CD Monitoring Results

In order to measure CD, we first apply FrFT with different order on the received signal. Then we

scan the orders by a step size of �p = 0.001 to search for the optimum order. The mean of CD

estimation error (M CD ) is calculated by Eq. (12), and the standard deviation (σCD ) is calculated by

Eq. (13).

M CD =
1

M

M
∑

j=1

∣

∣CD est,j − CD r ef,j

∣

∣ (12)

σCD =

√

√

√

√

√

1

M

M
∑

j=1

⎛

⎝CD est,j −
1

M

M
∑

j=1

CD est,j

⎞

⎠

2

(13)

where CD est,j is the estimated CD, and CD r ef,j is the reference CD.

To confirm the feasibility of the proposed CD monitoring method, we first measure the CD in

single channel with OSNR = 14 dB. The signals transmit over the fiber with 100–2000 km to obtain

the estimation error curve of the CD, as shown in Fig. 5. The M CD is less than 80 ps/nm and

the σCD is less than 80 ps/nm, demonstrating the feasibility of this method for monitoring CD. The

σCD = 0 ps/nm means we can always search for the same optimal order under the corresponding

conditions.

In order to research the anti-noise performance of the method for monitoring CD, we simulate

the transmission distance of 5, 10, 15, 20 spans respectively in the case of single channel. The

OSNR range is from 10 to 20 dB and the launch power is 0 dBm. The mean value of CD estimation

error for different transmission distance with OSNR is shown in Fig. 6(a) and the standard deviation

is shown in Fig. 6(b). As shown in Fig. 6(a), the M CD is less than 90 ps/nm. The σCD is less

than 95 ps/nm and decreases with increasing OSNR as shown in Fig. 6(b). These prove that this

method has good anti-noise performance in CD monitor.
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Fig. 5. CD estimation error for different accumulated CD from 1670 ps/nm to 34400 ps/nm when OSNR
is 14 dB and without NL in single-channel link.

Fig. 6. The mean of CD estimation error (a) and the standard deviation (b) for 5, 10, 15, 20 spans with
different OSNR (10−20 dB), and the number of channels is one.

Another factor affecting CD estimation error is the NL magnitude between channels. To explore

the effect of NL on monitoring, we set up a 5 channels transmitting system. The middle channel

transmits the QPSK-TS while the other 4 channels transmit standard QPSK signals. We control

NL by changing the power of the signal. Here, we set the OSNR = 14 dB and simulate 5, 10, 15,

20 spans with the launch power is from 0 to 3 dBm, as showed in Fig. 7. It can be seen that the

M CD < 90 ps/nm and its change is small with both different launch power and different transmission

distance, and the σCD < 80 ps/nm, which proves that the method has large NL tolerance.

5. Experimental Setup

To verify the proposed method with experiments, we set up a fiber optic link experimental platform

as shown in Fig. 8. A laser with 5 kHz line width transmits into an I/Q modulator driven by a 20 Gbaud

QPSK-TS signal source. The launch power of the signal is 0 dBm. The single-mode fiber has a length

of 100 km, with dispersion coefficient 16.7 ps/nm, fiber loss 0.2 dB/km, and nonlinear coefficient

2.6 × 10−20 m2/W. By adjusting variable optical attenuator (VOA(b)) and VOA(c), the OSNR of the

system is varied from 10 to 28 dB. The OSNR value measured in the optical spectrum analyzer

(OSA) is used as reference value. After transmission, the signal is converted from the optical

domain to the electrical domain after coherent reception and saved by digital storage oscilloscope
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Fig. 7. The mean of CD estimation error (a) and the standard deviation (b) for 5, 10, 15, 20 spans with
different launch power per channel (0–3 dBm), and the number of channels is 5.

Fig. 8. Experiment setup of optic link transmission. VOA: variable optical attenuator. OSA: optical
spectrum analyzer.

at 50 GSa/s. In the digital domain, the received signal is converted to the frequency domain by FFT

for OSNR calculation, while it is converted to the fractional domain by FrFT for CD calculation.

6. Experimental Results

Due to the presence of ground noise in the experimental equipment, we first measure the power of

this ground noise and obtain its frequency spectrum, which is used to correct the OSNR measure-

ment. From the Eq. (2) and Eq. (3), the correction process can be expressed as:

PTotal = PTotal−r ecei ved − PTotal−ground (14)

N A M = N A M −r ecei ved − N A M −ground (15)

where PTotal−r ecei ved is the total power of received signal, PTotal−ground is the total power of ground

noise, N A M −r ecei ved is the power of noise in ASE measurement zone of received signal, N A M −ground is

the power of noise in the same measurement zone as N A M −r ecei ved but on the frequency spectrum

of ground noise. The influence of ground noise on OSNR measurement can be reduced by this

operation.

Based on the above proposed method, we measured the OSNR both at B2B and 100 km

transmission conditions, respectively. The total number of the sampled data is 5000 for OSNR

monitoring and we measure 100 times for each OSNR value to calculate its mean, maximum,

minimum, and standard deviation as shown in Fig. 9. From Fig. 9 (a) and (b), it can be seen that

as the reference OSNR increases, both M O SN R and σO SN R are reduced first and then increased.

This reflects the fact that in the experiment, when we change the OSNR by adjusting VOA(b) and
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Fig. 9. Both at B2B and after single channel transmission over 100 km, (a) the maximum, mean,
and minimum of the 100 OSNR measurements, and (b) OSNR mean estimation error and standard
deviation.

Fig. 10. The CD estimation error calculated by 2048 and 4096 samples after transmission over 100 km.

VOA(c), it is easy to cause overestimation when OSNR is small, and cause underestimation when

OSNR is large. But both at B2B and 100 km transmission, the mean of OSNR estimation error is

less than 1.0 dB and the standard deviation is less than 0.7 dB, which is acceptable.

In addition, 2048 samples and 4096 samples are used for calculating CD respectively, and we

measure 100 times for each OSNR value to calculate its mean, maximum, and standard deviation.

As shown in Fig. 10, increasing the number of samples will reduce the standard deviation of the

result. When we use 4096 samples to calculate CD, the M CD < 40 ps/nm and σCD = 0 ps/nm with

the accumulated CD is 1670 ps/nm after 100 km transmission. This means that when searching

for the optimal order of FrFT, we can always search for the same value, and the obtained CD

measurement is also the same value, indicating that our method of measuring CD is stable and

reliable. The above experimental results demonstrate the high accuracy in monitoring OSNR and

CD, which proves that the proposed method is feasible and practical.

7. Conclusion

In this paper, we design a QPSK-TS for monitoring both OSNR and CD in DWDM systems. With the

QPSK-TS design, it is allowed to calculate both OSNR and CD from the same set of data samples,

which will reduce the sampling data types and save our sampling time. In the OSNR monitoring

simulation, we measure the OSNR after the signals transmit over a 1000 km optical fiber in five
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channels with the launch power is from 0 to 4 dBm for per channel. The M O SN R is less than 1.0 dB

with the OSNR range within 24 dB and the σO SN R is less than 1.0 dB, which proves that the proposed

method has large NL tolerance to measure OSNR. In the CD monitoring simulation, we simulate the

transmission distance of 5, 10, 15, 20 spans respectively with both the OSNR is from 10 to 20 dB

in single channel and the launch power is from 0 to 3 dBm in five channels. The M CD < 90 ps/nm

and the σCD < 95 ps/nm, which proves that the method has good anti-noise performance and large

NL tolerance in CD monitor. Furthermore, the experimental results demonstrate high accuracy of

the proposed method (≤1.0 dB error within 28 dB and <40 ps/nm error within 1670 ps/nm after

100 km single channel transmission). In the process of monitoring, communication services are not

affected since there is no need to close any channel. Moreover, if we use the QPSK-TS as time

domain pilot signal, the proposed method can be well applied to modern dynamically reconfigurable

optical networks.
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