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Abstract. The QR factorization is one of the most important operations in dense linear algebra, offering a numerically stable

method for solving linear systems of equations including overdetermined and underdetermined systems. Modern implementa-

tions of the QR factorization, such as the one in the LAPACK library, suffer from performance limitations due to the use of

matrix–vector type operations in the phase of panel factorization. These limitations can be remedied by using the idea of updat-

ing of QR factorization, rendering an algorithm, which is much more scalable and much more suitable for implementation on a

multi-core processor. It is demonstrated how the potential of the cell broadband engine can be utilized to the fullest by employing

the new algorithmic approach and successfully exploiting the capabilities of the chip in terms of single instruction multiple data

parallelism, instruction level parallelism and thread-level parallelism.
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1. Introduction

State of the art, numerical linear algebra software

utilizes block algorithms in order to exploit the mem-

ory hierarchy of traditional cache-based systems [1–4].

Public domain libraries such as LAPACK [5] and

ScaLAPACK [6] are good examples. These implemen-

tations work on square or rectangular submatrices in

their inner loops, where operations are encapsulated in

calls to Basic Linear Algebra Subroutines (BLAS) [7],

with emphasis on expressing the computation as level 3

BLAS (matrix–matrix type) operations.

The fork-and-join parallelization model of these li-

braries has been identified as the main obstacle for

achieving scalable performance on new processor ar-

chitectures. The arrival of multi-core chips increased

the demand for new algorithms, exposing much more

thread-level parallelism of much finer granularity. This

paper presents an implementation of the QR factoriza-

tion based on the idea of updating the QR factorization.

The algorithm, referred to as tile QR, processes the in-

put matrix by small square blocks of fixed size, provid-

ing for great data locality and fine granularity of par-

allelization. In the case of the Cell Broadband Engine

(Cell BE), it also readily solves the problem of limited
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size of private memory associated with each computa-

tional core.

Section 2 provides a brief discussion of related

work. Section 3 presents a short description of the al-

gorithm. Section 4 gives a quick overview of proces-

sor architecture, followed by a discussion of vectoriza-

tion and parallelization of the code. Sections 5–7 fol-

low with the presentation of the performance results,

conclusions and possibilities for future developments.

This article focuses exclusively on the aspects of ef-

ficient implementation of the algorithm and makes no

attempts at discussing the issues of numerical quality

of the results related to the use of single precision with

truncation rounding, and lack of support for NaNs and

denorms (which is the way the Cell BE implements

single precision floating point operations).

2. Related work

The first experiences with implementing dense ma-

trix operations on the Cell BE were reported by Chen

et al. [8]. Performance results were presented for sin-

gle precision matrix multiplication and the solution of

dense systems of linear equations in single precision

using LU factorization. The authors of this article re-

fined this work by using the LU factorization in single

1058-9244/09/$17.00  2009 – IOS Press and the authors. All rights reserved



32 J. Kurzak and J. Dongarra / QR factorization for the Cell Broadband Engine

precision along with the technique of iterative refine-

ment to achieve double precision accuracy of the final

solution [9].

Cholesky factorization was identified as an algo-

rithm rendering itself easily to formulation as algo-

rithm by tiles. It was subsequently implemented, de-

livering parallel scaling far superior to that of LU (in

its classic form). The mixed-precision iterative refine-

ment technique was used to solve symmetric positive

definite systems of equations, producing results with

double precision accuracy while exploiting the speed

of single precision operations [10].

Other developments worth noting were further re-

finements of the work on optimizing the matrix multi-

plication, first by Hackenberg [11,12] and then by Al-

varo et al. [13]. It is also worthwhile to note that im-

pressive performance was achieved by Williams et al.

for sparse matrix operations on the Cell BE [14].

The most important issue in performance optimiza-

tion of orthogonal transformations is aggregation of

transformations leading to efficient use of the memory

system. The idea was first demonstrated by Dongarra

et al. [15], later by Bischof and van Loan [16], and yet

later by Schreiber and van Loan [17], resulting in the

compact WY technique for accumulating Householder

reflectors.

Elmroth and Gustavson [18–20] generalized this

work to produce high performance recursive QR fac-

torization. In this work the problem of reducing the

amount of extra floating point operations was ad-

dressed by the introduction of mini blocking/register

blocking, referred to as inner blocking in this article.

Serial implementation was presented as well as paral-

lel implementation with dynamic scheduling of tasks

on symmetric multiprocessors.

One of the early references discussing methods for

updating matrix factorizations is the paper by Gill

et al. [21]. Berry et al. successfully applied the idea of

using orthogonal transformations to annihilate matrix

elements by tiles, in order to achieve a highly parallel

distributed memory implementation of matrix reduc-

tion to the block upper-Hessenberg form [22].

It is crucial to note that the technique of processing

the matrix by square blocks only provides performance

in tandem with data organization by square blocks,

a fact initially observed by Gustavson [23,24] and re-

cently investigated in depth by Gustavson et al. [25].

The layout is referred to as Square Block (SB) format

by Gustavson et al. and as Block Data Layout (BDL)

in this work. The paper by Elmroth et al. [26] gives an

excellent introduction to many of the important issues

concerning deep memory hierarchies and the use of re-

cursion and hybrid data structures and also contains a

section on the QR factorization.

The idea of inner blocking was exploited by Gunter

and van de Geijn [27] to achieve high performance for

an Out-Of-Core (OOC) implementation of QR factor-

ization. Recently, the combination of processing the

matrix by tiles and storing the matrix by tiles was ap-

plied to achieve high performance for matrix factor-

ization on “standard” (x86 and alike) multi-core archi-

tectures. Buttari et al. [28,29] reported initial results

for QR factorization without inner blocking [28] and

then results for QR and LU factorizations with inner

blocking and also for Cholesky factorization [29] (in-

ner blocking does not apply here).

This article combines the idea of storing and proces-

sing the matrix by tiles to achieve a high performance

implementation of the QR factorization, while relying

on inner blocking to keep the of overhead extra floating

point operations negligible.

3. Algorithm

The tile QR algorithm is very well documented in

the literature [27,29]. The algorithm produces the same

R factor as the classic algorithm, e.g., the implemen-

tation in the LAPACK library (elements may differ in

sign). However, a different set of Householder reflec-

tors is produced and a different procedure is required

to build the Q matrix. Whether the Q matrix is actually

needed depends on the application.

The algorithm relies on four basic operations imple-

mented by four computational kernels (Fig. 1). Here

the LAPACK-style naming convention, introduced by

Buttari et al. [29], is followed. The capital letter S at

the beginning indicates the use of single precision.

SGEQRT: The kernel performs the QR factorization

of a diagonal tile of the input matrix and pro-

duces an upper triangular matrix R and a unit

lower triangular matrix V containing the House-

holder reflectors. The kernel also produces the

upper triangular matrix T as defined by the

compact WY technique for accumulating House-

holder reflectors [16,17]. The R factor overrides

the upper triangular portion of the input and the

reflectors override the lower triangular portion of

the input. The T matrix is stored separately.
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Fig. 1. Basic operations of the tile QR factorization.

STSQRT: The kernel performs the QR factorization

of a matrix built by coupling an R factor,

produced by SGEQRT or a previous call to

STSQRT, with a tile below the diagonal tile. The

kernel produces an updated R factor, a square

matrix V containing the Householder reflectors

and the matrix T resulting from accumulating

the reflectors V . The new R factor overrides the

old R factor. The block of reflectors overrides

the square tile of the input matrix. The T matrix

is stored separately.

SLARFB: The kernel applies the reflectors calculated

by SGEQRT to a tile to the right of the diagonal

tile, using the reflectors V along with the ma-

trix T .

SSSRFB: The kernel applies the reflectors calculated

by STSQRT to two tiles to the right of the tiles

factorized by STSQRT, using the reflectors V
and the matrix T produced by STSQRT.

LAPACK-style block QR factorization relies on the

compact WY technique for accumulating Householder

reflectors in order to express computation in terms of

level 3 BLAS (matrix–matrix) operations. The tech-

nique requires calculation of a square matrix T per

each panel of the input matrix, where the size of T is

equal to the width of the panel and, most of the time,

much smaller than the height of the panel. In this case,

the overhead associated with manipulating the T ma-

trices is negligible.

Fig. 2. Inner blocking of the tile operations.

In a naive implementation of the tile QR factoriza-

tion, a T matrix is produced for each square tile of the

panel and used in updating the tiles to the right. This

approach results in 25% more operations than the stan-

dard QR algorithm.

It can be observed, however, that in principle the up-

dating algorithm can be implemented relying on level 2

BLAS (matrix–vector) operations, without the use of

the T matrices and associated overheads. Interestingly,

in such case, the updating algorithm results in the

same number of floating point operations as the stan-

dard QR algorithm (2MN2
− (2/3)N3). Obviously,

such implementation has to perform poorly due to the

memory-bound nature of level 2 BLAS.

The key to achieving performance is to find the right

trade-off between extra operations and memory inten-

sity. This can be achieved by implementing the tile

operations using the block algorithms within the tile.

With internal block size much smaller than tile size, re-

sulting T matrices are not “full” upper triangular ma-

trices, but instead consist of upper triangular blocks

along the diagonal of size equal to the inner block size

(Fig. 2).

4. Implementation

The process of implementing the algorithm on the

Cell BE included a few design choices (some of them

arbitrary), which the authors would like to discuss

here.
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The tile size of 64 × 64 is a common practice for im-

plementing dense matrix operations in single precision

on the Cell BE. It has been shown that at this size ma-

trix multiplication kernels can achieve over 99% of the

SPE peak [13]. At the same time, the DMA transfer of

a single tile fully utilizes the memory system consist-

ing of 16 banks interleaved on a cache line boundary

of 128 bytes. For these reasons the tile size of 64 × 64

is chosen here. Also, since the code is only a proof-of-

concept prototype, only problem sizes divisible by 64

are handled.

Typically, the inner block size is chosen using some

method of auto-tuning. In this case the inner block size

of 4 has been chosen arbitrarily, mostly for coding sim-

plicity stemming from the size of the SIMD vector of

four single precision floating point elements. It turns

out, however, that even at such a small size, the code

does not become memory-bound thanks to the small,

flat latency of the Local Store. It also introduces an ac-

ceptable amount of extra floating point operations. It is

very unlikely that a different choice would yield sig-

nificantly better results.

Finally, it has been chosen to implement the

SGEQRT and STSQRT kernels using LAPACK-style

block algorithm internally within the kernels. Poten-

tially, the tile algorithm could also be used inside the

kernels. Such approach would, however, dramatically

complicate the application of the reflectors. The update

operation could not be implemented efficiently.

4.1. Cell BE architecture overview

The Cell BE has been available since 2005 and is

well known to the numerical computing community.

It is not, however, a main-stream solution and is often

perceived as a special-purpose accelerator device. As a

result, the authors restrain from an extensive overview

of the architecture, but do introduce the basic Cell BE

vocabulary, and the highlights of the chip computing

core design.

The Cell BE is an innovative multi-core architecture

consisting of a standard processor, the Power Process-

ing Element (PPE), and eight short-vector, Single In-

struction Multiple Data (SIMD) processors, referred

to as the Synergistic Processing Elements (SPEs).

The SPEs are equipped with scratchpad memory re-

ferred to as the Local Store (LS) and a Memory Flow

Controller (MFC), to perform Direct Memory Ac-

cess (DMA) transfers of code and data between the

system memory and the Local Store.

The core of the SPE is the Synergistic Processing

Unit (SPU). The SPU is a RISC-style SIMD proces-

sor featuring 128 general purpose registers and 32-bit

fixed-length instruction encoding. An SPU implements

instructions to perform single and double precision

floating point arithmetics, integer arithmetics, logicals,

loads and stores, compares and branches. SPU’s nine

execution units are organized into two pipelines, re-

ferred to as the odd and even pipeline. Instructions are

issued in-order, and two independent instructions can

be issued simultaneously if they belong to different

pipelines (what is referred to as dual-issue).

SPU executes code form the Local Store and oper-

ates on data residing in the Local Store, which is a

fully pipelined, single-ported, 256 kB of Static Ran-

dom Access Memory (SRAM). Load and store instruc-

tions are performed within local address space, which

is untranslated, unguarded and noncoherent with re-

spect to the system address space. Loads and stores

transfer 16 bytes of data between the register file and

the Local Store and complete with fixed six-cycle de-

lay and without exception.

4.2. SIMD vectorization

The keys to maximum utilization of the SPEs are

highly optimized implementations of the computa-

tional kernels, which rely on efficient use of the

short-vector SIMD architecture. For the most part, the

kernels are developed by applying standard loop op-

timization techniques, including tiling, unrolling, re-

ordering, fusion, fission, and sometimes also collaps-

ing of loop nests into one loop spanning the same iter-

ation space with appropriate pointer arithmetics. Tiling

and unrolling are mostly dictated by Local Store la-

tency and the size of the register file, and aim at hid-

ing memory references and reordering of vector ele-

ments, while balancing the load of the two execution

pipelines. Due to the huge size of the SPU’s register

file, unrolling is usually quite extensive.

Most of the techniques used to build the tile QR ker-

nels are similar to those used to build the Cholesky

factorization kernels [10] and the high performance

SGEMM (matrix multiplication) kernels [13]. The

main difference here is the use of inner blocking, which

substantially narrows down the design choices. Most

importantly, the use of inner blocking imposes the

structure of nested loops, where a single iteration of

the outermost loop implements a single block opera-

tion. For instance, one iteration of the outermost loop

of SGEQRT and STSQRT produces a block of four re-
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flectors and the associated 4 × 4 upper triangular block

of T ; one iteration of the outermost loop of SLARFB

and SSSRFB applies a block of four reflectors and uti-

lizes a 4 × 4 block of T .

All kernels are written in C using mostly SIMD lan-

guage extensions (intrinsics) and sometimes inline as-

sembly. Table 1 shows the size of the C source code,

assembly code and object code of the kernels. Since all

the code is hand-written, it gives some idea of its com-

plexity. Table 2 reports the performance of the kernels

in terms of Gflop/s and percentage of the peak (of a sin-

gle SPE). The authors are only able to achieve this per-

formance while compiling the kernels with SPU GCC

3.4.1. The paragraphs that follow briefly discuss tech-

nicalities related to each of the kernels.

The SSSRFB kernel, being the most performance-

critical (contributing the most floating point opera-

tions), is optimized the most. This kernel actually al-

lows for the most extensive optimizations, since all

loops have fixed boundaries. Therefore, the technique

of collapsing loop nests into one loop is used here,

along with double-buffering, where odd and even iter-

ations overlap each other’s arithmetic operations with

loads, stores and vector element permutations. Also,

input arrays are constrained with 16 kB alignment, and

Table 1

Complexity characteristics of tile QR SPE kernels

Kernel Lines of code Lines of code Object size

name in Ca in ASMb (KB)c

SSSRFB 1600 2200 8.8

STSQRT 1900 3600 14.2

SLARFB 600 600 2.2

SGEQRT 1600 2400 9.0

Total 5700 8800 34.2

Note: Bold font indicates the most complex kernel.
aSize of code in C before or after preprocessing, whichever is

smaller; bsize of code in assembly after removing the .align state-

ments; csum of .text and .rodata sections (not size of the .o file).

Table 2

Performance characteristics of tile QR SPE kernels

Kernel Exec. time Flop count Exec. rate Fraction

name (µs)a formulab (Gflop/s)c of peak (%)a,d

SSSRFB 47 4b
3 22.20 87

STSQRT 46 2b3 11.40 45

SLARFB 41 2b3 12.70 50

SGEQRT 57 (4/3)b3 6.15 24

Note: Bold font indicates the most performance-critical kernel.
aValues are rounded; btile size b = 64; cvalues are truncated; dsingle

SPE.

pointer arithmetic is implemented by calculating data

offsets from the iteration variable (loop counter) by us-

ing bit manipulation. It turns out that all these opera-

tions can be implemented using quadword shifts, ro-

tations and shuffles, and placed in the odd pipeline,

where they can be hidden behind floating point arith-

metics. Interestingly, it also turns out that for some

loops, mostly rearranging vector elements, shuffles can

be replaced with bit select operations to yield more bal-

anced odd and even pipeline utilization.

In principle, the SSSRFB kernel shares many prop-

erties with the SGEMM kernel, and one could expect

performance similarly close to the peak (99.8% was

reported for SGEMM [13]). This is not the case for a

few reasons. The main contributor of performance loss

of the SSSRFB kernel is the prologue and epilogue

code of the inner loops, which cannot be hidden be-

hind useful work. Also, the reported performance of

the SSSRFB kernel cannot reach the peak because of

the extra operations, related to the application of the

T matrix, which are not accounted for in the standard

formula for operation count, 4b3. The actual number of

operations is 4b3
+ sb2, where s is the size of internal

blocking.

The STSQRT kernel has been identified as the sec-

ond most critical for performance. STSQRT produces

data, which is consumed by many SSSRFB kernels in

parallel. As a result, it is important, in the context of

parallel scheduling, that the STSQRT kernel executes

in a shorter time than the SSSRFB kernel. This task

proved quite difficult and the STSQRT kernel took sig-

nificant coding effort and results in the longest code.

One fact that is taken advantage of is that, at each step

(each outer loop iteration), a block of reflectors of the

same size is produced (64 × 4). This allows for per-

forming the panel factorization (production of four re-

flectors) to be executed entirely in the register file, us-

ing 64 registers. First, the panel is loaded, then four

steps are performed, each producing one reflector and

applying it to the rest of the panel, then the panel is

stored. The whole procedure is completely unrolled to

one block of straight-line code.

As extreme as it might seem, this step alone proves

to be insufficient to deliver the desired performance.

The operations applying the panel to the remaining

submatrix have to also be extensively optimized by

heavy unrolling and addressing of special cases (e.g.,

different treatment of odd and even loop boundaries).

It took significant effort to accomplish execution time

slightly below the one of the SSSRFB kernel at an ex-

ecution rate of less than half of the peak.
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There is less to be said about the two remaining

kernels, SLARFB and SGEQRT. The SLARFB ker-

nel turns out to deliver very good performance with-

out much effort. On the other hand, SGEQRT does not

deliver good performance despite efforts similar to the

STSQRT kernel. This is to be expected, however, since

none of the loops have fixed boundaries. This kernel is

executed the least and its poor performance does not

affect the overall performance much. The situation is

analogous to the SPOTRF kernel of the Cholesky fac-

torization, for which similar performance is reported

(roughly 6 Gflop/s [10]).

The last technical detail, which has not been re-

vealed so far, is that the T factors are stored in a com-

pact format. Each element of T is pre-splatted across a

4-element vector; each 4 × 4 triangular block of T is

stored in a column of 10 vectors and the T array con-

tains 16 such columns of overall size of 2560 bytes.

4.3. Parallelization – single Cell BE

For the distribution of work for parallel execution on

the SPEs, static 1D cyclic partitioning is used, shown

in Fig. 3. The effect of “wrapping” the SPEs assign-

ment from one step to another results in pipelining of

factorization steps, basically implementing the tech-

nique known in linear algebra as the lookahead. Fol-

lowing Fig. 3, one can observe that SPE 5 can start fac-

torizing the second panel as soon as SPE 1 finishes the

first SSSRFB operation.

Static work partitioning makes the synchronization

extremely straightforward. With all the work predeter-

mined, each SPE can proceed on its own, and only

needs to check if dependencies are satisfied for each

operation. Figure 4 shows the dependencies between

tasks of the tile QR algorithm expressed as a Direct

Acyclic Graph (DAG).

Before fetching a tile for an operation in a given

step, the SPE needs to check if the preceding step has

completed on that tile. The SPE does that by looking up

a progress table in its Local Store. The progress table

contains the global progress information and is repli-

cated on all SPEs. The progress table holds one entry

(byte) for each tile of the input matrix, indicating the

number of the step which has completed on that tile.

At the completion of an operation, an SPE broadcasts

the progress information to all progress tables with an

LS-to-LS DMA.

As one can see, the scheme implements the right-

looking (aggressive) variant of the algorithm. Al-

though different scenarios can be easily imagined, this

version makes sense from the standpoint of ease of

implementation. In this arrangement, an SPE factor-

izing the panel can hold the diagonal tile in place,

while streaming the tiles below diagonal through Lo-

cal Store. Similarly, an SPE updating a column of the

trailing submatrix can hold the topmost tile in place,

while streaming the tiles below it through Local Store.

Data reuse is accomplished this way, which minimizes

the traffic to main memory. It needs to be pointed out,

though, that this is absolutely not necessary from the

standpoint of memory bandwidth. The tile QR factor-

ization is so compute intensive that all memory traf-

fic can easily be hidden behind computation with data

reuse or without it.

At each step, the tiles of the input matrix are ex-

changed between the main memory and local store.

Important aspect of the communication is double-

buffering. Since work partitioning is static, upcoming

operations can be anticipated and the necessary data

Fig. 3. Cyclic partitioning of work to eight SPEs in the five consecutive steps of factorizing a 5 × 5 block matrix.
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Fig. 4. The direct acyclic graph of a tile QR factorization of a 4 × 4 block matrix (some dependencies are omitted for clarity).

fetched. In fact all data buffers are duplicated and, at

each operation, a prefetch of data is initiated for the fol-

lowing operation (subject to dependency check). If the

prefetch fails for dependency reasons, data is fetched

in a blocking mode right before the operation. Algo-

rithm 1 shows the mechanism of double buffering in

the tile QR implementation. Figure 5 shows the execu-

tion trace of factorizing a 512 × 512 matrix using all

the eight SPEs.

Alternatively to hand-coded communication and

synchronization, a generic DAG scheduling framework

could be used. To the best of the authors’ knowledge,

the only such framework available for the Cell BE to-

day is the Cell Superscalar (CellSs) project from the

Barcelona Supercomputer Center [30,31]. However,

currently the software is not competitive, in terms of

Algorithm 1. Double buffering of communication in

the tile QR implementation.

1: while more work to do do

2: if data not prefetched then

3: wait for dependencies

4: fetch data

5: end if

6: if more work to follow then

7: if dependencies met then

8: prefetch data

9: end if

10: end if

11: compute

12: swap buffers

13: end while
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Fig. 5. Execution trace of a factorization of a 512 × 512 matrix. (Total time: 1645 µs, execution rate: 109 Gflop/s.)

performance, with the approach presented here due to

the handling of task scheduling on the PPE.

4.4. Parallelization – Dual Cell BE

Given single-Cell BE implementation, extension to

a dual-Cell BE system, like the IBM QS20 blade, is

relatively straightforward. A single PPE process can

launch 16 SPE threads, eight on each Cell BE. The

single-Cell BE code is going to run correctly on a dual-

Cell BE system by simply increasing the number of

SPEs to 16.

The only problem is the one of performance of the

memory system. The QS20 blade is a Non-Uniform

Memory Access (NUMA) system. Each Cell BE is as-

sociated with a separate memory node. Peak band-

width to the local node is 25.6 GB/s. Cross-traffic,

however, is handled at a much lower bandwidth

(roughly half of that number). It is important, then, that

each SPE satisfies its data needs mostly from the local

memory node.

This situation is addressed by duplicating the in-

put matrix in both memory nodes (libnuma is used

for correct memory placement). Each SPE reads data

only from the local node, but writes data to both

nodes. From the perspective of the shared memory

model, it can be viewed as a manual implementation

of the write-back memory consistency protocol. From

the perspective of a distributed memory model, it can

be viewed as non-blocking collective communication

(broadcast) or as one-sided communication. The obvi-

ous limitation is that the approach would not be scal-

able to larger NUMA systems. As of today, however,

larger Cell BE-based NUMA systems do not exist.

One technical detail to be mentioned here are the ac-

knowledgment DMAs implementing the synchroniza-

tion protocol between SPEs. When 16 SPEs are used,

each SPE needs to send 16 acknowledgment mes-

sages following a write of data to the system mem-

ory. The acknowledgment DMA is fenced with the data

DMA and the SPE also sends such message to its own

progress table (since 16 messages are sent and not 15).

The DMA request queue is, however, only 16 entires

deep and issuing 16 acknowledgment requests at the

same time stalls data transfers until some requests clear

the queue. A simple remedy is the use of a DMA list

with 16 elements, where the elements point to appro-

priate Local Store locations of the other SPEs. The

code alternates between two such lists in the double-

buffered communication cycle.

5. Results

Results presented in this section are produced on

one and two 3.2 GHz Cell BEs of the QS20 dual-

socket blade running Fedora Core 7 Linux and on a

PlayStation 3 running Fedora Core 7 Linux. The code

is cross-compiled using x86 SDK 3.0, although, as

mentioned before, the kernels are cross-compiled with

an old x86 SPU GCC 3.4.1 cross-compiler, since this

compiler yields the highest performance. The results

are checked for correctness by comparing the R fac-

tor produced by the algorithm to the R factor produced

by a call to the LAPACK routine SGEQRF ran on

the PPE. The tile algorithm produces a valid R factor,

where elements may differ in sign from the elements

of the R factor produced by the block algorithm. For

that reason, absolute values of elements are compared.

It also needs to be mentioned that the implementa-

tion utilizes Block Data Layout (BDL) [32,33], where

each tile is stored in a continuous 16 kB portion of

the main memory, which can be transferred in a sin-

gle DMA, what puts an equal load on all 16 memory

banks. Tiles are stored in the row-major order, and also

data within tiles is arranged in the row-major order,

a common practice on the Cell BE. Translation from

standard, (FORTRAN) layout to BDL can be imple-

mented very efficiently on the Cell BE [9]. Here the

translation is not included in timing results. Also, in or-

der to avoid the problem of TLB misses, all the mem-

ory is allocated in huge TLB pages and “faulted in” at
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Table 3

Selected performance points of the tile QR factorization in single

precision on a single 3.2 GHz Cell BE of the Sony PlayStation 3

(6 SPEs) dual-socket blade

Matrix Execution Fraction Fraction of

sizea rate (Gflop/s)b of peak (%)c SSSRFB peak (%)c

128 12 8 10

256 40 27 31

384 74 48 56

448 80 52 60

640 101 66 76

960 114 75 86

1280 120 78 90

1536 123 80 93

3072 128 83 96

4096 128 84 97

Note: Bold font indicates the point of exceeding half of the processor

peak.
aSquare matrices were used; bvalues are truncated; cvalues are

rounded.

Table 4

Selected performance points of the tile QR factorization in single

precision on a single 3.2 GHz Cell BE (8 SPEs) of the IBM QS20

dual-socket blade

Matrix Execution Fraction Fraction of

sizea rate (Gflop/s)b of peak (%)c SSSRFB peak (%)c

128 12 6 7

256 40 20 23

384 81 40 46

512 109 53 62

768 137 67 77

1024 150 73 85

1280 157 77 89

1536 162 79 91

2048 166 81 94

4096 171 84 97

Note: Bold font indicates the point of exceeding half of the processor

peak.
aSquare matrices were used; bvalues are truncated; cvalues are

rounded.

initialization. As a result, an SPE never incurs a TLB

miss during the run. For single-Cell BE runs as well

as dual-Cell BE run correct memory placement is en-

forced using the libnuma library.

Tables 3–5 and Fig. 6 show the performance of the

algorithm in Gflop/s, while using the standard formula,

2MN2
− (2/3)N3, for operation count. Tables 3–5

also show percentage of system peak and percentage

of the SSSRFB kernel performance times the number

of SPEs.

Table 5

Selected performance points of the tile QR factorization in single

precision on two 3.2 GHz Cell BE of the IBM QS20 dual-socket

blade (16 SPEs)

Matrix Execution Fraction Fraction of

sizea rate (Gflop/s)b of peak (%)c SSSRFB peak (%)c

128 12 3 3

256 38 9 11

384 81 20 23

512 137 34 39

768 212 52 60

1024 266 65 75

1536 307 75 87

2048 322 79 91

3072 335 82 95

4096 340 83 96

Note: Bold font indicates the point of exceeding half of the system

peak.
aSquare matrices were used; bvalues are truncated; cvalues are

rounded.

The presented implementation crosses half of the

peak performance for problems of size 512 × 512 on

a single Cell BE and 768 × 768 on two Cell BEs. The

performance of 150 Gflop/s is reached for a problem

of size 1024 × 1024 using single Cell BE. The perfor-

mance of 300 Gflop/s is crossed for a problem of size

1536 × 1536 using dual Cell BE system. For a prob-

lem of size 4096 × 4096 performance of 171 Gflop/s

is reached using single Cell BE and 340 Gflop/s using

two Cell BEs.

The code used to produce the reported results is

freely available through one of the author’s web site,

http://www.cs.utk.edu/∼kurzak/.

6. Conclusions

The presented implementation of tile QR factoriza-

tion on the Cell BE allows for factorization of a 4000 ×

4000 dense matrix in single precision in exactly half a

second. To the authors’ knowledge, at present, it is the

fastest reported time of solving such problem by any

semiconductor device implemented on a single semi-

conductor die.

It has been demonstrated that a complex dense lin-

ear algebra operation, such as the QR factorization, can

be very efficiently implemented on a modern multi-

core processor, such as the Cell BE, through the use of

appropriate algorithmic approaches. Specifically, fine

granularity of parallelization and loose model of syn-

chronization allow for achieving high performance.
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Fig. 6. Performance of the tile QR factorization in single precision on Sony PlayStation 3 (6 SPEs), IBM QS20 blade using one Cell BE (8 SPEs)

and IBM QS20 blade using two Cell BEs (16 SPEs). Square matrices were used. The solid horizontal lines mark performance of the SSSRFB

kernel times the number of SPEs.

It has been shown that a short-vector SIMD architec-

ture, such as the one of the SPE, can handle complex

operations very efficiently, although, at this moment,

significant programming effort by an experienced pro-

grammer is required.

7. Future work

Experiences with solutions of linear systems of

equations using LU and Cholesky factorizations show

that the technique of mixed-precision, iterative refine-

ment can be used to achieve double precision accuracy,

while exploiting the speed of single precision. It would

be straightforward to apply the same approach to solve

linear systems of equations or least squares problems

using QR factorization. In fact, due to the higher cost,

in terms of floating point operations of the QR factor-

ization, the overhead of the iterative process will be

much smaller than for the other cases.

Finally, it should be pointed out that LU factoriza-

tion can be implemented in the same manner, yielding

the tile LU algorithm that is bound to produce scaling

similar to the QR and Cholesky algorithms, which is

superior to the LU implementation reported so far. Al-

though, it needs to be pointed out that the tile LU al-

gorithm has different properties in terms of numerical

stability.
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