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ABSTRACT Flow routing can achieve fine-grained network performance optimizations by routing distinct
packet traffic flows over different network paths. While the centralized control of Software-Defined Net-
working (SDN) provides a control framework for implementing centralized network optimizations, e.g.,
optimized flow routing, the implementation of flow routing that is adaptive to varying traffic loads requires
complex models. The goal of this study is to pursue a model-free approach that is based on reinforcement
learning. We design and evaluate QR-SDN, a classical tabular reinforcement learning approach that directly
represents the routing paths of individual flows in its state-action space. Due to the direct representation of
flow routes in the QR-SDN state-action space, QR-SDN is the first reinforcement learning SDN routing
approach to enable multiple routing paths between a given source (ingress) switch–destination (egress)
switch pair while preserving the flow integrity. That is, in QR-SDN, packets of a given flow take the same
routing path, while different flows with the same source-destination switch pair may take different routes (in
contrast, the recent DRL-TE approach splits a given flow on a per-packet basis incurring high complexity and
out-of-order packets). We implemented QR-SDN in a Software-Defined Network (SDN) emulation testbed.
Our evaluations demonstrate that the flow-preserving multi-path routing of QR-SDN achieves substantially
lower flow latencies than prior routing approaches that determine only a single source-destination route. A
limitation of QR-SDN is that the state-action space grows exponentially with the number of network nodes.
Addressing the scalability of direct flow routing, e.g., through routing only high-rate flows, is an important
direction for future research. The QR-SDN code is made publicly available to support this future research.

INDEX TERMS Flow routing, Q-table, software-defined networking (SDN), state-space design.

I. INTRODUCTION

A. MOTIVATION: HOW TO OPTIMIZE FLOW ROUTING IN A

SOFTWARE DEFINED NETWORK?

Flow routing is a fundamental problem in packet-switched
communication networks. In flow routing, the packets of a
given flow, e.g., a flow from a given source host to a given
destination host or a Transmission Control Protocol (TCP)
flow, should follow the same routing path through the net-

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

work of packet-switching nodes (switches). However, distinct
flows, even between the same source-destination switch pair
(whereby the source switch may be the ingress switch of a
routing domain and the destination switch may be the egress
switch of the routing domain for the considered flows), may
follow different routing paths so as to optimize the network
performance [1]. Flow routing is thus fundamentally different
from the classical path routing based only on the destination
host (as considered in the Internet Protocol (IP)) or on the
source-destination switch pair. Flow routing enables a wide
range of adaptations to optimize the loads on network links,
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i.e., to conduct traffic engineering, so as to optimize various
network performance metrics [1].
Software Defined Networking (SDN) enables centralized

decision making by a controller that can adaptively config-
ure the packet-switching nodes. The centralized controller
has global knowledge of the network status, i.e., all the
switching nodes and their interconnecting links, as well as
network monitoring metrics. SDN appears therefore very
well suited to enable the optimization of flow routing [2]–[4].
However, flow routing algorithms are relatively com-

plex [1], and while significant progress has been made in
recent decades, flow routing remains a complicated routing
approach that requires detailed models of the communica-
tion network and traffic [5], [6]. In recent years, model-
free artificial intelligence techniques based on reinforcement
learning have been successfully applied to a wide range of
complex control and optimization problems. In particular,
classical tabular reinforcement learning, also referred to as
tabular Q-Learning, stores the state-action representations in
a table; however, this table can become very large for large
state-action spaces [7]. Deep reinforcement learning [8]–
[10] approximates the state-action table with a deep neural
network to overcome the scalability problem of large tables.
A plethora of recent studies has applied the reinforcement and
deep reinforcement learning approach to complex problems
in the area of communication networks [11]–[15].
A critical aspect of applying reinforcement learning to flow

routing is to represent the specific features and characteristics
of the flow routing problem in communication networks in
the states, actions, and rewards for reinforcement learning.
As further elaborated in Section II, this representation of flow
routing has not been thoroughly researched to date. The exist-
ing studies have typically represented the communication
network routing problem in a simplistic or indirect manner.
For instance, routing studies have considered link weights,
which are an indirect way to influence routing [16]; however,
the existing studies have not directly (explicitly) specified
routing paths as outcomes of the reinforcement learning.
Thus, there is a pronounced lack of fundamental understand-
ing of how to best represent the intricacies of flow routing
for the application of reinforcement learning strategies. For
instance, how should states, actions, and rewards be designed
for communication networking flow routing problems?What
exploration strategies for potential solutions to flow routing
problems should be employed within the state-action space?
How should state-action space changes, e.g., due to commu-
nication load or flow changes, be handled?

B. CONTRIBUTION: DIRECT FLOW ROUTING

REPRESENTATION FOR FLOW-PRESERVING MULTI-PATH

ROUTING

In this article, we address the representation of the intri-
cacies of unicast flow routing in a Software-Defined Net-
work (SDN). With the direct flow routing representation,
the reinforcement learning produces actual routing paths.
After a brief review of the background on SDNs and rein-

forcement learning as well as the related work on applying
machine learning to networking problems, including routing,
in Section II, we examine the representation of the SDN flow
routing problem for reinforcement learning in Section III.
More specifically, Section III examines the design of the
state-action space to directly represent the SDN flow routing
problem. Section III also presents the reward design for the
SDN flow routing problem. Motivated by ultra low latency
communication and control applications as well as the tac-
tile internet [17], [18], we focus on flows that require short
latencies and consider the flow latency as the reward.

Our direct flow routing representation in the QR-SDN
state-action space enables flow-preserving multi-path routing
from a given source (ingress) switch to a given destination
(egress) switch, as illustrated in Fig. 1b. Prior studies with
indirect routing representations, e.g., through link weights,
have typically only considered single-path routing [19], [20],
see Fig. 1a. However, single routing paths tend to become
congested for skewed traffic matrices, e.g., when a few
source-destination flows dominate the current network traf-
fic. Multi-path routing can effectively mitigate congestion
and thus reduce latencies by utilizing several routing paths
between a given source-destination pair. However, the indi-
rect routing representation, e.g., through link weights, implies
random flow splitting, typically on a per-packet basis, for
utilizing multiple routing paths [21]. In contrast, through the
direct flow routing representation, QR-SDN preserves flows
by explicitly routing specific individual flows over specific
individual routes.

A limitation of the direct flow routing approach is that the
state-action space scales in the number of ongoing flows,
creating a potential scalability problem. We note that the
scalability problem arises primarily due to the storage space
required for the Q-table and due to the learning time till
convergence that is required to explore this large state-action
space. On the other hand, the computational effort is low
(only requiring an update of Q-values in every step, e.g., once
every few seconds). We believe that this scalability problem
can be addressed to some degree through employing multiple
SDN controllers so that each controller has fewer nodes and
flows to manage and accordingly a smaller Q-table to man-
age and a smaller state-action space to explore. Each SDN
controller would optimize the flow routing within a reason-
ably small network domain. The SDN controllers would then
exchange routes, similar to the current approach in Internet
routing, where each autonomous system (AS) optimizes the
routing inside its AS domain, and the ASs exchange routes
via the Border Gateway Protocol (BGP).

Also, judicious path exploration strategies may help to
address the scalability problem. For instance one potential
path exploration strategy could limit explorations to highly
utilized links (which are more likely to become congested).
Also, the path exploration could be limited to high-rate flows;
the vast majority of low-rate flows could be routed with
conventional shortest-path routing (or some other routing
approach that helps to relieve the highly utilized links, e.g.,
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FIGURE 1. Illustration of the proposed QR-SDN routing in contrast to traditional link weight based
routing. With traditional link weight based routing, all three flows f 1, f 2, f 3 from the bottom left
source switch to the top right destination switch follow the same routing path. (To avoid clutter,
we omitted the source and destination hosts, which are directly attached to the bottom left and top
right switches, respectively.) QR-SDN either uses only one communication path, such as the
shortest-path, under low load or distributes the flows to achieve a lower average latency (average of
latencies L(f 1), L(f 2), L(f 3)) during traffic peaks. The distribution of flows over the routing paths is
determined by the reinforcement learning agent.

routing over the longest paths). Furthermore, in operational
networks, not all flows may require short latencies, some
flows may only require reliable communication while toler-
ating long delays. These delay-tolerant flows could be routed
with conventional routing, thus reserving the path explo-
ration strategy to flows requiring short latencies. Moreover,
improved learning algorithms [22] may help address the scal-
ability problem in future research. The present study does
not examine such flow scalability techniques in detail; rather,
this present study seeks to lay the groundwork for effective
low-latency flow-preserving multi-path SDN routing through
reinforcement learning.

Section III-E details our implementation of the SDN con-
troller that carries out the flow routing. We make the source
code of QR-SDN publicly available [23] so as to spur future
research on further improving the representation of the com-
munication network characteristics in reinforcement learning
states, actions, and rewards as well as the examination of
different learning modules, e.g., deep reinforcement learning.

Our performance results in Section IV comprehensively
evaluate the direct flow routing approach in QR-SDN. We
find that the flow-preserving multi-path QR-SDN routing
achieves substantially shorter flow latencies than the single-
path shortest path routing. Our evaluation results also elu-
cidate tradeoffs in state-action space representations of the
SDN routing problem. The results indicate, for instance, that
an action design that directly re-routes the entire ensemble
of ongoing flows has worse scalability, but achieves shorter
average flow latency than an action design that re-routes
one flow at a time. To the best of our knowledge, the QR-
SDN evaluation is the first evaluation of a reinforcement
learning flow routing approach for dynamic scenarios, such

as load changes and flows joining or leaving the network.
We examine the tradeoffs in flows joining and leaving, which
change the flow routing based state space. We acknowledge
that while the flow-preserving multi-path routing of QR-
SDN achieves good performance in small networks, the state
space scales as the number of network nodes to the power
of the number of flows. The presented QR-SDN is therefore
not directly applicable for large networks with many flows.
However, we believe that QR-SDN can serve as an impetus
for re-examining the representation of the flow routing prob-
lem for reinforcement learning and spur future research that
addresses the open scalability problem.

We also acknowledge that this study focuses on rein-
forcement learning and does not consider deep reinforce-
ment learning. This study approach of focusing first on
the representation of the flow routing problem is based on
a number of disadvantages of deep reinforcement learning
based approaches that have not been sufficiently examined
in the communication network routing context. The so-called
‘‘sample inefficiency’’ of deep reinforcement learning [9],
[10] (in contrast to the classical tabular Q-Learning [7]) leads
to very long training times for the deep neural network,
resulting in potentially excessive solution computation times.
For instance, the recent TIDE study [19] considered around
one hundred training episodes, each with one thousand time
steps, whereby each time step is on the order of one sec-
ond, resulting in training times on the order of days. Novel
computation strategies can reduce the time complexity with
appropriate initialization [24], [25], however timely deep
reinforcement learning continues to be a challenge. Also,
the function approximation through the deep neural network
in deep reinforcement learning may lower the achievable
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reward or return and lead to suboptimal configurations [26,
Fig. 1 and Sec. 4.2]. Moreover, for direct representations of
the flow routing problem, the deep learning network would
become very large as it would have to accommodate very
high numbers of possible outputs (routing paths), leading
to new scalability problems. Therefore, we believe that the
usage of deep reinforcement learning as the learning module
in machine learning based control of communication network
flow routing should be examined in future research that can
build on the flow routing representation studied in this article.
Various enhancements of deep reinforcement learning [27]
and alternate approaches, e.g., episodic control [28], [29]
should be considered in this future research.

II. BACKGROUND AND RELATED WORK

A. SOFTWARE-DEFINED NETWORKING (SDN)

SDN refers to the ability of software applications to dynam-
ically program individual network devices, and thus control
the behavior of the network as a whole. The goal of SDN is
to program the network via open interfaces to dynamically
initialize, control, change, and manage the network behavior.
In SDN, software plays a central role in the operation of
networks by introducing an abstraction for the data plane
and by separating the data plane from the control plane. To
achieve such a separation, three types of components are
needed: (i) a (logically) centralized SDN controller, (ii) SDN-
capable switches, and (iii) a management protocol, such as
OpenFlow [30]. An advantage of SDN is the capability of
centrally updating routes of existing traffic on demand by the
controller [31]–[38] in a consistent manner [16].

B. REINFORCEMENT LEARNING

In reinforcement learning, a decision-making agent observes
an environment and decides according to its state which
action has to be performed. A classical approach to solve
decision-making problems is to represent problems as a
Markov process. A Markov decision process (MDP) consists
of (i) a set of statesS , (ii) a set of actionsA, which can be state
dependent, and (iii) transition probabilities p(s′, r|s, a) .=
Pr(St+1 = s′,Rt+1 = r|St = s,At = a), which define
the probability to reach a succeeding state St+1 = s′ from
a previous state St = s by performing action At = a, and
receiving a reward Rt+1 = r , as elaborated in Section III.

When detailedmodels of the underlying system are lacking
or intractable, model-free learning approaches [39] can be
employed. Knowledge about unknown probability functions
p(s′, r|s, a) can be acquired by sampling over the environ-
ment and by using experiences to learn optimal action-value
functions q(s, a). This q(s, a) function can then be used to
determine the best action for a particular state s. The approx-
imation of such an action-value function q(s, a) is achieved
by storing the Q-values Q(St ,At ) of state-action pairs in
arrays or tables and is therefore also referred to as tabular
learning.

The actual learning of optimal policies or value-functions
from raw experiences is also called theMonte Carlo Method.
The disadvantage of the Monte Carlo Method is that always
entire episodes of learning need to be finished, which is
unsuitable for routing since we want to adapt flow routes
at runtime. Bootstrapping can update the estimates without
waiting for the final outcome of an episode. This bootstrap-
ping is applied by Temporal-Difference Learning, whereby
Q-Learning [7] is one of the most common temporal-
difference learning algorithms.

C. REVIEW OF RELATED WORK

The emergence of tabular reinforcement learning [7], [39],
also referred to as tabular Q-Learning, in the early 1990s
spurred several studies that attempted to exploit Q-Learning
for distributed routing in classical Internet Protocol (IP) net-
works, see e.g., [40]–[44], as well as for optical burst rout-
ing [45]. Tabular Q-Learning has recently also been employed
for optimizing the video quality in multimedia network-
ing [46], mobile ad hoc network routing [47], and for load
scheduling in the energy Internet [48]. While Q-Learning
was generally found to achieve good routing performance,
the distributed nature of classical IP network operation makes
implementation challenging. In contrast, SDNprovides a cen-
tralized controller for tracking the network status, running the
learning agent, and instructing the switches to implement the
routes. We believe that it is therefore important to re-examine
Q-Learning in the context of centralized SDN operation and
control.

With the emergence of deep reinforcement learning [9],
[10], several recent articles have suggested to apply deep
reinforcement learning to the centralized SDN routing prob-
lem [49]–[55]. Generally, existing routing approaches have
not examined the representation of the SDN routing problem
for deep reinforcement learning in detail. Typically, the neural
networks in the existing approaches produce floating point
numbers as outputs, instead of flow or path routes. These
floating point numbers are interpreted as a characteristic
for a link, e.g., as link weights [19]–[21], [56], [57] or a
communication session, e.g., as probabilistic split ratios for
communication flows [21]. Thus, the existing deep reinforce-
ment learning based routing mechanisms control the routing
indirectly through controlling link or session characteristics.
Then, the link and session characteristics are fed into a stan-
dard routing algorithm, e.g., a variation of a shortest-path
routing algorithm, to find a single routing path. In contrast,
our proposed QR-SDN approach represents the actual flow
routes for the Q-Learning reasoning. Thus, our QR-SDN
directly controls the routing, i.e., the reinforcement learning
produces a specific routing path to be deployed for a given
flow. This direct flow routing avoids the splitting of any indi-
vidual source-destination host flow and can exploit multiple
routing paths for flows sharing the same source-destination
switch pair. To the best of our knowledge, our study is the first
to directly represent flow routing in the state-action space of
reinforcement learning.
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For completeness we note that deep reinforcement learning
has been applied to a wide variety of other communication
network problems, including distributed routing [58], [59],
congestion control [60], data center networks [61], wireless
network routing [62]–[71], vehicular ad hoc network rout-
ing [72], [73], optical networking [74]–[76], caching [77],
and mobile edge computing [78], [79]. We also note that
a preprocessing approach for efficiently representing virtual
network embeddings for subsequent algorithm processing has
been examined in [80].

III. QR-SDN: REPRESENTATION DESIGN OF SDN

ROUTING

The representation of the SDN flow routing problem for
efficient decision making by a reinforcement learning agent
has not been examined in detail in the existing literature.
Especially the design of the states and actions so as to effec-
tively represent the flow routing problem for processing by a
reinforcement learning agent has to be investigated.

FIGURE 2. Interaction between the agent and environment after
Sutton [39].

A. STATE-SPACE DESIGN

Consider the network G(V, E) with E as a set of edges con-
necting the set of vertices V . We focus on unicast commu-
nication flows, i.e., flows that transmit data from a given
sender to a single receiver. The data transmission for a given
application or transport layer context, e.g., a given Transport
Control Protocol (TCP) flow, from a given sender (source
host) sf to a given receiver (destination host) df is referred
to as flow f . We denote F for the set of all flows. We assume
that a flow f transmits a prescribed traffic rate Rf out of the
source host sf into the network. A path Psf ,df is a sequence
of vertices P = (v1, . . . , vn) from the set of all possible
paths P ∈ Psf ,df = {Psf ,df ,1,Psf ,df ,2, . . .} connecting source
host sf to destination host df , whereby the set Psf ,df may be
determined by a graph search algorithm, such as Depth-First
Search (DFS) [34], [81].

The reinforcement learning agent, which may operate at
the SDN controller, observes the environment, (i.e., the net-
work) by measuring the desired key performance indicators,
such as latency or bandwidth, at discrete time steps t =
0, 1, 2, . . .. The observation consists of the environment’s
state St from the set of states S = {S1, S2, . . . } and a reward
Rt ∈ R ⊂ R. We define the state St to consist of a table,

which contains the currently selected path P for each flow f :

St =











fs1,d1 : Ps1,d1,t
...

fsi,di : Psi,di,t .

(1)

The state space is essentially a key-value dictionary with the
flows as keys and the current path as value for each key. We
note that this dictionary is just one possible implementation
of the state space. The states could also be represented as
a list, which could be directly mapped to the inputs of a
neural network used for deep Q-Learning. We preferred the
dictionary with the flows as keys and the paths as values,
as this is a straightforward representation of the state space
from a programming implementation point of view.

B. ACTION-SPACE DESIGN

Depending on the state St and its corresponding reward Rt , an
action At ∈ A is selected (whereby the set of possible actions
A may generally depend on the state St ). The set of actions
A = {At,1,At,2, . . .} is determined by the set of possible
paths, including the current path, i.e., A = Psf ,df for flow f .
One of these possible paths is then selected to either replace
or keep the current path. Thus, an action essentially changes
the value, i.e., the current path, of a key, i.e., a flow, in the key-
value dictionary that represents the state space. The procedure
for re-routing is described in Section III-E1.
An action At applied to a single flow can be described by

At = {fs1,d1 : Ps1,d1,t ⇒ Ps1,d1,t+1}. (2)

Now the question remains whether only one flow or several
flows should be changed with one action. We can change
one flow at a time step, i.e., conduct a OneFlow Change as
specified in Eq. (2). Alternatively, we can change all flows at
a time step, i.e., take the action

At =











{fs1,d1 : Ps1,d1,t ⇒ Ps1,d1,t+1},
...

{fsi,di : Psi,di,t ⇒ Psi,di,t+1},

(3)

which we refer to as Direct Change. Clearly, as Eqs. (2)
and (3) indicate, the design of action At has an impact on
the size of the action space |A|. A disadvantage of the Direct
Change approach is that the action space scales with the
product of the numbers of possible paths for the flows; in
contrast, the action space of OneFlow Change scales with
the sum of the numbers of possible paths for the flows, as
analyzed in more detail in Section IV-C4. On the other hand,
Direct Change allows direct switching in a single time step
to a desired state (routing configuration) in order to achieve
a higher flow routing performance. We will quantitatively
evaluate this tradeoff in Section IV with measurements in an
emulated SDN.
In principle, MDP state changes are non-deterministic.

However, our environment is an SDN, i.e., we know how
the routing paths will change after we select new routing
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paths by performing an action At . Thus, our states transition
deterministically (and the new state St+1 does not need to be
observed). Therefore, only the reward Rt+1 achieved with the
action At needs to be observed.

We briefly contrast our state-action space design, which
directly represents the flow routes from the state-action
space designs in related studies on SDN routing. The deep
reinforcement learning for traffic engineering (DRL-TE)
study [21] adopts a vector of the throughput-latency tuples of
all ongoing flows as state space, while the DROM study [20]
considers the flow source-destination traffic matrix as state
space, and the TIDE study [19] considers a time series of
network status matrices, which contain the link utilization
levels. The prior studies use indirect specifications of the
routing actions. Specifically, the actions-spaces in the DROM
and TIDE studies are link weight settings, while the action
space in the DRL-TE study is a set of probabilistic split ratios
for each ongoing flow. The probabilistic split ratio specifies
the probability with which a given packet should be sent on
a particular path. We note that while the probabilistic split
action in the DRL-TE study [21] contributed an important
initial understanding of SDN routingwith deep reinforcement
learning, the probabilistic flow splitting approach is not prac-
tical for high-speed networks. In particular, the probabilis-
tic flow splitting incurs prohibitive computational effort for
generating the random numbers for splitting the flow as each
packet requires an independently generated random number.
Moreover, the flow splitting generates an excessive amount
of out-of-order packets, which the receiver has to buffer and
process. In order to avoid these complications and to design a
practical state-action space for SDN routing, we directly and
consistently consider flow routes in both our state space and
our action space. Thus, with our state-action space design,
the routing actions relate directly to the state and can be
directly implemented in an SDN.

C. REWARD DESIGN

We use the reward Rt+1 to measure how well an action At
solved the flow routing problem. Motivated by the recent
interest in low-latency networking [17], [18], our evalua-
tions in this study consider the latency for the reward. Also,
congestion generally increases the latency, but not the con-
sumed transmission bitrate. A consideration of the through-
put for the reward would require knowledge of the required
transmission bitrate per application. Without knowledge of
the requirements of the sending hosts, it would be unclear
whether a throughput change was due to a bad routing deci-
sion or just because the sending host had lowered the trans-
mission bitrate. If multiple performance metrics should be
considered, then a weighted formula as proposed in [50] can
be used.

Our proposed reward Rt consists of the sum of latencies Lf
along the current paths Psf ,df of the flows f ∈ F . In order
to weigh outliers relatively heavily we employ the root mean

square

Rt = −

√
∑

∀f ∈F L2f

|F |
. (4)

Note that the minus sign is required since the reinforce-
ment learning agent strives to maximize its reward; however,
a higher latency is less desirable.

D. REINFORCEMENT LEARNING AGENT

1) Q-LEARNING

This section briefly reviews the principles of Q-Learning [7]
and describes our Q-table structure for QR-SDN. The
Q-value Q(St ,At ) ∈ (−∞, 0) is in principle an expected
quality measure of an action At that was taken in state St at
time t . Q-Learning is based on an iterative update rule:

Q(St ,At )
︸ ︷︷ ︸

new Q-value

← (1− α)Q(St ,At )
︸ ︷︷ ︸

old Q-value

+ α
︸︷︷︸

learning rate

(

Rt+1
︸︷︷︸

observed reward

+ γ
︸︷︷︸

discount factor

max
a∈A

Q(St+1, a)
︸ ︷︷ ︸

expected value of future state

)

,

(5)

whereby the learning rate α determines how quickly the
newly learned Q-values are adopted. The discount rate
γ expresses how future expected rewards will be con-
sidered. The future expected rewards are represented by
maxa∈A Q(St+1, a), which basically expresses how much
reward we could get if the highest valued action a is taken.
Each state-action pair and its corresponding Q-value need

to be saved in a tabular data structure. For the SDN flow
routing problem, we implemented the Q-table using nested
dictionaries, whereby the different states S are the keys. The
values, in turn, are dictionaries with an action, see Eqs. (2)
and (3), as key and the actual Q-value as value, i.e.,

Q-Table =

































S1 :











A1 : Q(S1,A1)
...

Aj : Q(S1,Aj)
...

S i :











A1 : Q(S i,A1)
...

Aj : Q(S i,Aj).

(6)

This Q-table information of the flow routing will be the basis
for the exploration strategy in Section III-D2.

An important aspect for practical operation is the initial-
ization of the Q-table. In our current implementation we
initialize the table with a Q-value of −∞ and use initially
a random routing action. This initial Q-value of −∞ is set
because we generally select the action according to the high-
est Q-value. Moreover, we treat a Q-value of −∞ as 0 in the
initial iteration of Eq. (5), i.e., we initially set the old Q-value
to zero in Eq. (5) to allow for the newly learned values to take
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over. An improved initialization could be based on shortest-
path routing, which may converge faster to an optimal routing
configuration.

2) EXPLORATION STRATEGIES

Unsupervised learning requires an exploration strategy to try
new action-state combinations, which have not been experi-
enced before. On the other hand, once knowledge has been
gained, the knowledge should be exploited to achieve the
maximum reward.We implemented and evaluated three com-
mon exploration strategies, namely ǫ-greedy, Softmax, and
Upper Confidence Bound (UCB) for the SDN flow routing
problem.
In ǫ-greedy, the action with the highest Q-value is chosen,

i.e.,

At
.= argmax

a∈A
Qt (s, a), (7)

whereby there is a probability of ǫ ∈ [0, 1] that a random
action is chosen. This helps to explore new states, but also
lowers the exploited reward, even after a long learning time.
The Softmax strategy converts the Q-values into selection

probabilities

Pr{At = a} =
expQ(s, a)/τ

∑

b∈A expQ(s, b)/τ
(8)

for each action of the states and samples over the results. The
Softmax function is controlled by the temperature τ , whereby
a low τ favors exploitation (i.e., the action with the highest
Q-value is chosen more often), and a high τ leads to an
explorative character to acquire new knowledge.

Since our Q-values are initialized with −∞, we need to
modify Eq. (8) to

Pr{At = a} =
exp [−1/(Q(s, a) · τ )]

∑

b∈A exp [−1/(Q(s, b) · τ )]
(9)

in order to mimic the behavior of Softmax for negative value
ranges. The Q-values never reach zero, therefore it is safe
to place (Q(s, a) · τ ) in the denominator. In Eq. (8), all
expQ(s, a)/τ would be zero forQ(s, a) = −∞. Thus, the ini-
tial randomly selected state-action combinationwould always
be preferred compared to all others, since their probability
is zero. In contrast, in Eq. (9), the probabilities are non-
zero for the initialization Q(s, a) = −∞. Another possibility
would be to initialize the Q-values with zero. In Eq. (9),
this would cause all action-state combinations to be tried,
since the probabilities for Q(s, a) = 0 are the highest. This
forced exploration of all action-state combinations, however,
would contradict the idea that exploration is controlled by the
temperature τ .
Irrespective of whether Eq. (8) with Q(s, a) = 0 or Eq. (9)

with Q(s, a) = −∞ is used, the initialization has a strong
influence on the convergence of the reinforcement learning
agent. TheDRL-TE approach [21] uses an initialization based
on a traffic engineering (TE) solution for its exploration. As
suggested in [21], an initial solution could be shortest-path

as baseline. For an optimized initialization, we adapt the TE
approach by using the worst possible path in terms of cost as a
starting point. We then use the latency of this worst possibly
path to calculate a hypothetical Q-value, assuming that the
reinforcement learning agent would converge to this worst
possible path, as detailed in Algorithm 1.

Algorithm 1 Optimistic Q-Value Initialization Calculation

1: procedure OPTIMISTICQVALUEINITIALIZATION
2: α← 0.8
3: γ ← 0.8
4: Reward ← LATENCYWORSTPOSSIBLEPATH
5: ⊲ For consistency for all exploration strategies
6: ⊲ we initialize with −∞
7: q←−∞
8: for iter in RANGE50 do
9: if q == −∞ then

10: q← 0
11: end if

12: q← (1− α) · q+ α · (Reward + γ · q)
13: end for

14: return q

15: end procedure

Algorithm 1 illustrates our optimistic Q-value initialization
calculation. We set the reward to the latency of the worst path
and set the initial Q-value to −∞ (Lines 4–7) Subsequently,
we let theQ-value converge by iterating over Eq. (5) (Lines 8–
13). We treat the initial old Q-value as 0 (Lines 9–10). We
compare the Softmax exploration strategy with and without
the optimistic Q-value initialization in Section IV-C3.
Generally, it is often desired to decrease exploration over

time, which can be achieved by continuously reducing the
values of ǫ and τ . This process is called annealing and
allows to move smoothly from exploration to exploitation.
TheUpper Confidence Bound (UCB) automatically conducts
annealing, i.e., controls the exploration, by counting the
times an action has been chosen. Thereby, actions are chosen
based on their Q-value and their potential. More specifically,
a bonus b+ is introduced:

At
.= argmax

a∈A

(

Qt (s, a)+ cb+
)

. (10)

The bonus b+ is decreased over time by counting how often
a state has been visited N (s) and the number of times a corre-
sponding action-state combination has been selected N (s, a);
in particular, b+ =

√
lnN (s)/N (s, a). The degree of explo-

ration can be adjusted with the parameter c > 0, whereby
a higher c gives the bonus b+ more leverage, resulting in a
more explorative character.
The respective employed exploration strategy selects the

action At [based on Eqn. (7), (9), or (10)] from the respective
pre-configured OneFlow Change or Direct Change action
space. All these exploration strategies have strengths and
weaknesses, as measured by the time to a converged state and

VOLUME 8, 2020 174779



J. Rischke et al.: QR-SDN: Towards Reinforcement Learning States, Actions, and Rewards

average latency achieved after converging. We will quantita-
tively examine these tradeoffs in Section IV-C3.

E. SDN CONTROLLER IMPLEMENTATION

We implemented a centralized SDN controller using the Ryu
framework [82]. The SDN controller performs three tasks
simultaneously: (i) latency monitoring, (ii) reinforcement
learning as described in Section III-D, and (iii) the actual path
deployment with theOpenFlow protocol. Each task is imple-
mented as a single thread to facilitate the parallelization of the
processing since the latency monitoring is time critical. The
SDN controller sends probing packets, as described in [83],
to monitor the experienced flow latencies Lf .

1) REROUTING

A distinct advantage of SDN is the capability to modify
the routing paths of existing traffic flows at runtime without
incurring any losses or down time. Since we use this flexibil-
ity to update our flow routes, we need an algorithm to find
the required modifications for existing routes to change to
new routes. To the best of our knowledge, there is no existing
algorithm for finding these modifications, and therefore we
designed our own algorithm (Algorithm 2).

The challenge is to modify the forwarding rules in such
a way that existing traffic flows are not interrupted. Our
approach is to iterate over a new path, which is a list of
switches proposed by the reinforcement learning agent, and
compare the new path with the old path (Lines 6–7). If the
old and new paths share the same switches in the correct
sequence, then nothing is changed (Lines 9–11). On the other
hand, if there is a new switch, it will be added to the flowAd-
dList and its predecessor switch will be added to the flow-
ModList (Lines 18–21). Moreover, if old and new switches do
not share the same predecessor switch, then the forwarding
rule needs to be modified, and therefore the predecessor
switch is added to the flowModList (Lines 13–15). To ensure
a seamless connection, the forwarding rules are first added
to the new switches (Lines 24–28). The forwarding rules of
the existing switches are then changed, but starting from the
destination to the source switch to avoid disruptions or gaps
in the routing path (Lines 29–33).

The modification of forwarding rules relies on the knowl-
edge of the topology and the relations between the ports
and the neighboring switches. This knowledge is gathered by
the monitoring module and used to determine the outgoing
port to reach the succeeding switch on the new path. The
manipulation of the actual forwarding rule is implemented
with OpenFlow’s FlowMod command.

Finally, the currently unused switches on the old path need
to be removed. We compare the old path with the new path
to build the relative complement of the old path and store it
in the flowDelList (Line 34). Subsequently, each forwarding
rule per switch in the flowDelList is deleted for this specific
flow (Lines 35-38).

Generally, we note that for the case of a leaving flow we
need some timeout to remove entries from the Q-table and

Algorithm 2 (Re)routing Algorithm

1: procedure REROUTING(OLDPATH, NEWPATH, FLOWID)
2: ⊲ New switches on the path
3: flowAddList ← [ ]
4: ⊲Modify routes of switches on the path
5: flowModList ← [ ]
6: for index, switch in ENUMERATEnewPath do
7: if switch in oldPath then
8: oldIndex ← GETINDEXoldPath, switch
9: ⊲ Same previous switch?
10: if oldPath[oldIndex – 1] == newPath[index – 1]

then

11: continue

12: else

13: if newPath[index – 1] not in flowAddList then
14: flowModList ← flowModList +

newPath[index − 1]
15: end if

16: end if

17: else

18: flowAddList ← flowAddList + switch
19: if newPath[index – 1] not in flowAddList then
20: flowModList ← flowModList +

newPath[index − 1]
21: end if

22: end if

23: end for

24: ⊲ Add forwarding rule for flow to new switches
25: for switch in flowAddList do
26: nextSwitch ←

newPath[GETINDEXnewPath, switch+ 1]
27: ADDFLOWSWITCHswitch,flowID, nextSwitch

28: end for

29: ⊲ Modify forwarding rule for flow of persistent
switches

30: for switch in REVERSEDflowModList do
31: nextSwitch ←

newPath[GETINDEXnewPath, switch+ 1]
32: MODFLOWSWITCHswitch,flowID, nextSwitch

33: end for

34: flowDelList ← SETDIFFoldPath, newPath

35: ⊲ Delete forwarding rule for flow of old switches
36: for switch in flowDelList do
37: DELFLOWSWITCHswitch,flowID

38: end for

39: end procedure

switches, since flows do not give notice when leaving the
network.

2) LATENCY MONITORING

An important part of our implementation is the gather-
ing of link latency statistics. We used the approach of
Phemius et al. [83] that creates artificial Ethernet (probing)
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FIGURE 3. QR-SDN Controller Architecture: The controller feeds the flow-path combinations and the network metrics to the learning
module. The learning module, which is co-located with the SDN controller and stores the Q-table, then conducts the reinforcement
learning and selects the routing actions. The routing actions are implemented by the controller in the data plane.

packets (type 0 × 07c3). The payload contains a timestamp
and the datapath ID from the sending switch. The packets
are padded with zeros to reach the minimum Ethernet packet
size of 64 bytes. The packets are broadcasted every second
to neighboring switches (creating a probing packet bitrate
of 64 bytes/s on each link). The benefit of this approach is
that the measured latency is the same as the latency that is
perceived by the flows. The packet probes experience the
packet processing, queuing, transmission, and propagation
delays on the one-way path from the source host to the
destination host. Only packet probes that arrive at the desti-
nation are considered in the latency measurement, dropped
probe packets (due to full switch buffers) are ignored. We
measure the latencies every second; however, we perform
one learning iteration (step) every two seconds. This permits
the latency monitoring and the learning process to operate
asynchronously. Bymeasuring the latency twice as frequently
as the learning iterates, we ensure that the asynchronously
measured values are reasonably up to date. We define the
2-second duration of one learning iteration (step) as the step
time Tstep.
We acknowledge that packet reordering may occur when

transitioning from an old routing configuration to a new rout-
ing configuration. Therefore, routing configuration changes
should be minimized so as to minimize packet reordering.
Generally, the time till convergence reflects the routing con-
figuration changes required by a learning approach and thus,
the time till convergence should be minimized. After conver-
gence, the traffic is rarely re-routed (depending on the explo-
ration strategy). The step time Tstep, which is equivalent to the
time between routing changes, can be chosen dependent on
the duration of short-lived TCP flows so as to avoid degrading
their performance, while still achieving re-routing benefits
for long-lived flows. In summary, there is a trade-off between

either experiencing persistent high levels of congestion and
long latencies with long step times, or congestion mitigation
through reasonably frequent routing configuration changes
according to a short step time at the expense of some out-
of-order packets. The detailed investigation of this trade-off
is an interesting direction for future research. We chose the
step time to be quite short, i.e., only 2 seconds, in order to
complete the emulation based evaluation within a reasonable
time in a statistical reliable manner withmultiple independent
measurement replications. In practice, the step time should be
set depending on how frequently or how fast the network load
changes, and therefore how fast the routing should react.

We also note that a frequent execution of Algorithm 2 with
a short step time can be readily accommodated by contempo-
rary SDN controllers which can handle multiple thousands of
requests per second [84].

IV. PERFORMANCE EVALUATION

A. PERFORMANCE METRICS

We use the following two metrics in our evaluation, namely
time till convergence and average flow latency.

1) TIME TILL CONVERGENCE

Time till convergence describes how quickly the reinforce-
ment learning agent finds a low latency state. This search for
a low latency state should not take too long, because in reality
and in our emulations, an acceleration (e.g., by faster com-
puting hardware) is not possible; rather, the search duration
is inherently coupled to the design of the search algorithm,
i.e., the reinforcement learning algorithm and the duration of
a time step (i.e., the time interval for one learning iteration).
Thus, the reinforcement learning agent should learn as fast
and efficiently as possible. To the best of our knowledge, there
is no common definition for convergence in reinforcement
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learning. In order to quantitatively evaluate the convergence
times, we first smoothed the measured average latencies of
the flows with a moving average of N = 40 consecutive
steps. Subsequently, we calculated the finite differences of the
smoothed average latencies. If the variations, i.e., the finite
differences of the smoothed average latencies, are smaller
than a prescribed threshold value of 0.4 ms/step, we consider
the system as converged.We arrived at the 0.4 ms/step thresh-
old value through experimenting with different threshold val-
ues and observing the transient behaviors of the latencies,
similar to the transient behaviors examined in Fig. 5a.

2) AVERAGE FLOW LATENCY

Latency is a useful indicator of the performance of a network
as it detects congestion, which not only increases latency,
but also reduces throughput. Since in a real network we
would not know the latencies experienced by the actual
traffic, we measure the flow latencies via probing packets,
as explained in Section III-E2. We define the average latency
as the unweighted average flow latency across all flows along
their respective source-to-destination paths. We note that the
latency variance across all the flows would not be a mean-
ingful performance metric as the flows have vastly different
source-destination switch pairs. However, we do evaluate
the 5% and 95% percentiles of the average latency across
multiple independent measurement replications to evaluate
the variance of the evaluated QR-SDN routing approach.

B. EVALUATION SETUP

1) EVALUATION APPROACH AND HARDWARE

We evaluated our proposed approach in the network emu-
lator Mininet [85], which closely resembles the operation
on a network with distributed hardware. In the emulation,
the execution takes place in real time and incurs the actual
processing delays in real hardware. We parallelized the emu-
lation by spawning multiple virtual machines that executed
the experiments. We used a commercial workstation with
an Intel Xeon W-2155 CPU and 128 GB DDR4 memory.
As hypervisor we used KVM with the Ubuntu 18.04 host
operating system and the Debian 10 operating system for
the guest machines. We used Mininet’s standard OpenFlow
software switch OpenvSwitch.

2) LINK AND TRAFFIC SETTINGS

We decreased the standard queue capacities forMininet inter-
faces from 1000 packets per queue to 30 packets per queue,
which is consistent with recent recommendations for small
router buffers [86]–[88]. The reason is that congestion should
result in degradations within one step time Tstep or between
two actions, respectively. Otherwise, a change, e.g., to a
redirected flow, would not be reflected in the reward. In order
to have a change reflected we need:

MTU [bytes/packet] · Queue size [packets]
Link capacity [bytes/s]

!
≤ Tstep. (11)

Service providers can adapt the step time according to the
Maximum Transfer Unit (MTU) and link capacities. Since
the MTU and link capacities are fixed, only the queue
sizes or step times can be adapted. For our setup, we chose
a lower queue capacity of 30 packets in accordance with our
considered link transmission bitrates of up to 10 Mbit/s and
packet size of up to 1500 bytes, since we then have a margin
of about 1500 bytes·8·30 packets/250 kbit/s = 1.44 seconds
to degrade the congestion within the step time of our imple-
mentation of 2 seconds, as mentioned in Section III-E2.
For larger buffer sizes, a longer step time would be needed
whichwould reduce the responsiveness of the routing control.
The margin of about 250 kbit/s will be subtracted from the
nominal flows bitrates to avoid congestion, because con-
gestion will occur even if the nominal flow transmission
bitrate and link capacity are equal. Table 1 lists the actual
flow transmission bitrates for different load levels calculated
as (Nominal flow bitrate – Margin) · Load level. This flow
bitrate adjustment is necessary because the Max-flow min-
cut specifies an achievable theoretical upper limit; however,
practically congestion occurs through queuing at 100% uti-
lization. To avoid this discrepancy, we subtract the margin
from the nominal flow bitrate. The actual traffic was gener-
ated with Iperf.

We compare our QR-SDN approach to the classic Shortest-
Path First (SPF) routing protocol, whereby we set the latency
as cost. We initialize SPF in an uncongested network which
only considers the pre-set default link latencies and do not
adapt the SPF routes at runtime. Adapting SPF routing at
runtime without a specific route stabilization mechanism
leads to route oscillations [89]–[91]. For a fair evaluation,
we do not consider any specific routing stabilization mech-
anisms, neither for the SPF benchmark nor for the QR-SDN
approach. We briefly note for completeness that multi-path
routing could also be considered as a benchmark; however
existing multi-path routing approaches are typically limited
to equal-cost links [92], [93], or require path weights [94].
Also, as noted in Section II-C, the existing reinforcement
learning based routing schemes are not suitable for exploiting
multiple routing paths for flows sharing the same source-
destination switch pair while preserving the integrity of
source-destination host pair flows (i.e., avoiding flow split-
ting).

The link latencies are created with NetEm [95], aMininet’s
standard tool for network emulation. Due to the limited link
transmission bitrates, each instance of exceeding of the link
capacities leads to more packets in the queues and thus to
longer queuing delays. In particular,NetEm evaluates the link
latency as themaximum of the pre-set default link latency and
the queuing delay. Thus, for low link load, the link latency is
equal to the pre-set default link latency, while for high link
load, the link latency is equal to the queuing delay.

C. RESULT OF BASIC EVALUATION

We first evaluate how QR-SDN performs in comparison to
SPF, and how fast QR-SDN converges. We consider the ele-
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TABLE 1. Transmission bitrates (Mbits/s) of flows with a margin of 250 kbit/s for different load levels in basic evaluation topology in Fig. 4.

mentary example topology in Fig. 4. The distribution of flows
that achieves the lowest average flow latency can be readily
identified for this topology. Also, the QR-SDN approach can
be readily emulated with Mininet in this elementary example
topology. Thus, the main open question is how quickly can
QR-SDN find this minimum average flow latency configura-
tion and how often will QR-SDN try different configurations
due to explorations. We load the network with the flows f1 :
3 Mbits/s and f2, f3 : 2 Mbits/s. As described in Section IV-
B2, we leave a margin of 250 kbit/s to the nominal flow
bitrate.

FIGURE 4. Basic evaluation topology: Three source-destination host pairs
(H1-to-H4, H2-to-H5, and H3-to-H6) send flows over a network consisting
of four switches with prescribed default link latencies and link bitrates,
e.g., the Sw1 → Sw2 link has a default latency of 10 ms and a bitrate
of 3 Mbit/s.

1) TRANSIENT BEHAVIOR UNDER HIGH LOAD

First we evaluate the transient behavior of the system under
high load (100% load level of the three flows f1, f2, f3). SPF
chooses the lowest-latency path Sw1 → Sw2 → Sw3 as
default route. However, the best flow distribution, in terms
of the minimum average flow latency, would be f1 via route
Sw1 → Sw2 → Sw3, and f2, f3 via route Sw1 → Sw4 →
Sw3. Any other flow distribution would lead to congestion.
Fig. 5(a) shows the sample average of 20 independent mea-
surement replications as thick lines and the corresponding
5% and 95% percentiles as shaded areas. Each step on the
x-axis represents one action-measurement cycle, as depicted
in Fig. 2.
With SPF, the Sw1 → Sw2 link is congested right away,

since the queue of 30 packets is filled quickly by the total flow
rate of 7 Mbit/s arriving to Sw1 (SPF achieves a throughput
of only 3Mbit/s, the other 4Mbit/s are lost). The latency rises
therefore essentially immediately to about 130 ms, which is
the sum of the queuing delay of the congested Sw1 → Sw2
link (MTU · 8 ·Queue size/Link capacity ≈ 120 ms) and the

10 ms default latency of the initially uncongested Sw2 →
Sw3 link. The Sw2 → Sw3 link is also gradually getting
congested as it is 100% loaded and some random variations
of the processing delays occur due to the emulation hardware.

Due to the random initialization of QR-SDN, the latency
is already lower at the beginning since the probability of
routing all three flows over one of the two paths is only
1
23
· 2, i.e., 25%. Up to step 60, QR-SDN tries different

combinations, as indicated by the latency peaks. Around step
90, the exploration decreases and QR-SDN converges to a
steady state. QR-SDN nearly reaches the minimum average
flow latency of (2 · 28+ 20)/3 ms ≈ 25.33 ms, which is the
ideal routing configuration with f1 over Sw1→ Sw2→ Sw3
and flows f2, f3 over Sw1→ Sw4→ Sw3. However, due to
some ongoing explorations there will always be some latency
overhead compared to the minimum latency. This tradeoff
between exploration and exploitation to achieve low latency
will be evaluated in Section IV-C3.

2) AVERAGE LATENCY VS. LOAD LEVEL

Next, we examine the average latency after convergence as a
function of the load level. Fig. 5(b) shows the average flow
latencies and the corresponding 5% and 95% percentiles as
whiskers obtained from 20 independentmeasurement replica-
tions. For very low load levels up to 40%, SPF achieves very
slightly shorter latencies than QR-SDN. This is because SPF
routes only over the lowest latency path. In contrast, QR-SDN
continuously explores other flow-path combinations (even
after having converged), which creates a minuscule latency
overhead.

We observe from Fig. 5(b) that for a load level of 50%,
which exceeds the capacity of the Sw1→ Sw2→ Sw3 path
(which provides 3 Mbps out of the total 3+4 Mbit/s network
capacity), the SPF delays increase to nearly 150 ms, In con-
trast, QR-SDN maintains low average flow latencies up to a
load of 100% and then gives increased average delays around
100 ms while SPF gives average delays around 150 ms. With
SPF, all flows traverse the congested Sw1 → Sw2 → Sw3
path. On the other hand, with QR-SDN, the flows are dis-
tributed over both paths, so that the flows experience varying
levels of congestion, as indicated by the relatively wide span
of the 5% to 95% percentiles, while the average latency
remains below the SPF latency. Overall, we conclude from
the average latency results in Fig. 5(b) that for low loads, SPF
achieves very slightly shorter latencies than QR-SDN, while
for moderate to high loads, QR-SDN achieves substantial
latency reductions over SPF. Future research could develop a
load-adaptive routing strategy that employs SPF at low loads
and switches to QR-SDN for moderate to high loads.
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FIGURE 5. Basic flow latency evaluation of QR-SDN: The flow-preserving multi-path QR-SDN with direct flow route representation achieves
substantially shorter average flow latencies than the single-path shortest-path routing (SPF) for moderate to high loads; prior indirect routing
representation studies with a single path, e.g., [19], [20], correspond roughly to SPF, the prior multi-path flow-splitting approach [21] splits flows on a
per-packet basis (incurring complexity and out-of-order packets). Fixed parameters: Softmax with τ = 0.00005 and OneFlow change.

Importantly, all routing approaches, including the recent
deep reinforcement learning approaches, e.g., TIDE [19]
and DROM [20], which determine a single routing path for
a given source-destination switch pair, will give latencies
similar to SPF. Only the random per-packet traffic splitting
approach of DRL-TE [21] can achieve the same low laten-
cies as QR-SDN. However, DRL-TE does not preserve the
integrity of flows, as outlined in Section III-A. Therefore,
to the best of our knowledge, QR-SDN is presently the only
flow-preserving reinforcement learning based SDN multi-
path routing approach for achieving low latencies for high
loads that exceed the capacities of a single source-destination
route.

3) EXPLORATION VS. EXPLOITATION

This section compares the different exploration strategies
outlined in Section III-D2, namely ǫ-greedy, Softmax, and
UCB. Generally, the exploration determines how fast the
reinforcement learning agent can find a state with low latency.
However, too much exploration limits the exploitation of a
beneficial low-latency state that the learning had converged
to. In our experiments, the ǫ-greedy approach did not con-
verge within a reasonable time (of tens of hours); follow-
ing the standard ǫ-greedy algorithm, we did not decrease
the ǫ value over time (we tested the fixed values ǫ =
0.01, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3). Thus, we focus on
UCB and Softmax. We compare the time until the learning
converges to a steady state and the average flow latency (after
convergence) for UCB and Softmax in Figs. 6 and 7.

Initially, we evaluate in Fig. 6 the optimistic Q-value ini-
tialization that we introduced in Section III-D2 for Softmax
(see in particular Algorithm 1) compared to the initialization
Q(s, a) = −∞. We observe from Fig. 6 that the optimistic
Q-value initialization achieves substantially shorter conver-
gence times for the low temperature τ = 0.0001 than the
Q(s, a) = −∞ initialization; whereas for the high temper-
ature τ = 0.0005, the optimistic Q-value initialization does
not shorten the convergence time compared to the Q(s, a) =

FIGURE 6. Comparison of initialization values for Softmax: Convergence
time and average flow latency (after convergence) for optimistic Q-value
initialization and the default initial value of −∞ (denoted as Inf), see
Section III-D2, for different τ values. Fixed parameters: Load level 100%
and OneFlow change.

−∞ initialization. These results are mainly attributed to the
high temperature τ = 0.0005 leading to an excessive amount
of exploration, which cannot be effectively curtailed by the
optimistic Q-value initialization.

We also observe from Fig. 6 that the optimistic Q-value ini-
tialization achieves dramatically shorter flow latencies than
the Q(s, a) = −∞ initialization, irrespective of the tempera-
ture τ . This is because although the learning has converged,
the learning may not necessarily have converged to a low
latency state. This is also reflected in the wide range of
measurement results for Softmax with the Q(s, a) = −∞
initialization. In particular, Softmax-Inf.with τ = 0.0001 had
some iterations which converged as fast as Softmaxwith opti-
mistic initialization and achieved a similar average latency
(cf. whiskers). That is, the initialization appears to improve
the probability of converging to a more beneficial state.

We observe from Fig. 7 that UCB with c = 30 achieves
the lowest average flow latencies, while the average flow
latencies for Softmax are slightly longer (albeit still quite
short for Softmaxwith low temperature τ ). The slightly lower
latency with UCB is due to the annealing in UCB, which
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FIGURE 7. Comparison of exploration strategies: Convergence time and average flow latency (after convergence) for UCB with different c parameter
values and Softmax for different temperature τ values with optimistic initialization (Section III-D2). Fixed parameters: Load level 100% and OneFlow
change.

FIGURE 8. Comparison of action design types: OneFlow Change and Direct Change. Fixed parameters: Load level 100%, Softmax with τ = 0.00005.

decreases the exploration over time, and rather exploits the
discovered optimal routing configuration.

We also observe from Fig. 7 that Softmax achieves the
shortest convergence times for low temperature τ values
(0.00001 – 0.0001), followed by UCB for the small c = 30.
In contrast, Softmax for τ = 0.0005 and UCB with the high
c = 50 and 100 give long convergence times. Since both
values, τ and c, control exploration, too high values cause too
much exploration, so that a more advantageous state is only
exploited later. On the other hand, too little exploration can
lead to local minima, as shown in Section IV-D2.

4) INFLUENCE OF ACTION DESIGN

Next, we evaluate the actions design tradeoff by comparing
OneFlow Change and Direct Change in Fig 8. We repeated
the experiment from before and used Softmax with τ =
0.00005 as exploration strategy. Fig. 8 indicates that the
Direct Change approach converges slower than the OneFlow
Change approach. This is mainly because the Direct Change
approach has a larger action space than the OneFlow Change
approach. Thus, with Direct Change, the reinforcement
learning agent has to evaluate more possible state-action pairs
before it can converge.

On the other hand, we observe from Fig. 8 that the Direct
Change approach causes less latency overhead due to explo-
ration, i.e., achieves a lower average latency after conver-
gence, as clearly indicated by the red box plots in Fig. 8b as
well as by the slightly lower Direct latency at the right side
of Fig. 8a. The main reason for this behavior is that Direct
Change, after having explored various state-action pairs, can
directly switch between different beneficial (low-latency)
states without having to traverse (in a step-by-step one-flow
change fashion) disadvantageous (high-latency) states.

In summary, Direct Change is worse than OneFlow

Change in terms of scalability and therefore convergence
speed, but causes less latency overhead due to exploration.
The size of the action space forDirect Change scales with the
number of states |S|; specifically, the size of the action space
is equal to the size of the state space, excluding the current
state S. We denote the size of the action space excluding the
current state S by |S−S |. Noting that there is one additional
‘‘no transition’’ action gives the size of the Direct Change
action space as

|ADirect| = |S−S | + 1 =
∏

f ∈F
(|Psf ,df | − 1)+ 1. (12)
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FIGURE 9. Convergence time and average flow latency (after convergence) for load increase from 40% to 100%: UCB, c = 30 vs. Softmax, τ = 0.00005
with OneFlow change.

In contrast, the number of actions forOneFlowChange grows
with the total number of possible paths for all flows f , i.e.,

|AOneFlow| =
∑

f ∈F
(|Psf ,df | − 1)+ 1. (13)

D. RESULTS OF ADVANCED EVALUATION

1) CHANGING ENVIRONMENT

So far, we have evaluated a static environment; in order to
demonstrate that QR-SDN can handle dynamic conditions,
we are now evaluating dynamic cases. Two scenarios inwhich
the reinforcement learning approach is challenged are (i)
changing the loads that require new optimal routing configu-
rations, and (ii) when new flows join the network or ongoing
flows leave the network. We note that prior reinforcement
learning SDN routing studies, e.g., [19]–[21], have not cov-
ered such real-life changes of the network load or flows.
To the best of our knowledge, we are the first to quantitatively
examine how reinforcement based SDN routing performs for
changing loads and flows.
We first compare how quickly UCB and Softmax adapt

to load level changes within the context of the evaluation
setup in Section IV-C. We observe from Fig. 9 that although
UCB decreases its exploration over time, it adapts slightly
faster than Softmax to the changing load level. The average
flow latency after convergence is nearly the same for both
exploration strategies; the difference is less than the accuracy
of our latency measurements. We conclude that UCB has the
advantage of annealing, i.e., UCB decreases the exploration
over time. Nevertheless, UCB still manages to quickly find a
new optimal routing configuration after a load level change.
In addition to changing loads, newflows can spontaneously

join or leave the network. For our QR-SDN approach, this
means that the state-action space changes. The question is
whether we can reuse the previous experience to avoid having
to completely restart the learning, which could result in a
long adaption period.We propose two variants for the transfer
of the already gained experience into a new Q-values table,

namely Merging and Reset, and for the initial placement of
the new flow, namely Random and SPF.

FIGURE 10. Illustration of Q-table merging for OneFlow Change policy.

For transferring of the old Q-values into the new state-
action space, we compare the old table Q(s, a) and new table
Q′(s, a). For this comparison, we take the new states S ′ minus
the entries consisting of the new flow f ′, i.e., S ′ \ f ′. In the
samemanner, we inspect the corresponding new actions A′. If
we find the entries S ′ \ f ′ or A′ \ f ′ in the old table, we trans-
fer their Q-values. All other values, which have nothing in
common with the previous Q-value table, are initialized with
the default Q-values. This merging approach is illustrated
in Fig. 10: Consider initially one flow, which can be routed
over path A (state S1) or B (state S2); thus, there are four
actions namely stay in state S1 or S2, or transition to the other
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FIGURE 11. Comparison of approaches for joining flows. Fixed parameters: Softmax with τ = 0.00005, 100% load level and OneFlow Change.

state (path), each of these four state-action pairs has a Q-value
(top table). Now, consider that a new flow joins: The old flow
is still routed over path A or B, i.e., the old state S1 is now
‘‘included’’ in S ′1 or S

′
2 and S2 in S

′
3 or S4

′. Since the second
flow can be routed over path A or B, there are a total of four
combinations (states). For the first flow, there is an action to
stay in the current state, or to change the path, whereby the
merged approach transfers the previously learned Q-values to
this new table (bottom). In addition, the new flow may stay
on the current path or its path is changed; the Q-values for the
new flow actions are unknown and therefore initialized with
a default Q-value (gray). With the OneFlow Change policy,
only one flow routing is changed at a time, i.e., the possible
actions for the illustrative example in Fig. 10(b) are no routing
path change, old flow changes path, or new flow changes
path.
In the case of Reset, we simply reinitialize the Q-table with

the default values, which deletes all learned Q-values. For the
initial placement of a new flow, we either select randomly
(Random) a possible path or use the current shortest path
(SPF).

FIGURE 12. Scalability evaluation topology with N intermediate switches
and M flows.

We consider the previously used evaluation topology and
in addition (to demonstrate that SPF as flow initialization is
highly dependent on the topology) we modified the topology
depicted in Fig. 4 in such a way that the path latencies are

FIGURE 13. Convergence time and average flow latency for increasing
number N of intermediate switches and number M of flows. Fixed
parameters: Softmax with τ = 0.00005 and OneFlow Change.

interchanged, i.e., Sw1 → Sw2 → Sw3: 28 ms, Sw1 →
Sw4 → Sw3: 20 ms. The new flow is randomly selected
from the three source-destination host pairs, see Fig. 4, and
is started later, after the learning has settled for the first two
source-destination host pairs. We observe from Fig. 11a that
the initial placement of the new flow based on shortest-path
converges slower and has the highest average flow latency
after convergence. This is due to the shortest path, namely
Sw1→ Sw2→ Sw3, which is getting congested if the new
flow is routed over it. In contrast, with random placement,
the new flow may also be routed via the other path, which
avoids congestion. Even if—as in Fig. 11b—the shorter path
has a higher capacity, the SPF based approach does not appear
to offer an advantage. To conclude, random initial placement
of new flows performs better than shortest path placement
in high load scenarios, (however, for low load scenarios,
SPF placement may be advantageous). Future research could
examine placement decisions based on the remaining idle link
bandwidth as higher utilization leads to a higher probability
of the new flow congesting a path.

Regarding the transfer, we observe from Fig. 11a that
Merging performs better than Reset for random placement,
while both transfer approaches have similar mean conver-
gence times and flow latencies for SPF placement, withMerg-
ing experiencing more long outlier convergence times and
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flow latencies. On the other hand, for the scenario in Fig. 11b,
Merging gives shorter flow latencies than Reset for SPF
placement, while Merging performs worse than Reset for
random placement. Thus,Merging appears to have some per-
formance advantages, although the transfer results are overall
somewhat inconclusive. More evaluation scenarios need to be
considered to conclusively evaluate the transfer approaches.

2) SCALABILITY

Scalability is a major challenge of reinforcement learning
based routing. We examine scalability with the topology in
Fig. 12 with N intermediate switches and M flows, whereby
the links of the intermediate switch Swi support i · 2 Mbits/s
and each flow fi from hostHi toHi+1 has a bandwidth demand
of i · 2 Mbits/s (minus 250 kbits/s margin). The optimal flow
distribution can be easily deduced for this topology, namely
f1 over Sw1, fi over Swi, and so on. For this topology, we can
calculate the Q-table size for OneFlow Change as:

|Q(s, a)|
︸ ︷︷ ︸

Size of Q-table

= NM
︸︷︷︸

Number of states

∗
[

(N − 1) ·M + 1
]

︸ ︷︷ ︸

Number of actions

. (14)

Thus, the Q-value table size critically depends on the number
of flows M . We evaluated the time till convergence and the
average flow latency (after convergence) for the combinations
of N = M = 2, 3, and 4 switches and flows and plot
the results in Fig. 13. As expected, the time to convergence
increases with increasing Q-table size. In addition, a new
phenomenon occurs, namely the convergence to a local min-
imum. In the case of N ,M = 4, QR-SDN converges to
an average latency of about 55 ms; whereas, for N ,M =
2, 3, QR-SDN converges nearly to the optimum of 20 ms.
Thus, QR-SDN was unable to find the optimal distribution
for N ,M = 4, which could be due to a lack of exploration
for the larger N ,M = 4 topology. Future research needs to
examine the adaptation of theQR-SDN exploration according
to the size of the topology. Future research could also examine
the reduction of the Q-table size by decreasing the number of
possible paths as done by Xu et al. [21]. This, however, could
eliminate possible states that could be more advantageous.

V. CONCLUSION AND OUTLOOK

We have developed and evaluated a classical tabular rein-
forcement learning (Q-Learning) approach for flow routing
in Software-Defined Networks (SDNs). Our approach, which
we refer to as QR-SDN, directly represents the flow routes in
the Q-Learning state and action spaces so as to enable flow-
preserving multi-path routing. We have implemented QR-
SDN in a network emulation testbed and make the full source
code publicly available to facilitate future research [23].

We have extensively evaluated the direct representation of
the SDNflow routing problem inQR-SDN in small networks.
The evaluations have demonstrated that the flow-preserving
multi-path routing of QR-SDN achieves substantially lower
latencies than existing single-path routing approaches for
moderate to high loads. We have compared action spaces
that re-route one flow at a time versus action spaces that

directly re-route the entire set of ongoing flows. We found
that one-flow re-routing tends to converge faster, while direct
re-routing of the complete set of flows tends to achieve lower
average flow latencies. We have also found that QR-SDN
effectively accommodates changes, such as load changes due
to newflows or flows that terminate. However, the evaluations
also revealed the scalability problems of the proposed direct
flow routing state representation for reinforcement learning.
Thus, this study presents overall mixed results: The direct
flow routing representation is highly effective in achieving
low latencies and preserving the flow integrity in small multi-
path networks. However, in large networks with many flows,
the direct flow routing representation leads to scalability
problems in the form of slow convergence.

By formulating and evaluating direct flow representations
for Q-Learning and providing the QR-SDN source code,
the present study provides the groundwork for several impor-
tant future research directions. One important future research
direction is to address the scalability issues arising from
the direct flow routing representation in the QR-SDN state-
action space. Future research needs to examine how QR-
SDN can operate in a scalable manner, e.g., by employing
multiple SDN controllers, and through judicious scalability-
oriented path exploration strategies, e.g., focusing on cur-
rently highly utilized links (which may become congested
in the near future) and on high-rate flows that dominate
congestion (while the vast majority of low-rate flows could be
routed on the single shortest path). Also, improved learning
algorithms, e.g., approaches that embed the discrete actions
into a continuous space and apply efficient continuous poli-
cies [22], could aid to ensure scalability.

Moreover, we believe that a highly critical direction for
future research is to develop and evaluate novel exploration
strategies that reduce the convergence time of the reinforce-
ment learning agent to an optimal routing configuration.
A related interesting future research direction is to investigate
novel exploration and reward strategies that are triggered by
load levels on critical links. Another interesting direction is
to explore approaches that proactively manage time-varying
loads, e.g., by forecasting traffic peaks and proactively adjust-
ing the flow routing. Also, a possible future research direction
is to examine the use of a neural network as a function
approximator to improve scalability, i.e., to examine deep
reinforcement learning, for SDN routing.
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