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QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION
IN QUATERNIONIC PROJECTIVE SPACE

HyaNg Sook KiM AND JIN SUK Pak*

ABSTRACT. The purpose of this paper is to study n-dimensional
Q R-submanifolds of maximal @QR-dimension isometrically immersed
in a quaternionic projective space and to give sufficient conditions
in order for such a submanifold to be a tube over a quaternionic
invariant submanifold.

1. Introduction

Let M be a connected real n-dimensional submanifold of real codi-
mension p of a quaternionic Kahler manifold M with quaternionic Kahler
structure {F, G, H}. If there exists an r-dimensional normal distribution
v of the normal bundle TM+ such that

Fv, Cuv,, Guvy Cuv,, Huy Cuy,
Fvl c T.M, Gv} c T,M, Hvy C T,M

at each point z in M, then M is called a QR-submanifold of r QR-
dimension, where v+ denotes the complementary orthogonal distribu-
tion to v in TM* ([1, 10]). Real hypersurfaces, which are typical ex-
amples of @ R-submanifold with 7 = 0, have been investigated by many
authors ([2, 9, 10, 11, 12, 14}) in connection with the shape operator
and the induced almost contact 3-structure (for definition, see [7]).

In this paper we shall study @ R-submanifolds of maximal ¢ R-dimens-
ion isometrically immersed in a quaternionic projective space Qp(n+p)/4
and prove the following theorem which is an extension of theorem proved
in [12, Theorem 10] to the case of QR-submanifolds with maximal QR-
dimension :
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THEOREM 1.1. Let M be an n-dimensional Q@ R-submanifold of max-
imal Q R-dimension in a quaternionic projective space QP tP)/4 If the
distinguished normal vector field & is parallel with respect to the normal
connection and the equalities appeared in (3.4) hold on M, then M is
locally isometric to

m(S¥1H3(ry) x S22 (r,)) (ri+ri=1)

for some integers nyi,ny with 4ny + 4ny = n — 3, where m is the Hopf
fibration S™t4(1) — QP+1/4,

Next, under the same assumptions as in Theorem 1.1, we bring into
use an integral formula ([15]) which leads to an inequality among the
Ricci curvature, the scalar curvature and the mean curvature of M. Us-
ing this inequality, we provide the following theorem as quaternionic
analogue to theorem given in [4, Theorem 4.2]. Theorem 1.2 is also a
generalization of Lawson’s result ([11, Theorem 4]) for higher codimen-
sion, but avoiding the condition of minimality:

THEOREM 1.2. Let M be an n-dimensional compact () R-submanifold
of (p — 1) QR-dimension in a quaternionic projective space Qpn+r)/4
If the distinguished normal vector field ¢ is parallel with respect to the
normal connection and the inequality

1
g{ch(U, U) + Ric(V, V) + Ric(W, W)} + p — n®||u||*> > (n® + 8n — 1),
then M is isometric to

n(§M+3(1/v2) x §123(1/v2))

for some integers ni,ny with 4ny + 4ny = n — 3, where 7 is the Hopf
fibration S7+4 — QP +t1)/4,

2. Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kéhler manifold.
Then, by definition, there is a 3-dimensional vector bundle V consisting
with tensor fields of type (1,1) over M satisfying the following conditions

(a), (b), and (c) :
(a) In any coordinate neighborhood U, there is a local basis {F, G,
H} of V such that

2.1) {F2:~I, G?=-I, H? = -1,
' FG=-GF=H,GH=-HG=F, HF = -FH =G.
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(b) There is a Riemannian metric g which is hermite with respect to
all of F', G and H. .
(c) For the Riemannian connection V with respect to g

?F 0 r —q F
(2.2) VG |=|-r 0 p G
VH g —-p O H

where p, ¢ and r are local 1-forms defined in U. Such a local
basis {F, G, H} is called a canonical local basis of the bundle V'
in U ([5, 6]).
For canonical local bases {F,G,H} and {'F,’G,’H} of V in coordi-
nate neighborhoods I/ and ‘U, it follows that in Uun'u

'F F
/G = (smy) G (x7 y= 17 2’ 3)
'H H

where s, are local differentiable functions with (sz,) € SO(3) as a
consequence of (2.1). As is well known ([5, 6]), every quaternionic Ké&hler
manifold is orientable.

Now let M be an n-dimensional @QR-submanifold of maximal QR-
dimension, that is, of (p — 1) QR-dimension isometrically immersed in
VM. Then by definition there is a unit normal vector field £ such that
vy = Span{{} at each point = in M. We set

(2.3) U=-F¢,, V=-G¢ W=-HE
Denoting by D, the maximal quaternionic invariant subspace
T.MNFT,MNGT,MNHT,M

of T, M, we have DL > Span{U,V,W}, where D} means the comple-
mentary orthogonal subspace to D, in T, M. But, using (2.1), we can
prove that Dy = Span{U,V,W?} ([1, 10]). Thus we have

T.M =D, & Span{U,V,W}, Yz c M,
which together with (2.1) and (2.3) implies

FT,M, GT,M, HT,M C T,M & Span{¢}.
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Therefore, for any tangent vector field X and for a local orthonormal
basis {€a}a=1,..p (& =€) of normal vectors to M, we have

) FX =¢X +u(X),, GX =9X+v(X),
(24) HX = 60X + w(X)¢,
F€a=_Ua+P1€a7 GéOL:‘Va‘*‘PQéa’

(25) Hfa = —Wa + P3§a

(@ =1,...,p). Then it is easily seen that {$,v,0} and {Py, P,, P5}
are skew-symmetric endomorphisms acting on T, M and T, M+, respec-
tively. Moreover, the hermitian property of {F,G, H} implies

9(X, ¢Ua) = —u(X)g(N1, Piéa),
(2'6) g(X>1/)Va) = _U(X)Q(N1>P2§a)a
9(X,0Wo) = —~w(X)g(N1, Pséa), a=1,...,p,
9(Ua, Up) = dap — 9(P1éas P1&p),
(2.7) 9(Va, V) = bap — 9(P2ba, P2p),
g(Waa Wﬁ) = 5aﬁ - g(P3£ou P3£ﬂ), a,f=1,...,p.

Also, from the hermitian properties

9(FX, &) =—9(X, F&), 9(GX, &) = —9(X,G&),
g(HX”EC!) = _g(Xa HEa)a

it follows that
9(X,Us) = u(X)b1a, 9(X,Vy) =v(X)d1a, 9(X,Wy) = w(X)d14

and hence

g(U1, X) = u(X), g(V1,X) = v(X), g(W1,X) = w(X),

2.
(28) Uy=0, V=0, Wa=0, a=2,...,p.

On the other hand, comparing (2.3) and (2.5) with a = 1, we have
Uy =U, Vi =V, W; =W, which together with (2.3) and (2.8) implies

(2.9) g(U,X)=u(X), g(V,X)=v(X), gW, X)=w(X),
' 1 1 ’
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Here and in the sequel we use the notations U, V, W instead of Uy, V1,
Wl. ’

Next, applying F to the first equation of (2.4) and using (2.5), (2.8),
and (2.9), we have

$*X = X +u(X)U, uw(X)P&=—-u(¢X).
Similarly we have

(2.10) X = -X +u(X)U, ¥*X=-X+v(X)V,
02X = - X +w(X)W,

- (2.11) wX) P& =—u(¢X)§, v(X)Pf = —v(pX)E,
w(X) P3¢ = ~w(0X)E,

from which, taking account of the skew-symmetry of P, P», and P; and
using (2.6) with o = 1, we also have

uw(¢X)=0, v(¥X)=0, w(bX)=0,
(2.12) oU =0, ¢V =0, 60W =0,

P{=0, PE=0, P{=0.
So (2.5) can be rewritten of the form

F¢=-U, G¢=-V, H{=-W,

p p
Fto=Pia=3Y Piapls, Géa=Pola = Prapls,
(2.13) f=2 B=2

P
HNo=PsNo =Y Piopép (@=2,...,p).
B=2
Applying G and H to the first equation of (2.4) and using (2.1), (2.4),
and (2.13), we have
0X + w(X)§ = —p(¢X) — v(¢X)¢ + u(X)V,
PX +0(X)E = 0(¢X) + w(¢X)§ — u(X)W,

and consequently

P(oX) = —0X +u(X)V, v(oX) = —w(X),

(2.14) 0(6X) = ¥ X +u(X)W, w(pX) = v(X).
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Similarly the other equations of (2.4) yield

(X)) =0X +v(X)U, u(X)=w(X),
0(X) = =X +v(X)W, w(yX) = —u(X),
#(0X) = —vX +w(X)U, u(bX)=—-v(X),
P(0X) =X +w(X)V, v(0X)=u(X).

(2.15)

(2.16)

From the first three equations of (2.13), we can also easily obtain

_ YU =-W, v({U)=0, U=V, wl)=0,
(2.17) oV =W, ulV)=0, 6V=-U wlV)=0,
W =V, uw(W)=0, W =U, v(W)=0.

The equations (2.8)—(2.10), (2.12), and (2.14)—(2.17) tell us that M
admits the so-called almost contact 3-structure (for definition, see [7])
and consequently n = 4m + 3 for some integer m.

Now let V be the Levi-Civita connection on M and let V' the normal
connection induced from V in the normal bundle TM* of M. Then
Gauss and Weingarten formulae are given by

(2.18) VxY =VxY + h(X,Y),
(2.19) Vxba =—AaX +V%éa, a=1,...,p

for vector fields X, Y tangent to M. Here h denotes the second funda-
mental form and A, the shape operator corresponding to &,. They are

related by
P

R(X,Y) = 9(AaX,Y)Ea

a=1

Furthermore, we put
(2.20) Vo = Z 5ap(X)Es,

where (sqg) is the skew-symmetric matrix of connection forms of V.
Differentiating the first equation of (2.4) covariantly and using (2.2),
(2.4), (2.18), and (2.19), we have

(Vyd)X =r(Y)pX — q(Y)0X + u(X)AY — g(A1Y, X)U,

(2.21) (Vyuw)X = r(Y)u(X) — ¢(V)w(X) + g($AY, X).
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From the other equations of (2.4) we also have

(Vy)X = —r(Y)$X + p(Y)X + v(X)AY — g(ArY, X)V,

@22 (Gyu)X = —r(¥)u(X) + p(V)0(X) + gAY, X),

(Vy0)X = q(Y)¢X —p(Y)$X + w(X)A1Y — g(AY, X)W,

(2.23) (Vyw)X = q(V)u(X) — p(Y)v(X) + g(8A,Y, X).

Next, differentiating the first equation of (2.13) covariantly and using
(2.2), (2.13), (2.18), and (2.19), we have
VyU=r(Y)V - q( W + ¢ALY,

(2.24) g(ALUY) = st VPigas a=2,...,p.

From the other equations of (2.13), we have similarly

VyV =—r(Y)U +p(Y)W +¢A,Y,

2.2
( 5) A VY Zslg Pgﬂa, a:2,...,p,

VyW = q(Y)U — p(Y)V +0AY,

(2.26) g(AW,Y) = st VPiga, @=2,...,p.

Finally if the ambient manifold VM is of constant ()-sectional curva-
ture c, the equations of Gauss and Codazzi are given by

(2.27) R(X,Y)Z = E{g(Y, 2)X — g(X, Z)Y

+9(9Y, Z)pX — g(¢X, Z)pY — 29(¢X,Y)pZ
+9(WY, Z)W X — g X, Z)WY — 29( X, Y )9 Z
+9(0Y,Z2)0X — g(6X,2)0Y —2¢(6X,Y)0Z}
+ Zg(AaK Z)AaX - Zg(AaX7 Z)AaY,
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(2.28) I(VxA)Y — (VyA1)X, Z)
= ${9(6Y, 2)u(X) - g(¢X, Z)u(Y) - 29(#X, Y )u(Z)
+ 9(WY, Z)0(X) — (X, Z)o(Y) — 294X, Y Jo(2)
+ g9(60Y, ZYw(X) — g(6X, Z)w(Y) — 29(6X,Y)w(Z)}
+Y {9(ApX, Z)sp1(Y) — g(AgY, Z)sp1(X)},

B
respectively. Moreover, (2.9), (2.10), and (2.27) yield
(2.29) |
Ric(X,Y)
= g (n+8)g(X,Y) — 3(u(X)u(Y) + v(X)v(Y) + w(X)w(Y))}

+ 3 {(trda)g(AaX,Y) — g(A2X,Y)},

(2.30) p=(n+9)(m—1)+n?ul? - Y trda?,

where Ric and p denote the Ricci tensor and the scalar curvature, re-
spectively, and

(231) b= 3 (trAa)tn

[0

is the mean curvature vector ([3]).

3. Some properties of the shape operator A;

In this section, let M be an n-dimensional ) R-submanifold of maxi-

mal QR dimension in a quaternionic space form YA (c) with con-

stant ()-sectional curvature c. In what follows, we assume that the distin-
guished normal vector field & = & is parallel with respect to the normal
connection V1, that is,

Vx£=0
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for any vector field X tangent to M. Then it follows from (2.20) that
s13 = 0 and consequently (2.24)—(2.26) imply

(3.1) AU=0, A V=0, AW=0, a=2,...,p.

Moreover, since s1g = 0, (2.20) yields
P
(3.2) Viéa = sap(X)és, a=2,...,p.
p=2

From now on we denote by A the shape operator A; corresponding to
the normal vector & = £; and prepare a lemma for later use.
LEMMA 3.1. Let M be an n-dimensional QQ R-submanifolds of max-

imal QR-dimension in a quaternionic space form M(n+p)/4(c). If the
distinguished normal vector field & is parallel with respect to the normal
connection and if the equalities

hX,¢Y) = h(¢X,Y), h(X,9Y) = h($X,Y),

(3.4) h(X,0Y) = h(6X,Y),

hold for any vector fields X, Y tangent to M, then
(3.5) Ad = QA, A=A, Af=0A,
and A, =0fora=2,---p.

Proof. Sine n = 4m+3 and p = 4t + 1 for some integers m and ¢, and
since the subspace v is quaternionic invariant (see also (2.13)), we can
take a local orthonormal basis {¢,&q,&ax,&a**,Ea**= }a=1,...+ Of normal
vectors M such that

51* = F&la agt* = thv 51** = G§17 aft** = Gft’
Eionn = HEy, 0 Gpene o= HE.

Then we can express the second fundamental form h as
¢
MX,Y) = g(AX,Y)E+ ) {9(AaX,Y )& + g(Aar X, Y )ar

a=1

+ g(Aa** X, Y)é-a** + g(Aa*** X, Y)ga*** }
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Hence the assumption (3.4) implies
Ap = pA, Ay =vA, Af=0A,
Aged = pAge, Ageth = hAge, Agel = A,
Agind = QAgrr, Agsxt) = PAges, Agesl = 0A e
Agres@ = PAguins, Ageesth = P Agene, Agensl = 0Aguns.
On the other hand,
Ear = F&a, &oor = GEqy, Lorne = HE, (a=1,...,1)

give, respectively,

VxFéo = —Ae X + Vo,
(37  VxGf = —ApX + Vxéo,

VxHEy = —Agees X 4+ Vibgeen, a=1,...,t

Hence, using (2.2), (2.13), (2.19), and (3.2), it follows from the first
equation of (3.7) that

e Aa*X + v&ga* .
= r(X)G(&) — ¢(X)H(&,)

t
+ F(=AaX + Y {Sabe (X)&~ + Sape= (X)Epr + Sapres (X)Eprer}),
b=1

(3.6)

from which, taking the tangential part, we can easily obtain

(38) ¢Aa=Aa*, a=1,...,t.
Similarly, from the other equations of (3.7), we have
(39) 'lpAa = Aa**, HAa = Aa***, a = 1, e ,t.

Therefore, for any vectors X,Y tangent to M, it is clear from (3.8) that
9(Aar9X,Y) = —g(As9X, ¢Y)
and consequently
9(AadX,Y) = g(Ae-9Y, X) = —g(¢Aa- X, Y),

that is,
Aa*¢ = —¢Aa*;

which and (3.6) imply ¢A,« = 0. Thus we have from (3.8) that ¢2A, =
0, which together with (2.10) and (3.1) yields A, = 0. Hence (3.9) yields

Aa = 0, Aa* = 0, Aa** = 0, Aa*** - 0 D
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4. Codimension reduction and proof of Theorem 1.1

In this section we assume that the ambient manifold is a quaternionic
projective space @ of constant ()-sectional curvature 4. Let

No(z) = {n € T.M* : A, =0}

and let Ho(z) be the maximal quaternionic invariant subspace of No(z),
that is, '
H()(:L‘) = N()(CU) N FN()(I‘) N GNo(x) N HN()(CE)

Then Kwon and the first author of this paper (8] have proved the
following theorem :

LEMMA 4.1. Let M be an n-dimensional real submanifold of an (n+
p)-dimensional quaternionic projective space QP("tp)/4  If the orthogo-
nal complement H;(z) of Hy(x) in TM* is invariant under the parallel
translation with respect to the normal connection and q is the constant
dimension of Hy(x), then there exists a real (n + q)-dimensional to-

tally geodesic quaternionic projective space QP(+P)/4 such that M C
QP(r+p)/4,

In our cases, No(z) = Span{&(z),...,&(x)}. In fact, as a conse-
quence of Lemma 3.1, A, =0 for a =2,...,p. Hence

Span{&a(z), . .., &p(x)} C No(z).
On the other hand, for any 1 in No(z), we can put .= > > _, A*¢,.

But
P

Ay =) XA =NA=0
a=1
since A, =0 for « =2,...,p. Hence A! = 0 and consequently

n € Span{&a(x),...,&p(x)}

Hence we have

No(z) = Ho(z) = Span{éa(z),...,&(x)}

Thus Hy(z) = Span{é(z)} and so our assumption yields that H(x)
is invariant under parallel translation with respect to the normal con-
nection. Therefore we can apply Lemma 4.1 and obtain the following
theorem.
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THEOREM 4.2. Let M be an n-dimensional Q R-submanifold of max-
imal Q R-dimension in a quaternionic projective space QP tP)/4 If the
distinguished normal vector field £ is parallel with respect to the normal
connection and the equalities appeared in (3.4) hold on M, then there
exists a real (n+ 1)-dimensional totally geodesic quaternionic projective
space QP™+1/4 such that M c QP1/4,

Proof of Theorem 1.1. From now on we shall give the proof of the
theorem stated in Section 1. By means of Theorem 4.2 the submanifold
M can be regarded as a real hypersurface of QP(™+1)/4 which is totally
geodesic in QP("*+P)/4, Tentatively we denote QP(™+1)/4 by M’ and by
i1 the immersion of M into M’ and by 4 the totally geodesic immersion
of M’ into QP{"*P)/4, Then it is clear from (2.18) that

(4.1) Vi xhY =iuVxY + F(X,Y) =iVxY +g(4'X,Y)¢,

where V' is the induced connection on M’ from that.of QP("*+P)/4 h/ the
second fundamental form of M in M’ and A’ the corresponding shape
operator to a unit normal vector field ¢’ to M in M’. Since i =43 017;
and M’ is totally geodesic in QP("tP)/4 we can easily see that (2.18)
and (4.1) imply

(4.2) £ =igf!, Ay = A

Since M’ is a quaternionic invariant submanifold of QP™*P)/4 for any
vector field X tangent to M

(4.3) FisX = iosF'X, GigX = i3G'X, HiyX = ioH'X

are valid, where {F’,G’, H'} is the induced quaternionic Kahler struc-
ture on M’. Thus it follows from (4.2), (4.3), and the first equation of
(2.4) that

FiX = Figoi1 X = 13F'i, X = ip(i¢/ X + o/ (X)¢') = i¢' X + v/ (X)¢

for any vector field X tangent to M. Comparing this equation with the
first equation of (2.4), we have ¢ = ¢’ and u = u/. Similarly we have

¢=¢I7 ¢=?/1/, 9:6,, u:U/, 'U:’U/, w:w',
which and Lemma 3.1 imply

A,¢, —_ QSIA/, Alw/ — ’Q,ZJ,A/, Alal — QIA/.
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Now applying the theorem proved in [12, Theorem 10, pp. 57] by the
first author of this paper, we may conclude that M is locally isometric

to
(S H3(ry) x 8423 (1)) (ri4 73 =1)

for some ny,ny with 4n; + 4ny = n — 3, where 7 is the Hopf fibration
sntd Qp(n+1)/4. O

5. An integral formula for the model space 7(S4™+3(1/v/2) x
S 3(1/v/D))

Let M be an n-dimensional QR-submanifold of maximal QR di-
mension in a quaternionic space form VM (n+p)/ 4(c) with constant Q-
sectional curvature ¢. We put

T:=VyU+VyV+VypW - (diVU)U — (diVV)V — (diVW)W

and take an orthonormal basis{U, V, W, eq, €g+, €qx+, €q+++ }a=1,...,m Of tan-
gent vectors to M such that

€ar 1= Q€q, €grr = Yeq, €grer = feg.

Then it follows from (2.8), (2.9), (2.12), and (2.24)—(2.26) that

(5.1) T = AU + pAV + AW,
(5.2) g(T,U) = g(T, V) = g(T, W) = 0.

Here and in the sequel we also denote by A the shape operator A;
corresponding to the distinguished normal vector £ = §. We note that
T is a global vector field defined on M. For later use we compute

divl =" gles, Ve, T)-

i=1
Differentiating (5.1) covariantly and using (2.21)—(2.26), we have
VxT = {u(AU) + v(AV) + w(AW)}AX
— g(A%U, XU — g(A%V, X)V — g(A*W, X)W
+ pAPAX + PAPAX + 0APAX
+ ¢(Vx AU + p(Vx AV + 0(Vx A)W,
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from which, taking account of (2.8)-(2.10), (2.12), and (2.14)—(2.17),
divl
= {u(AU) + v(AV) + w(AW)}trA — u(A%U) — v(A%V) — w(A*W)
+tr(pAPA) + tr(p AP A) + tr(0ABA) — g((Vy A)W — (Vw A)V,U)
—9(Vw AU — (Vo AW, V) — g(Vu A)V — (Vv A)U, W)

- Z{g((veaA)ea* - (vea* A)e, + (vea**A)ea***

a=1
— (Veguer A)ear, U) + g((Ve, AYears — (Ve,un A)ea + (Ve uun A)ear
— (Ve Aears», V) + g(Ve, Aleasss — (Ve A)€i + (Ve,. A)egrs
~ (Ve,ee A)ear, W)},

or equivalently

(5.3) divT = {u(AU) + v(AV) + w(AW)}trA

3(n4—— 3) .

— u(A%U) — v(ATV) — w(A*W) +
+ tr(pAPA) + tr(vAYA) + tr(6AGA)

because of (2.28) with sg; = 0. On the other hand, using (2.8)—(2.10)
and (2.12), we can easily obtain that

|64 — AQI? + [$A — Aw|? + |04 — Ao
=6 trA? — 2{u(A%U) + v(A?V) + w(A*W)}
+ 2{tr(pAPA) + tr(p A A) + tr(FAGA)},
which together with (5.3) yields

AT = (A — ASIP + [9A ~ Ap|” + 164 40]P)

(5.4)
N 3(n4— 3)

¢ — 3trA? + trA{u(AU) + v(AV) + w(AW)}.
On the other hand, it follows from (2.29)—(2.31) and (3.1) that
Ric(U,U) = i(n +5) + (trA)u(AU) — u(A2D),
Ric(V, V) = E(n +5) +(trA)w(AV) — v(A%V),

Ric(W, W) = %(n +5) + (trA)w(AW) — w(A2W),

P
trA® = —p+ Z(n+9)(n— 1) + 0%’ = 3 trda?,

a=2
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from which and (5.4), we have

_ 1
divT = S{ll¢A - AglI? + IlpA — Ag|| + (104 ~ A0)*}

+ Ric(U,U) + Ric(V, V) + Ric(W, W)
(5.4)' c p
+3{p— Z(n? +8n — 1) — n?||ul?} + 3;2tmg

+ | AU|? + AV + AW .

Thus we have

LEMMA 5.1. Let M be an n-dimansional compact QR-submanifold
of (p — 1) QR-dimension in a quaternionic projective space QPntr)/4,
If the distinguished normal vector field ¢ is parallel with respect to the
normal connection and the inequality

%{Ric(U, U) + Rio(V, V) + Ric(W, W)} + p — n?||ul|? = n? + 8n — 1,
holds on M, then
Ad=6A Ap=pA, A6=64,

Ay =0, a=2,...,p
and AU = AV = AW = 0.
Proof. Applying Stokes’s theorem to (5.4)', we can easily obtain the
conclusions. |
Combining Lemma 4.1 and Lemma 5.1, we have

THEOREM 5.2. Let M be an n-dimensional compact Q R-submanifold
of (p — 1) QR-dimension in a quaternionic projective space QP(ntp)/4,
If the distinguished normal vector field £ is parallel with respect to the
normal connection and the inequality

1
5{Ric(U, U) + Ric(V, V) + Ric(W, W)} + p — n?||ull® > n® +8n — 1,

~ holds on M, then there exists an (n+ 1)-dimensional totally geodesic
quaternionic projective space QP"*V/4 such that M C Qpn+1/4
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Proof. By means of Lemma 5.1
Ay =0, a=2,...,p

As shown in the proof of Theorem 4.2, applying Lemma 4.1, we may
conclude that there exists an (n+1)-dimensional totally geodesic quater-
nionic projective space QP("*t1/4 guch that M c QP(+1)/4, O

Proof of Theorem 1.2. From now on we shall give the proof of Theo-
rem 1.2 stated in Section 1. By means of Theorem 5.2 the submanifold
M can be regarded as a real hypersurface of QP t1)/4 which is totally
geodesic in QP(™tP)/4, By the same method as in the proof of Theorem
1.1, we can easily see that

A/¢/ — QS,A/, Alwl — wlAl, A/el — 9/A17

where A’ is the shape operator to a unit normal vector field £ to M in
QP™*t1/% and {¢', 4,8’} denote the almost contact 3-structure induced
on M from the quaternionic Kahler structure on QP™*+1/4, Now, ap-
plying the theorem proved in [12, Theorem 10, pp. 57] by the first author
of this paper, we may conclude that M is isometric to

m(84MF3(r)) x §4m2¥3(ry))  (r2 412 =1)

for some n1,ny with 4n; 4+ dne = n — 3, that is, M is a tube over a
totally geodesic submanifold QP™. Moreover, A'U = A’V = AW =0
implies that the radius of the tube is § (for details, see [2]). Thus M is
isometric to

m(84M+3(1/v/2) x §472+3(1//2))  (4ny +4ny =n—3). O

REMARK. We consider special generalized Clifford tori in

n+5
§™H = {(@,- o Tngs) € RUD |3 at =1}
i=1
defined by
S4n1+3(1/\/§) x S4n2+3(1/\/§)

4ny+4 n+5

1 1
={.ans) €57 3wt =5, 3 al=3)

i=1 i:4n1 +5
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where 4n; +4n, = n— 3 and n = 4s + 3 for some integer s. Then, since
S4m+3(1/4/2) x §412+3(1/+/2) is a real hypersurface of S™*4, its shape
operator A is of the form

A = diag(1,-1)

for suitable orthonormal basis. The multiplicities of 1 and —1 are 4n;+3
and 4ny + 3, respectively ([13]). By choosing the spheres so that they
lie in quaternionic subspace, we have fibrations
57 = S (/YD) X §(1/vE) - M2,
compatible with the Hopf fibration 7 : §"+* — QP"+1)/4 where we
put
ME . =w(§™F3(1/V2) x §in2t3(1/V/2)).

n1,n2
In this case we can easily see that the geodesic distance from QP to

M,?l ne 18 % and that its principal curvatures are 1, —1, and 0 with

multiplicities n — 3 — 4ny,4n;, 3, respectively (for details, see [2]). Fur-
thermore, let £ be a unit normal vector field of M, Q andlet {F,G, H}

ny1,Nn2
be the canonical quaternionic Kéhler structure of QP"+1)/4 Then

U=-F§, V=-G¢ W=-H¢
are principal vectors corresponding to the principal curvature 0, that is
AU =0, AV =0, AW =0,

where A denote the shape operator of M2  in QP™+1)/4. Applying

n1,M2

(2.29)-(2.31) to the real hypersurface ME . we obtain

trA=n—3—8ny, trd?=mn-3,
Ric(U,U) + Ric(V, V) + Ric(W, W) = 3(n + 5),
p=n+Tn—6+(n—3—8n1)%

Hence, for M we have

ny,nz?

%{Ric(U, U) + Ric(V, V) + Ric(W, W)} + p — n?||u||* =n® + 8n — 1.
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