
Received March 25, 2020, accepted May 6, 2020, date of publication May 19, 2020, date of current version June 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2995558

QROUTE: An Efficient Quality of Service (QoS)
Routing Scheme for Software-Defined
Overlay Networks

NITIN VARYANI 1, ZHI-LI ZHANG 1, (Fellow, IEEE), AND DAVID DAI 2
1Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
2Huawei Futurewei Technologies Inc., Santa Clara, CA 95050, USA

Corresponding author: Nitin Varyani (varya001@umn.edu)

This work was supported in part by Huawei Futurewei Technologies Inc.

ABSTRACT Many computer network applications impose constraints for multiple quality of service (QoS)

metrics, e.g., delay, packet loss, bandwidth, and jitter. These QoS constraints cannot be guaranteed by the

Internet due to its best-effort service model. Overlay networks have been an effective technique at the

application layer to support multiple QoS constraints of networking applications. In software-defined overlay

networks, software-defined networking (SDN) paradigm is introduced in the overlay networks to enable

centralized and efficient routing of traffic in the overlay networks, thus, enabling better QoS. One of the

main challenges in software-defined overlay networks is the fast-changing overlay link QoS characteristics.

However, the existing routing algorithms for satisfying multiple QoS constraints in software-defined overlay

networks involve high route computation time and thus these routing algorithms cannot adapt to the

fast-changing overlay link QoS characteristics.Moreover, as we scale the size of overlay networks, the size of

forwarding tables increases exponentially. This is because the existing routing schemes for ensuring multiple

QoS constraints use both the source and the destination address for data-plane forwarding. This leads to

pushing a huge amount of forwarding table entries by the controller through the network and thus limiting the

size of the overlay network. We propose an efficient routing scheme, QROUTE, for satisfying multiple QoS

constraints in software-defined overlay networks. QROUTE consists of a control plane routing algorithm

which has significantly low route computation time because of employing a novel directed-acyclic-graph

(DAG) based approach. QROUTE also reduces the forwarding entries in the data plane by using a QoS-

metric-based forwarding scheme. We extensively evaluate QROUTE using traces from a global overlay

service provider. We also examine QROUTE on a testbed of P4-BMv2 switches controlled by the ONOS

controller using P4Runtime protocol. We find that QROUTE outperforms other state-of-the-art QoS routing

schemes in route computation time, size of the forwarding tables and meeting the QoS requirements of

various applications.

INDEX TERMS QoS, routing, DAG, route computation time, forwarding table size, QoS-metrics-based

forwarding, Lagrange relaxation, integer programming, P4, ONOS, BMv2.

I. INTRODUCTION

Many computer network applications such as video con-

ferencing, interactive gaming, VoIP, virtual reality, telep-

resence, video-on-demand and live video streaming impose

constraints for multiple quality of service (QoS) metrics,

e.g., delay, packet loss, bandwidth, and jitter. This is usually

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Imran .

expressed by a list of minimum/maximum bounds for each

QoS metric and is commonly referred to as a QoS policy. For

example, in [2] the QoS policy used for a 384-kbps video

conferencing session is (150ms, 30ms, 460 kbps, 1%). The

tuple is in the format (maximum delay bound, maximum jitter

bound, minimum bandwidth requirement, maximum packet

loss). These QoS constraints cannot be guaranteed by the

Internet due to its best-effort servicemodel. Overlay networks

have been an effective technique at the application layer to

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 104109

https://orcid.org/0000-0003-4549-561X
https://orcid.org/0000-0001-8584-2319
https://orcid.org/0000-0001-5959-0090
https://orcid.org/0000-0002-6946-2591

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

TABLE 1. Contributions of the paper.

support multiple QoS constraints of networking applications

[3]–[7]. An overlay network is a virtual network over an exist-

ing physical network and is composed of software routers

running on commodity servers connected using tunneling

protocols likeVirtual Extensible LAN (VXLAN) andGeneric

Routing Encapsulation (GRE). In software-defined overlay

networks, software-defined networking (SDN) paradigm is

introduced in the overlay networks to separate the control

from the forwarding. This enables centralized and efficient

routing of traffic in the overlay networks and thus helps

achieve better QoS [8]–[20].

One of the main challenges in software-defined overlay

networks is the fast-changing overlay link QoS character-

istics because of various reasons like the change in the

corresponding path in the physical network or the change

in non-overlay back-ground Internet traffic [14]. However,

the existing routing algorithms for satisfying multiple QoS

constraints in software-defined overlay networks involve

high route computation time and thus these routing algo-

rithms cannot adapt to the fast-changing overlay link QoS

characteristics [8]–[20]. Moreover, as we scale the size of

overlay networks, the size of forwarding tables increases

exponentially. This is because the existing routing schemes

for ensuring multiple QoS constraints use both the source and

the destination address for data-plane forwarding [8]–[20].

This leads to pushing a huge amount of forwarding table

entries by the controller through the network and thus limiting

the size of the overlay network [15].

The problem of finding the optimal routes that meet mul-

tiple QoS constraints is known to be NP-hard. Therefore,

several polynomial time heuristics algorithms [8]–[30] have

been proposed in the literature to find approximate solu-

tions. However, none of them can efficiently reduce both

the route computation time and number of routing entries

while ensuring additive, multiplicative and concave QoS

constraints.

To address the above limitations, we propose an efficient

routing scheme, QROUTE, for satisfying multiple QoS con-

straints in software-defined overlay networks. We make the

following contributions in the paper.

• DAG-based primary routing algorithm: QROUTE

consists of a control plane routing algorithm which has

significantly low route computation time because of

employing a novel directed-acyclic-graph (DAG) based

approach.

• QoS-metric-based forwarding: QROUTE reduces the

forwarding entries in the data plane by using a QoS-

metric-based forwarding scheme.

• Backup DAG generating algorithm: To improve

resiliency, we generate a backup DAG using a topolog-

ical sorting based algorithm in our QROUTE routing

scheme. During failures, we use the backup DAG along

with the original DAG to achieve a considerable fraction

of QoS while ensuring loop-free routing.

• Framework to evaluate path’s conformance to QoS

policy: QROUTE also includes a framework to eval-

uate a path’s conformance to a multi-constrained QoS

policy. In the absence of paths that completely satisfy a

given QoS policy, this framework enables the network

operator to find paths that slightly deviate from the QoS

policy.

• Trace-based evaluation: We extensively evaluate

QROUTE using traces from a global overlay service

provider.

• Evaluation on P4 switches:We also examineQROUTE

on a testbed of P4-BMv2 switches controlled by the

ONOS controller using the P4Runtime protocol.

We summarize our contributions in table 1 along with their

respective benefits. We find that QROUTE outperforms other

state-of-the-art QoS routing schemes in route computation

time, size of the forwarding tables and meeting the QoS

requirements of various applications.

In [1], we introduce our DAG-based primary routing

algorithm and QoS metric-based forwarding and present its

trace-based evaluation. In this paper, we also include a backup

DAG generating algorithm and a framework to evaluate a

path’s conformance to QoS policy. We also include rigorous

mathematical proofs to support our theory in this paper. This

paper also includes the evaluation of QROUTE on a testbed of

P4-BMv2 switches controlled by the ONOS controller using

the P4Runtime protocol. We also present our evaluation of

QROUTE on the topologies from the Internet Topology Zoo

dataset [31] in this paper.

We organize the paper as follows. In section II, we give

an overview of our system framework and our QROUTE

routing scheme and mathematically formulate our QoS rout-

ing problem. Section III describes the control-plane of

our QROUTE routing scheme. We explain our QROUTE

data-plane in section IV. Section V provides the details of our

framework for evaluating a path’s performance. We present

104110 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

the results from a trace-based and a real test-bed evalua-

tion of QROUTE in Section VI. Section VII summarizes

the related work. The paper ends with a conclusion in

section VIII.

II. PROBLEM FORMULATION

This section explains our system framework, an overview

of QROUTE and the mathematical formulation of our QoS

routing problem.

A. SYSTEM FRAMEWORK

Our system framework consists of an overlay network con-

necting end-users to content servers and other end users as

shown in figure 1. The overlay network is created using soft-

ware routers deployed acrossmultiple data centers all over the

world. The routers are connected using an overlay tunneling

protocol. A DNS system chooses the best ingress software

router for an end-user. A hierarchical design multi-controller

architecture [32] is used to handle more flows and reduce

control plane latency in large networks. The entire overlay

network is divided into domains where routing within each

domain is managed completely by a domain controller. The

root controller is required to synchronize between the domain

controllers for setting routes for flows that originate and

terminate at different domains. Various applications demand

different kinds of QoS from the overlay network. A QoS

requirement of an application is represented by a QoS policy,

which is defined by a list of permissible ranges for the end to

end delay, jitter, packet loss, and bandwidth. The bandwidth

requirement for a QoS policy is determined based on the

application and also the number of users using that applica-

tion averaged over time. The link-wise delay, jitter, packet

loss, and available bandwidth are monitored and reported

to the domain controller using traffic measurement tools.

With this information, the routing algorithm at each domain

controller generates routing Directed Acyclic Graphs (DAGs)

for all the QoS policies and destination routers in its domain.

A DAG stitching algorithm stitches together the routing

DAGs in different domains to create a global routing DAG.

For simplicity, we omit the DAG stitching algorithm from

this paper and consider only a single controller for the entire

network.

FIGURE 1. Our software-defined overlay network.

B. OVERVIEW OF QROUTE

In this section, we illustrate the control-plane and data-pane

of the QROUTE routing scheme using an example.

We first provide an example of a primary routing DAG

generated using our QROUTE control-plane routing algo-

rithm. Consider the network graph in figure 2 where each

edge between the nodes is bi-directed and the pair of value

on each link represents the delay (ms) and jitter (ms) of the

overlay link. For simplicity, we are considering here only two

metrics but this can be extended to other metrics as explained

in later sections. We do not depict the cost of the links in the

figure. Given a QoS policy, we generate a routing DAG for

every destination router instead of generating routes for every

source-destination pair. In this example, we consider a QoS

policy (40ms, 10ms) where the pair of values are maximum

bounds for the delay (ms) and the jitter (ms) respectively. The

dashed arrows in figure 2 depict the routing DAG generated

using our QROUTE algorithm for the QoS policy (40ms,

10ms) and destination R8. From any node in the graph,

the DAG contains at-least one path to the destination R8 that

satisfies the QoS policy (40ms, 10 ms). Using breadth-first-

search, we reduce the total number of route computations for

a given destination router and QoS policy from O(n) to O(l)

FIGURE 2. (a) The primary routing DAG generated by QROUTE for
destination R8 and policy (40ms, 10ms) (represented by dashed arrows).
All the links between network nodes are bi-directed. Each pair of values
represents the delay (ms) and jitter (ms) of the corresponding link. The
cost of the link is not indicated. (b) The paths generated from every
source to destination R8 using the A*Prune algorithm. The number of
route computations in path-based routing is 7 while QROUTE only
performs 3 route computations.

VOLUME 8, 2020 104111

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

where n is the number of nodes in the network and l is the

number of leaves in a breadth-first-search traversal from the

destination router. For m QoS policies and all destinations,

the number of route computations reduces from O(m×n2) to
O(m×n× l). In figure 2b, we depict the minimum cost paths

generated by the A*Prune algorithm from every source to

destination R8 that satisfy the QoS policy (40ms, 10ms). We

can observe that for the given policy (40ms, 10ms) and des-

tination router R8, the number of route computations using

A*Prune is 7 while the number of route computations using

QROUTE is only 3. Any path-based QoS routing algorithm

like H_MCOP and MH_MCOP will also lead to the same

number of route computations as that of A*Prune. QROUTE

is thus useful for quickly computing routes in an overlay

network with fast-changing traffic conditions.

To reduce the number of forwarding entries and to ensure

that the packets for an application are forwarded along a

route on the DAG that preserves the QoS policy of the

application, we introduce a QoS-metrics-based forwarding

scheme instead of forwarding based on source and destination

IP address. We illustrate our QoS-metrics-based forwarding

through the same example in figure 2. Table 2 shows the for-

warding entries in router R4 for QoS policy (40ms, 10ms) and

destination router R8. The policy (40ms, 10ms) is assigned

an ID 1. We replace the source IP in the forwarding entries

with the maximum amount of delay and jitter a packet can

go through to be eligible to be forwarded to the correspond-

ing outgoing link. These routing entries capture the QoS

information of paths down the outgoing links. The packets

carry the elapsed value of delay and jitter in their packet

headers which are updated by each router by adding the

delay and jitter of the outgoing link to the respective header

field. These values are matched against the corresponding

keys to determine where the packets should be forwarded

to. For example, we can observe in the first entry in table 2

that a packet with QoS policy (40ms, 10ms) and destined to

R8 can be forwarded to node R5 if the elapsed delay and

the elapsed jitter of the packet is less than 4 ms and 8 ms

respectively. We significantly reduce the forwarding entries

by grouping them if they have the same next hop. Thus,

we reduce the number of forwarding entries from O(m× n2)
to O(m × n × deg) where deg is the maximum degree of the

network graph. In the given example, we reduce the number

of forwarding entries from 16 to 9 for the QoS policy (40ms,

10ms) and destination router R8. Thus, QROUTE alleviates

the problem of the proliferation of routing entries in large

overlay networks.

TABLE 2. Forwarding table for Router R4 using QROUTE.

C. MATHEMATICAL FORMULATION

In this section, we provide a mathematical formulation of

our QoS routing problem. Our QoS routing problem entails

finding a directed acyclic graph (DAG) for every QoS policy

and destination router such that from any node in the graph,

the DAG contains at-least one path to the destination router

that satisfies the QoS policy.

Network representation: A network graph G = (V ,E),

where V is a set of overlay routers and E is the set of overlay

tunnels.

Cost of edges: The column-vector of ‘‘costs’’ of the edges

is denoted by c, c ∈ R
|E|
+ . The ‘‘cost’’ denotes the price for

using a link to deliver traffic and is determined by business

relationships.

QoS policy: Let d , j, b and l, {d, j, b, l} ∈ R+, denote the
bounds for delay, jitter, bandwidth, and packet loss probabil-

ity respectively.

QoSmetric values of links: LetD, J ,B and L, {D, J ,B,L}
∈ R|E|+ , denote the column-vectors of delay, jitter, bandwidth

and packet loss of individual edges respectively.

QoS routing ‘‘main problem’’: Our QoS routing ‘‘main

problem’’ involves finding a least-cost DAG for a destina-

tion node r and a QoS policy Q = (d, j, b, l) such that

the DAG has a path from every node s in the graph to

the node r which satisfies all the constraints given in the

QoS policy Q. We generate this routing DAG by composing

the routes returned from the ‘‘sub-problem’’ as explained in

section III-A2. We generate such routing DAGs for all desti-

nation nodes and QoS policies.

‘‘Sub-problem’’: We define the ‘‘sub-problem’’ as finding

a path of minimum cost from a source vertex s ∈ V to

a destination vertex r ∈ V which satisfies all the QoS

constraints.

Vertex-edge incidence matrix: LetH denote the |V |×|E|
vertex-edge incidence matrix such that for all e = (u, v) ∈
E where u, v ∈ V , Hue = 1 and Hve = −1. Additionally,
Hwe = 0 for any w 6= u, v. Let K , K ∈ R|V |+ , be a vector such

that Ks = 1, Kr = −1 and Kv = 0 for all v ∈ V\{s, r}.
Decision variables: Let y be a column-vector

(y1, y2 . . . y|E|), yi ∈ {0, 1} of decision variables where

yi = 1 if the edge i belongs to the final routing path and

0 otherwise. The column vector y represents a path returned

by the QROUTE routing algorithm.

We describe the ‘‘sub-problem’’ using the following opti-

mization formulation.

p = min
y∈{0,1}|E|

cT y (1)

s.t. H y = K (1a)

DT y ≤ d (1b)

|E|
∏

i=1
((1− Li)T yi) ≥ 1− l (1c)

JT y ≤ j (1d)

|E|
min
i=1

(BTi yi) ≥ b (1e)

104112 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

The constraint (1a) restricts the value of y to a particular

directed path from s to r . Constraints (1b) and (1d) ensure

the additive metrics (delay and jitter) of the paths to be below

their respective maximum bounds. Constraint (1c) checks if

the product of success probability of the links of the paths is

greater than the minimum bound on the success probability.

Finally, the constraint (1e) limits the bottleneck bandwidth

of the path to be greater than the minimum bound on the

bandwidth. The ‘‘sub-problem’’ in equation 1 represents the

formulation for an online QoS routing problem which adds

the route for a single flow to a network such that the QoS

requirements of the new and the existing flows are main-

tained. We use the solution from this ‘‘sub-problem’’ to find

the solution for our QoS routing ‘‘main problem’’ of generat-

ing routing DAGs for all destination routers and QoS policies.

To reduce the route computation time by availing the fast

algorithms available for solving online QoS routing prob-

lems, we do not model the problem as a large and complex

optimization problem that considers all the traffic flows to

comprehensively determine the routes.

III. QROUTE CONTROL PLANE

In this section, we explain our QROUTE control-plane rout-

ing algorithm that generates the primary routing DAG for

every destination router and QoS policy. We also explain our

control-plane algorithm which is used to generate a backup

DAG for each primary DAG.

A. PRIMARY ROUTING DAG

Our QoS routing problem entails finding a primary routing

DAG for every QoS policy and destination router such that

from any node in the graph, the DAG contains at-least one

path to the destination router that satisfies the QoS policy.

To compute a primary routing DAG per destination that

satisfies all the constraints in a QoS policy, we decompose

this problem to finding routes from a subset of nodes in

the graph to the destination that satisfies all the QoS con-

straints. The task of finding every such route is referred

to in this paper as the ‘‘sub-problem’’. We optimize this

‘‘sub-problem’’ to a polynomial-time algorithm using

a Lagrange-relaxation-based technique as described in

section III-A1. In section III-A2, we explain how we gen-

erate a routing DAG by composing the routes returned from

the ‘‘sub-problem’’. In section III-A3, we describe how the

bandwidth requirements of different QoS policies are ensured

in our routing algorithm.

1) OPTIMIZING THE ‘‘SUB-PROBLEM’’

To find a near-to-optimal solution for a multi-constrained

shortest path (MCSP) problem with only additive constraints,

the Lagrange relaxation-based aggregated cost (LARAC)

algorithm [33] is found to achieve one of the best perfor-

mances [24]. To take advantage of the LARAC algorithm,

we reduce our ‘‘sub-problem’’ described in equation 1 into

a linear integer programming problem by converting the

additive, multiplicative and concave constraints to only

additive constraints.

The concave constraint bandwidth was eliminated from

the network graph by removing links that do not meet

the bandwidth constraint of the QoS policy. For more

details about how we meet bandwidth requirements, refer to

section III-A3. We accomplish this pruning by setting delay

and jitter on those links to infinity and packet loss probability

to 1. Themultiplicative constraint, packet success probability,

is simplified into an additive constraint through the negative

logarithm of packet success probability of each link. The

routing ‘‘sub-problem’’ then reduces to the following:

p = min
y∈{0,1}|E|

cT y (2)

s.t. H y = K (2a)

DT y ≤ d (2b)

(LT)′ y ≤ l ′ (2c)

JT y ≤ j (2d)

The column-vector L ′ is defined as L ′e = − log(1−Le) for
all e ∈ E . The bound l ′ is set to − log(1− l).
We relax the inequality constraints 2b-2d, by inserting

the degree of violation of these constraints and their corre-

sponding Lagrange variables into the objective function. Let

λ1, λ2, λ3 ∈ R+ be the Lagrange multipliers for constraints

2b,2c, and 2d, respectively. Thus, the following Lagrange

dual problem reduces from the above integer programming

problem.

pL = max
λ1,λ2,λ3

LR(λ1, λ2, λ3) (3)

s.t.λ1, λ2, λ3 ∈ R+ (3a)

where LR(λ1, λ2, λ3) is the Lagrangian dual functionwhich is

optimized subject to the non-dualized constraint.(Equation 4)

LR(λ1, λ2, λ3) = min
y∈{0,1}|E|

(cT y+ λ1(Dy− d)

+ λ2(L
′y− l ′)+ λ3(Jy− j)) (4)

s.t. H y = K (4a)

The Lagrangian dual function 4 is reordered into the form:

LR(λ1, λ2, λ3) = min
y∈{0,1}|E|

((c+ λ1D+ λ2L
′ + λ3J)y

− (λ1d + λ2l
′ + λ3j)) (5)

s.t. H y = K (5a)

Since λ1 d + λ2 l
′ + λ3 j is a constant, the value of y

corresponding to the optimal solution of the Lagrangian dual

function 5 is equal to that of Lagrangian dual function 6,

which is equivalent to the shortest path between s and r with

the cost of the links given by the vector c+λ1 D+λ2 L
′+λ3 J .

LR(λ1, λ2, λ3) = min
y∈{0,1}|E|

((c+ λ1D+ λ2L
′ + λ3J)y) (6)

s.t. H y = K (6a)

VOLUME 8, 2020 104113

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

To find the shortest path for given node pairs, we can use

single-source shortest path algorithms such as the Fibonacci

based Dijkstra (with time complexity of O(E + VlogV)) or

the faster A* algorithm.

Using a sub-gradient descent algorithm [34], we explore

the dual problem’s solution space. To start, we compute

a solution path for the Lagrange dual problem (Line 9,

Algorithm 1). If this solution is feasible, the cost of this path is

set as the upper bound for the sub-gradient descent algorithm

(Line 15, Algorithm 1). If this solution is non-feasible, we set

the upper bound to the value stated in Theorem 1. During

iteration, if a feasible path is discovered, the upper bound

is updated using the cost of the found feasible path. The

feasibility of a path is determined in Line 11, Algorithm 1.

Theorem 2 is used to test if the solution to the Lagrangian

dual function problem is optimal for the original problem or

not (Lines 12, Algorithm 1).

Algorithm 1 Primary DAG Generating Algorithm

procedurePRIMARY_DAG(V ,E, r, c,D,B,L, J , d, b, l, j)

1: E ′ = ReverseLink(E)

2: S = BFS(V ,E ′, r)
3: M = φ

4: P_DAG = {}
5: while M ! = V do

6: Let λ1 = 3, λ2 = 3, λ3 = 3

7: s = S.pop()

8: for k ← 1 to iterations do

9: YLR = Dijkstra(s, c+ λ1 D+ λ2 L
′ + λ3 J)

10: get shortest path from s to r, ysr , from YLR
11: if Dysr ≤ d and L ′ysr ≤ l ′ and Jysr ≤ j then
12: if (λ1 = 0 or Dysr − d = 0) and (λ2 = 0 or

L ′ysr − l ′ = 0) and (λ3 = 0 or Jysr − j = 0)

then

13: break

14: else

15: UB = cysr
16: end if

17: end if

18: if UB == null then

19: UB = ||c||2
√
MH

20: end if

21: LB = cysr + λ1(Dysr − d) + λ2(L
′ysr − l ′) +

λ3(Jysr − j)
22: θ = UB−LB

(Dysr−d)2+(L ′ysr−l′)2+(Jysr−j)2
23: λ1 = max(0, λ1 + θ × (Dysr − d))
24: λ2 = max(0, λ2 + θ × (L ′ysr − l ′))
25: λ3 = max(0, λ3 + θ × (Jysr − j))
26: end for

27: M = M ∪ nodes(ysr)
28: P_DAG.add(ysr)

29: end while

30: reset D,L, J

end procedure

We initialize all the Lagrange multipliers to 3. The subgra-

dients for the relaxed constraints 2b, 2c and 2d are (Dysr−d),
(L ′ysr − l ′) and (Jysr − j) respectively.

Our scalar step size θ is given by

θ =
UB− LB

(Dysr − d)2 + (L ′ysr − l ′)2 + (Jysr − j)2
. (7)

The difference of the current upper bound (UB) and the

current lower bound (LB) and the scaling factor (Dysr−d)2+
(L ′ysr− l ′)2+ (Jysr− j)2 informs the step size. Lines 23-25 of

Algorithm 1 update the Lagrange multipliers and the dual

function is then re-solved using the new set of multipliers. If a

predefined number of iterations or the optimality condition

(Theorem 2) is met, the algorithm will terminate.

Theorem 1: The square root of the solution to theminimum

hop routing problem multiplied with 2-norm of cost vector is

an upper bound to the solution of the shortest path routing

problem.

Proof: A minimum hop routing problem involves find-

ing a path of least hops between a source and destina-

tion node. We represent the problem in the following way:

MH = min
y∈Ps,r

∑|E|
i=1yi where y represents a path as described

in Section II-C and the objective function sums the number of

links in the path y. The shortest path problem is represented

by: SP = min
y∈Ps,r

cT y where c represents cost and y represents

a path. We need to find an upper bound for shortest path

problem (SP).

−→ SP = min
y∈Ps,r

cT y = min
y∈Ps,r

< c, y >

(By property of inner product, < a, b >= aT b)

−→ SP = min
y∈Ps,r

cT y = min
y∈Ps,r
| < c, y > |

(Since c and y are positive vectors)

−→ SP = min
y∈Ps,r
| < c, y > | ≤ min

y∈Ps,r
||c||2||y||2

(By Cauchy-Schwarz inequality, | < a, b > | ≤
||a||2||b||2)

−→ SP ≤ ||c||2 min
y∈Ps,r
||y||2

−→ SP ≤ ||c||2

√

min
y∈Ps,r

∑|E|

i=1
yi2

−→ SP ≤ ||c||2

√

min
y∈Ps,r

∑|E|

i=1
yi

(Since yi takes a value of 1 or 0)

−→ SP ≤ ||c||2
√
MH

�

Theorem 2: A solution ysr to a Lagrangian minimization

problem is optimal for the original problem only if:

104114 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 3. (a) The primary routing DAG for destination R8 and policy (40ms, 10ms). All the links between network nodes are bi-directed. Each
pair of values represents the delay (ms) and jitter (ms) of the corresponding link. (b) Backup DAG for destination R8. (c) Path followed by packet
from R1 to R8 in case of failures. If there is no matching entry in the primary DAG, the packet is forwarded along the backup DAG.

(a) ysr is feasible for the original problem

(b) cysr = [cysr+λ1(Dysr−d)+λ2(L
′ysr−l ′)+λ3(Jysr−j)]

i.e. λ1(Dysr − d)+ λ2(L
′ysr − l ′)+ λ3(Jysr − j) = 0

Proof: This follows trivially from the Lagrangian suffi-

ciency Theorem for inequality constraints. �

2) GENERATING A ROUTING DAG USING THE

‘‘SUB-PROBLEMS’’

In this section, we elaborate on our approach for generat-

ing a directed-acyclic-graph (DAG) for a specific destina-

tion router and QoS policy by combining the solutions of

‘‘sub-problems’’.

For additive QoS metrics, we found that the feasible routes

between an ingress router and an egress router also contain

feasible routes between intermediary routers and the same

egress router. Thus, if we compute feasible routes for only

a subset of nodes, we can achieve full graph coverage.

In our approach we are trying to reduce the subset of

nodes for which we need to compute a feasible path. We start

by reversing the links in the original graph and then per-

form a breadth-first search (BFS) from the destination router

(Lines 1-2 of Algorithm 1) while storing the nodes in decreas-

ing order of distance (in hops) from the destination router.

Then using this order, we find a feasible path between each

router to the destination router. The further a router is from

the destination, the more intermediary routers it will contain.

We terminate the algorithm once all the nodes in the graph

are covered (line 5&27, Algorithm 1). This approach signif-

icantly reduces the route computation time for the QROUTE

algorithm. The BFS for all the destination routers can be

done offline since it does not change with the changing traffic

conditions. Only when the topology changes, we will need to

re-perform BFS.

We illustrate routing DAG generation of QROUTE using

the same example mentioned in section II-B with more detail.

As explained in section II-B, the dashed arrows in figure 3a

depicts the routing DAG generated using algorithm 1 for

the QoS policy (40ms, 10ms) and destination R8. In this

example, we perform breadth-first-search (BFS) traversal

from the destination router R8 and arrange the nodes in the

decreasing order of their distance from router R8. We then

use algorithm 1 to compute feasible routes between routers

R3-R8, R1-R8 and R2-R8 in the given order. By combining

these routes, we create a routing DAG for the entire graph.

Note that route generated for one pair of routers can be

used for other pairs of routers if the QoS constraints are

not violated. To ensure proper forwarding in data plane that

ensures QoS constraints, we introduce QoS-metrics-based

forwarding as explained in section IV-A.

Using breadth-first-search, we reduce the total number of

route computations for a given destination router and QoS

policy fromO(n) toO(l) where n is the number of nodes in the

network and l is the number of leaves in a breadth-first-search

traversal from the destination router. For m QoS policies and

all destinations, the number of route computations reduces

from O(m × n2) to O(m × n × l). QROUTE is thus useful

for quickly computing routes in an overlay network with

fast-changing traffic conditions.

3) MEETING THE BANDWIDTH REQUIREMENTS

In this section, we explain how we meet the bandwidth

requirements for different applications. For example, the QoS

requirement for a single video streaming application used

in our experimentation is (2000ms, 80ms, 0.5Mbps, 5%).

We multiply the bandwidth requirement of an application by

the number of flow requests corresponding to that application

in a 30 second time interval. This time interval corresponds to

the time between the last two route updates in the data plane.

For example, if the number of flow requests corresponding

to a video streaming application during that time interval

is 500, we prune the links which have bandwidth less than

0.5 × 500 = 250 Mbps before computing DAGs for the

video-streaming applications. The number of flows of a par-

ticular application in a given time interval is calculated by the

controller using overlay header information of the flows sent

by the ingress router to the controller when the first packet of

a flow arrives in the network.

Once the routing DAG for a particular application and

all destinations is calculated using algorithm 1, we subtract

the bandwidth requirements of this application from the

VOLUME 8, 2020 104115

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

available bandwidth of the network. For example, we subtract

250 Mbps from the available bandwidth of the links used in

the DAGs for the video-streaming applications.We, then, find

the routing DAGs for other applications. This ensures that the

bandwidth requirements of all the applications are met.

B. BACKUP ROUTING DAG

In this section, we describe the algorithm for generating a

backup DAG which we use along with the primary DAG

to achieve a considerable fraction of QoS while ensuring

loop-free routing.

Whenever an outgoing link is down or having congestion,

the router should be able to forward packets to a backup link

instead of incurring the delay of contacting the controller

and waiting for the controller to install new rules. Installing

backup paths for all pairs of source, destination and policy

will again lead to the proliferation of routing entries and thus

we need to generate a backup DAG for every destination

router and policy that can be used during failures. The pri-

mary DAG should be as disjoint as possible to the backup

DAG so that the congested or failed links of primary DAG do

not affect the backup DAG. Moreover, using backup DAG,

we should be able to provide sufficient QoS even during

failures.

We use algorithm 2 to generate back-up DAG for the

primary DAG generated by Algorithm 1. Algorithm 2 takes

as input the primary DAG (P_DAG) and the adjacency

list of the network graph (Adj_G) and generates a backup

DAG (B_DAG) using the topologically sorted list of the

P_DAG (t_sort) and the mechanism described below. We use

an example to illustrate Algorithm 2. For the primary

DAG in Fig. 3a, the backup DAG is shown in Fig. 3b.

Algorithm 2 first sorts the nodes of the primary DAG using

topological sort (line 2 of algorithm 2). A topological sort for

a primary DAG in Fig. 3a is shown in Fig. 4.

FIGURE 4. Topological sort of primary DAG in Fig. 3a along with
adjacency list of the nodes in that order.

For a node, we do not use those neighboring nodes which

lie before in the topologically sorted order (marked with a

minus sign in Figure 4) as the next hop in the backup DAG.

This was done so that the packets do not enter a forwarding

loop while traversing links of both the primary and backup

DAGs.For example, node R1 and R4 cannot serve as the

Algorithm 2 Back-up DAG Generating Algorithm

procedure BACKUP-DAG(Adj_G,P_DAG)

1: B_DAG = {}
2: t_sort = topological_sort(P_DAG)

3: for i ∈ {1, . . . , |V | − 1} do
4: for j ∈ {i, i+ 1, . . . , |V |} do
5: if t_sort[j] ∈ Adj_G[t_sort[i]] then
6: last_neighbor_visited = t_sort[j]

7: if t_sort[j] /∈ P_DAG then

8: B_DAG[t_sort[i]] = t_sort[j]

9: break

10: else

11: if t_sort[i] /∈ P_DAG[t_sort[j]] then
12: B_DAG[t_sort[i]] = t_sort[j]

13: end if

14: end if

15: end if

16: end for

17: if t_sort[i] /∈ B_DAG then

18: B_DAG[t_sort[i]] = last_neighbor_visited

19: end if

20: end for

end procedure

next hop for node R5 in the backup DAG. We also avoid

those nodes as next hops in backup DAG which are chosen

as the next hops in the primary DAG (marked with a tilde

sign in Figure 4). This was done to make the backup DAG

as disjoint as possible to the primary DAG. This constraint is

relaxed if there is no candidate for the next hop. For example,

node R8 is avoided as the next hop for node R5 in the backup

DAG. We then choose one of the remaining neighbors as the

next hop in the backup DAG (marked with an asterisk sign

in Figure 4). In the example, nodes R6 is used as the next

hop for node R5 in the backup DAG. The backup DAG for

destination router R8 is shown in Fig. 3b.

IV. QROUTE DATA PLANE

In section IV-A, we explain our QoS-metrics-based forward-

ing which reduces the forwarding entries in the data plane

while ensuring multiple QoS constraints. In section IV-B,

we describe our data plane forwarding algorithm which uses

the primary DAG entries along with the backup DAG entries

to ensure QoS.

A. REDUCING FORWARDING ENTRIES IN THE DATAPLANE

We reduce the forwarding entries in the data-plane by using

QoS-metric-based forwarding. We replace the source address

in the forwarding entries of the switches with the maximum

amount of QoS metrics a packet can spend in the network

to be eligible to be forwarded to the corresponding outgoing

link. We illustrate the QoS-metric-based forwarding using an

example.

104116 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 5. Framework for evaluating performance of path generated by QROUTE.

Consider the network graph provided in Fig. 3. For simplic-

ity each pair of values on the network links only represents

delay and jitter for that bi-directed link measured in millisec-

onds. The following approach will hold for any number of

additive and multiplicative constraints.

Figure 4 shows the DAG for a destination router R8, with

a QoS policy of (40ms, 10ms) where 40ms is the maximum

bound for delay and 10ms is the maximum bound for jitter.

The only feasible path from R1 to R8 is R1 −→ R4

−→ R5 −→ R8, from R2 it is R2 −→ R4 −→ R6 −→ R8, and from

R3 it is R3 −→ R4 −→ R7 −→ R8. Packets from nodes R1, R2,

and R3, arriving at R4 should be forwarded to R5, R6, and

R7 respectively to maintain QoS requirements for each flow.

For router R4 to route properly, one would need to utilize a

source IP address, destination IP address, and policy ID as the

key in forwarding tables or use a different key that satisfies

the above requirement. However, using the source IP address

leads to a proliferation of routing entries in the forwarding

tables.

We replace the source IP in the routing entries of the

forwarding table with the maximum amount of delay and

jitter a packet can go through to be eligible to be forwarded

to the corresponding outgoing link. The packets carry the

elapsed value of delay and jitter in their packet headers which

are updated by each router by adding the delay and jitter of the

outgoing link to the respective header field. These values are

matched against the corresponding keys to determine where

the packets should be forwarded to.

For example, Table 3 depicts the forwarding table of router

R4 with the forwarding entries corresponding to destination

TABLE 3. Forwarding table for Router R4.

router R8 and QoS policy (40ms, 10ms). The delay and

jitter along the path R4 −→ R5 −→ R8 is 36ms and 2ms

respectively. Thus, if the maximum permissible delay and

jitter that a packet has gone through before reaching R4 are

4ms (40-36) and 8ms(10-2) respectively then the packet can

be forwarded to the router R5. This corresponds to the first

entry in the forwarding table (Table 3). For the packets going

from ingress router R1 to R4 directly, the elapsed delay and

jitter will be 2ms and 7ms respectively. We can see that only

the packet which is coming form R1 to R4 directly is eligible

for forwarding to R5. Similarly we generate other forwarding

entries for other feasible routes generated by algorithm 1 and

passing through router R4. If any incoming packets headed

for R8 do not match any routing entry or there is a failure,

they will be routed through the default entry for policy 1

(represented by the 4th entry in Table 3). These default

entries are created using the backup DAGs as described in

Section III-A-D.

We significantly reduce the forwarding entries by grouping

them if they have the same next hop. Given a QoS policy

and destination, we have only one entry corresponding to an

outgoing link which is used in a feasible route generated by

Algorithm 1 and passing through that router. Thus, the max-

imum number of forwarding entries a router can have for a

given QoS policy and destination is its degree in the network

graph. In contrast, a source-destination based forwarding can

have a forwarding entry for every source router. Thus, for a

network of n nodes andmQoS policies, we reduce the number

of forwarding entries from O(m × n2) to O(m × n × deg)

where deg is the maximum degree of the network graph.

Thus, QROUTE alleviates the problem of the proliferation

of routing entries in large overlay networks.

B. DATA-PLANE FORWARDING ALGORITHM

Our data plane forwarding algorithm uses the primary DAG

entries along with the backup DAG entries to ensure QoS

and provide resiliency. Algorithm 3 presents the forwarding

algorithm of the switches. The switches first try to find a

rule in the forwarding table corresponding to the primary

DAG which matches all the QoS constraints. If it finds such

VOLUME 8, 2020 104117

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

Algorithm 3 Data Plane Forwarding Algorithm

procedure FORWARDING(Adj_G,Q_DAG)

1: for rule in Primary_DAG do

2: if elapsed_delay ≤ rulemax_elapsed_delay &&

elapsed_jitter ≤ rulemax_elapsed_jitter &&

elapsed_pkt_loss ≤ rulemax_elapsed_pkt_loss then
3: if ruleoutput_port is up then

4: add_delay(ruleoutput_link_delay)

5: add_jitter(ruleoutput_link_jitter)

6: add_pkt_loss(ruleoutput_link_pkt_loss)

7: send_packet(ruleoutput_port)

8: end if

9: end if

10: end for

11: send_packet(Backup_DAG_output_port)

{If no rule matches in Primary_DAG or the output ports

for the matched rules are down}

end procedure

entry and the corresponding output port is up, the switch adds

the QoS values of the forwarding link to the respective QoS

values in the packet header and forwards the packet on the

corresponding output port. If the switch does not find any

entry or the output ports for the matched rules are down,

it forwards the packet on the outgoing link along the backup

DAG if it is up. If the outgoing link along the backup DAG is

down, the switch drops the packet.

Fig. 3c shows the path followed by a packet in case of fail-

ures of two links. We can see from the figure that the packet

traverses links of both the primary and the backup DAGs. The

QoS is maximized by trying to re-route the packets to the

primary DAG even if the packet has arrived using the backup

DAG link.

V. FRAMEWORK FOR EVALUATING PATH PERFORMANCE

Some applications are not stringent about meeting their QoS

requirements and thus the paths which satisfy their QoS

policies to a reasonable fraction can be accepted. Moreover,

in scenarios of network congestion or failures, the routing

algorithm might not be able to find a path that satisfies the

QoS policy for a particular application and thus the routing

algorithm has to return a path that partially satisfies the QoS

constraints. In such cases, the network manager needs to

decide the degree to which the QoS should be satisfied for

a path. We propose a framework to evaluate a path’s perfor-

mance in terms of meeting a multi-constrained QoS policy.

Under the absence of paths that completely satisfy a given

QoS policy, this framework enables the network operator to

use the paths which slightly deviate from the QoS policy.

We represent each QoS constraint by a function which

takes a value between 0 and 1. If the value of a particular QoS

metric for a path returned by the routing algorithm is within

its bound, then the function takes a value of 1. If it is outside

its bound, then it takes a value less than 1. Beyond a certain

threshold, the function takes a value of 0 which denotes that

the QoS metric deviates a lot from its bound.

As an example, the QoS requirement used for video

streaming in our experiments is (2000ms, 80ms, 0.5Mbps,

5%). The tuple is in the format (maximum delay bound,

maximum jitter bound, minimum bandwidth requirement,

maximum packet loss). Their respective functions are defined

in Fig. 5. We can observe from Fig. 5a that the function for

delay takes the value of 1 when the delay of a path is less

than 2000ms. After that the function gradually drops to a

value of 0. This function indicates the degree to which the

delay metric is satisfied. Figure 5b to 5d can be interpreted

along similar lines. A steeper slope for a QoS metric function

indicates that the application is more stringent about meeting

that QoS requirement. This slope is decided by the network

operator and requires domain knowledge.

The vertical lines in the graphs denote the value of the

corresponding QoS metrics for a path returned by the routing

algorithm. The degree to which a path satisfies the QoS policy

is equal to the smallest function value amongst all the QoS

constraints. For example, in Fig. 5 the minimum function

value ismin(.78, 0.58, 0.38, 1) = .38. Thus this path satisfies

the QoS policy by 38%. If the threshold for accepting a path

for routing is 60%, this path will be rejected.

VI. EVALUATION

In this section, we describe the evaluation of the QROUTE

routing scheme using traces from a global communica-

tions technology solutions provider’s real overlay networks.

We also explain the evaluation of QROUTE carried out

in a test-bed of P4-BMv2 [35], [36] switches controlled

with ONOS SDN controller [37] using P4Runtime [38]. All

experiments were carried out in servers with Intel Xeon E5-

1630 v4 @3.7GHz processors.

A. TRACE-DRIVEN EVALUATION

We determine the scalability and optimality of the QROUTE

routing algorithm using trace-driven evaluation. We had

access to 24-hour traces with measurements after every

30 seconds from a global communications technology solu-

tions provider’s real overlay networks. These traces consist of

delay, jitter, packet loss, and bandwidth measurements of the

links between the routers. The network topology the traces

measured was comprised of routers spread across multiple

data centers worldwide. The traces provided covered different

sizes of overlay networks with different topologies (partial

mesh, star, ring, and tree). We also perform an evaluation of

QROUTE on the real topologies from the Internet Topology

Zoo dataset [31] using synthetically generated traces. The

delay between the network nodes in the topologies from the

Internet Topology Zoo dataset was estimated based on their

geographical locations. The bandwidth, jitter and packet loss

values of the links in the synthetic generated traces were

derived from the above traces. We wrote the QROUTE algo-

rithm in Python using fast libraries like Dijikstar and used a

CSV file of the traces for input.

104118 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 6. Trace-driven evaluation.

TABLE 4. QoS requirements used for the experimentation.

For our evaluations, we select 10 different kinds of user-

applications’ QoS requirements as mentioned in Table 4.

The resulting plots are informed by the average value

of 28,800 (24×60×2×10) instances of data points. Figure 6
shows the distribution of QoS metric values of the links in the

traces using a box plot.

Using these traces we compared the scalability and

optimality of the QROUTE algorithm to the current

state-of-the-art multi-constrained shortest path (MCSP)

algorithms, like A* Prune [21], H_MCOP [22], and

MH_MCOP [23].

We measured four performance characteristics:

• Percentage Reduction in Forwarding Entries: The

percentage reduction in forwarding entries compared

to those generated by source-destination-based rout-

ing algorithms such as A*Prune, H_MCOP, and

MH_MCOP.

• Percentage Cost Deviation: Indicates the percentage

deviation of the cost of the approximate solution with

that of the solution from A*Prune which is the optimal

case.

• Route Computation Time: This includes generating

the routes for all the destination routers and policies and

the forwarding tables for the routers. Route computation

time is measured in seconds.

• Relative percentage difference:The relative differ-

ence between the maximum QoS bound and the QoS

of the paths found. The formula is: (QoS_bound −
path_QoS)/QoS_bound × 100.

We obtain Fig. 6b, 6c, 6d and 6e with partial mesh

topologies and Fig. 6f with networks of size 1000. From

Fig. 6b we can observe that as the network size grows,

VOLUME 8, 2020 104119

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 7. Trace-driven evaluation of QROUTE on the topologies from the Internet Topology Zoo dataset.

QROUTE achieves significant reduction in forwarding table

sizes compared to other source-destination based routing

algorithms. As depicted in Fig. 7b, we can observe the similar

reduction in forwarding entries by QROUTE on the topolo-

gies from the Internet Topology Zoo dataset. This demon-

strates the impact of replacing the source IP address with

maximum elapsed QoS constraint values.

From Fig. 6c and Fig. 7a, we observe that QROUTE

achieves a much lower route computation time than the other

algorithms, like A*Prune, H_MCOP, andMH_MCOP. This is

because of generating DAGs as described in Section III-A2.

This reduction in time complexity comes at a cost of

solution optimality, and as a consequence, H_MCOP and

MH_MCOP havemuchmore optimal solution outcomes than

QROUTE as depicted in Fig. 6d and Fig. 7c. However, unlike

H_MCOP and MH_MCOP, QROUTE will always return a

feasible route if one exists. If overlay providers do not con-

sider a small increase in the cost of overlay links as a sig-

nificant issue and desire a quick adaptive route computation

algorithm for dynamic traffic, QROUTE is the ideal choice.

Fig. 6e shows the comparison of QROUTE and A*Prune

in terms of relative percentage difference of delay QoS met-

ric. For this comparison we did not include H_MCOP and

MH_MCOP as they do not always generate a feasible path.

We see that the relative percentage difference of delay of

QROUTE increases quicker than that of A*Prune as the net-

work size increases. This is because the feasible paths from

some nodes to a destination node are contained in already

computed routes.

QROUTE is well suited to ring, tree and mesh topologies

and has fast route computations compared to that in the star

topology (Fig. 6f). This is because the star topology does

not benefit from our heuristic of a feasible route between

two routers covering the feasible routes of many intermediary

routers.

B. EVALUATION ON P4 SWITCHES

In this section, we describe our evaluation using a test-bed

of P4-BMv2 [35], [36] switches controlled with ONOS SDN

controller [37] using P4Runtime [38]. We evaluate the over-

head incurred due to the addition and the range operation

in the switches on the end-to-end delay. We also evaluate

the degree to which the QoS requirements of the flows were

satisfied as we increase the traffic in the network. We also

measure the impact of failures on the QoS.

1) TEST-BED DESCRIPTION

P4 language [35] allows us to define custom forwarding

behavior of a switch. Any forwarding behavior is composed

of matches on header fields and based on that taking an

action like changing header fields, forwarding on an output

port, packet drop, etc. P4 allows us to define custom header

fields and custom actions that are not supported on legacy

or Openflow switches. The P4 codes can be compiled to

many targets like FPGAs, ASICS, software switches, etc.

We use the behavioral model (BMv2) [36], a software switch

simulation which supports P4 language, in our experiments.

We use P4 Runtime [38] API to install routing entries in the

forwarding tables generated using the P4 code. We use the

ONOSSDNcontroller [37] to control the network comprising

of P4 BMv2 switches using P4 Runtime. To implement the

QROUTE algorithm in a real overlay network, the routers

should support the range and the addition operations on

packet header fields along with the capabilities of OpenFlow

switches [39], [40]. These operations are supported in P4,

BMv2 switches and ONOS controller.

2) P4 PSEUDO-CODE FOR THE QROUTE OVERLAY HEADER

AND ROUTERS

Algorithm 4 shows the P4 pseudo-code for our overlay

header QROUTE which is inserted between the Ethernet

header and the IPv4 header. The QROUTE header con-

tains the unique identifier for the QoS policy called

QoS_policy_ID, the unique identifier for the egress router

called egress_router_id, and the elapsed value of the

QoS constraints called elapsed_delay, elapsed_jitter and

elapsed_pkt_loss.

104120 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

Algorithm 4 P4 Pseudo-Code for QROUTE Overlay Header

1: header QROUTE

2: field QoS_policy_ID

3: field egress_router_ID

4: field elapsed_delay

5: field elapsed_jitter

6: field elapsed_pkt_loss

7:

8: headers

9: header Ethernet

10: header QROUTE

11: header IPv4

We describe the P4 pseudo-code for the forwarding table

used in the ingress routers in algorithm 5. The ingress router

matches the IPv4 address of the destination host of the incom-

ing packets and encapsulates it with the QROUTE tunnel

header. The encapsulation is performed using the encapsu-

late_QROUTE_header action.

Algorithm 5 P4 Pseudo-Code for Forwarding Table of

Ingress Router

1: forwarding_table ingress_router

2: match_fields

3: (match_field_1, match_type)

= (destination_host_IP, longest_prefix_match)

4: actions

5: action_1 = encapsulate_QROUTE_header

6: action_2 = drop_packet

Algorithm 6 mentions the P4 pseudo-code for the for-

warding table of intermediary and egress routers. To imple-

ment comparison operation on the elapsed value of delay,

jitter and packet loss, we use the range_match supported

Algorithm 6 P4 Pseudo-Code for Forwarding Table of

Intermediary and Egress Router

1: forwarding_table intermediary_and_egress_router

2: match_fields

3: (match_field_1, match_type)

= (QoS_policy_ID, exact_match)

4: (match_field_2, match_type)

= (egress_router_ID, exact_match)

5: (match_field_3, match_type)

= (elapsed_delay, range_match)

6: (match_field_4, match_type)

= (elapsed_jitter, range_match)

7: (match_field_5, match_type)

= (elapsed_pkt_loss, range_match)

8: actions

9: action_1 = forward_QROUTE_packet

10: action_2 = decapsulate_QROUTE_header

11: action_3 = drop_packet

by P4, P4Runtime, ONOS controller and BMv2 switches.

A range_match match checks if a match field is between

a lower and upper bound. For example, for the first entry

in table 3, we use the range match to check if 0 ≤
elpased_delay ≤ 4 and 0 ≤ elpased_jitter ≤ 8. The inter-

mediary routers match on all the 5 match fields mentioned

in Algorithm 6 and accordingly forward the packet to an

output port using forward_QROUTE_packet action described

in Algorithm 7. The forward_QROUTE_packet action also

adds to the respective headers of the packets the delay, jitter

and packet loss of the link to which it is supposed to forward

the packet. The delay, jitter and packet loss of the outgoing

links are populated in the P4 switches by the ONOS con-

troller. The action decapsulate_QROUTE_headermentioned

in algorithm 6 is used by the egress router to remove the

QROUTE tunnel header from the packet and forward the

packet to its original destination host. A detailed description

of our experimentation is given in Appendix A. We also pro-

vide an approach to measure available bandwidth in overlay

networks having background traffic in Appendix B.

Algorithm 7 P4 Pseudo-Code for Forwarding a Packet With

a QROUTE Header

1: action forward_QROUTE_packet(out_port, link_delay,

link_jitter, link_pkt_loss)

2: add link_delay to header_elapsed_delay

3: add link_jitter to header_elapsed_jitter

4: add link_pkt_loss to header_elapsed_pkt_loss

5: forward pkt on out_port

3) RESULTS

All the figures in this section are generated on amesh network

of 1000 P4-BMv2 switches.

We compare the average end-to-end delay observed by

end-users with and without the overhead of range and addi-

tion operation on overlay headers (Fig. 8a). The paths taken

by a packet between a pair of source and destination for

both cases is the same. We observe that overhead imposed

by QROUTE addition and range operation is not significant

and as we increase the number of switches between end hosts,

the overhead increases negligibly.

In Fig. 8b, we depict the percentage of flows that satisfy

their QoS requirements using QROUTE in the absence of

failures. We use the QoS policies for 10 different applications

mentioned in Table 4 in this experiment.We can observe from

Fig. 8b that QROUTE supports the QoS requirements for

90-99% of flows across different applications.

We also measure the percentage of flows that satisfy their

QoS requirements using QROUTE after failures. This mea-

surement is done until the SDN control responds to the

change in the topology and installs new routes in the data

plane. The QoS policies mentioned in Table 4 are used for

this experiment also. As the number of failed links increases

(Fig. 8c), we observe that the majority of the flows are

still able to meet their QoS requirements. This resiliency is

VOLUME 8, 2020 104121

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

FIGURE 8. Evaluation on P4 switches.

because we use the backup DAG along with the primary DAG

and the forwarding scheme which maximizes QoS.

VII. RELATED WORK

A. LAGRANGE-RELAXATION BASED ROUTING SCHEMES

There are several works [12], [13], [21]–[24] which

solve the multi-constrained shortest path problem using

Lagrange relaxation but they generate routes for every

source-destination pair and QoS policy instead of generat-

ing a routing directed-acyclic graph. Thus, their approaches

lead to an exponential increase in route computation time

and the proliferation of routing entries. A*Prune [21] is an

optimal approach to solve the MCSP problem by assuming

that there is a guess function available for the constraints

and costs and the algorithm is made faster by pruning certain

paths based on their projected constrained values. However,

its run-time increases much faster with network size com-

pared to heuristics based algorithms [21]–[23]. A heuris-

tic and multi-constrained version of the LARAC algorithm,

H_MCOP, proposed in [22], searches in the direction of

all constraints and cost simultaneously, but this approach

does not always return a feasible solution if it exists [23].

MH_MCOP [23] finds a closer solution to the optimal as

compared to H_MCOP but also does not always find a fea-

sible solution if it exists [24]. In [12], the authors model

the QoS routing problem as a multi-commodity flow prob-

lem which is decomposed to simpler constrained shortest

path problems. They use the GEN-LARAC algorithm [41]

to solve the constrained shortest path problem that satisfies

all QoS constraints. The authors in [13] model the over-

lay routing problem as a maximization of the Quality of

Experience (QoE) instead of QoS and performed Lagrange

decomposition of their original problem. The subproblems

are solved using Lagrange relaxation and sub-gradient opti-

mization. They used a k-shortest path algorithm to find the

shortest paths in their sub-problems. All these approaches

generate routes for every source-destination pair and QoS

policy and thus leads to a significant route computation time

and size of forwarding tables.

B. DIRECTED-ACYCLIC-GRAPH (DAG) BASED ROUTING

SCHEMES

Directed-acyclic-graphs (DAGs) has been used in multi-

constrained QoS routing [42]–[44]. However, none of them

can efficiently reduce both the route computation time and

the number of routing entries while ensuring additive, mul-

tiplicative and concave constraints. In [42], the authors use

DAGs for routing in low-power and lossy networks. They

consider the delay, jitter and packet loss while creating

a destination-oriented DAG but they omit the bandwidth

requirement (concave constraint) which is a very crucial

network resource. They are using a distributed approach of

exchanging messages between the nodes to construct a DAG

rather than using a centralized routing algorithm. Moreover,

they do not address the problem of the proliferation of routing

entries in large networks. The authors in [43] consider all

types of QoS constraints, that is, multiplicative, additive and

concave. They prune the original network to a DAG that

contains paths between a source and destination which satisfy

all the constraints. They find the optimal path using this

DAG. However, they do not use DAG for routing but only

as an intermediary step to generate feasible paths. Thus, their

approach leads to high route computation time and a large

number of routing entries since they are generating paths

for every source-destination pair. In [44], the authors use

a DAG-based approach to provide resiliency against single

arbitrary link failure. They also introduce delay and band-

width constraints while generating DAGs. However, they do

not consider jitter and packet loss constraints. Moreover,

their approach leads to high route computation time and the

proliferation of routing entries because of generating a DAG

for every source-destination pair.

C. OTHER APPROACHES FOR ROUTING IN

SOFTWARE-DEFINED OVERLAY NETWORKS

In [8], the authors propose a time-slot-based routing algo-

rithm for finding multiple paths for a particular flow for

ensuring QoS of multimedia applications in software-defined

overlay networks. They model the cost of the overlay links

104122 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

in terms of its availability and consider only bandwidth con-

straints. In [11], the authors use a routing engine based on

random neural networks with reinforcement learning for their

software-defined overlay networks. They only incorporate

the latency of the paths while making their routing decisions.

In [14], the authors propose amultipath routing algorithm that

finds a path of least cost that satisfies the delay and band-

width constraint. However, these approaches have high route

computation time and a large number of forwarding entries

because of generating routes for every source-destination pair

and QoS policy.

VIII. CONCLUSION AND FUTURE WORK

We propose an efficient routing scheme, QROUTE, for sat-

isfying multiple QoS constraints in software-defined over-

lay networks. QROUTE consists of a control plane routing

algorithm which has significantly low route computation

time because of employing a novel directed-acyclic-graph

(DAG) based approach. QROUTE also reduces the forward-

ing entries in the data plane by using a QoS-metric-based

forwarding scheme. QROUTE uses backup DAG combined

with the primary DAG to provide sufficient QoS even dur-

ing failures. We also provide a framework to evaluate a

path’s conformance to a multi-constrained QoS policy which

enables the network operator to find paths slightly deviating

from the QoS policy. Our experimental results demonstrate

that the proposed QROUTE routing scheme not only signifi-

cantly reduces the route computation time, but also decreases

the forwarding table size considerably. Evaluations also show

that the addition and range operations performed in the data

plane do not incur significant overhead. Results demonstrate

that QROUTE achieves QoS to a considerable degree with

and without failures. QROUTE can be either implemented

in software routers (e.g., BMv2 P4 switches) deployed

in the cloud, or in hardware switches which support P4

(e.g., NetFPGA [45] and Barefoot Tofino [46]).

We are working on extending QROUTE to the hierarchical

design multi-controller architecture. This involves designing

a DAG stitching algorithmwhich stitches together the routing

DAGs generated byQROUTE to create a global routingDAG.

According to the Cisco Annual Internet Report [47],

the number of devices connected to Internet will be

29.3 billion by 2023. The majority of devices and the traffic

that will dominate the Internet will be machine-to-machine

communications, Internet of Things and enhanced 5Gmobile

broadband. These applications have significantly diverseQoS

requirements [48]. To meet such diverse QoS requirements

of huge network traffic requires more efficient QoS routing

schemes.

APPENDIX A

DETAILED DISCUSSION OF OUR P4 SWITCHES TEST-BED

In this section, we provide a detailed description of

our experimentation on test-bed of P4-BMv2 [35], [36]

switches controlled with ONOS SDN controller [37] using

P4Runtime [38].

A. INGRESS ROUTER OPERATION

Listings 1, 2, 3 and 4 show some important portions of our

P4 code that implement the QROUTE algorithm. Listing 1

shows the overlay header qroute_tunnel_t which is inserted

between the ethernet header and the ipv4 header and is used

to carry the protocol ID of the next layer of header called

proto_id , the QoS policy ID called policyID, the unique

identifier of the egress router called egress_router_id, and the

elapsed value of the QoS constraints called elapsed_delay,

elapsed_jitter and elapsed_pkt_loss. Listing 2 describes

the table used in the ingress router which matches the

IPv4 address of the destination host for a packet using

the longest prefix match (lpm) and then encapsulates the

packet with the qroute_tunnel_t tunnel header using the

qroute_tunnel_ingress action.

LISTING 1. The overlay header added to support QROUTE.

LISTING 2. The P4 table for the ingress router.

LISTING 3. The P4 table for the intermediary and egress router.

LISTING 4. The P4 action for the intermediary routers.

VOLUME 8, 2020 104123

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

B. INTERMEDIARY ROUTER OPERATION

To implement comparison on the elapsed value of delay,

jitter and packet loss, we use the match type range supported

by P4, P4Runtime and BMv2 switches. A range match

checks if a specified header is between a low and a high

value inclusively. ONOS supports a function matchRange

(PiMatchFieldId fieldId, byte[] low, byte[] high) of

type PiCriterion.Builder which adds a range field match

for the given P4 header field ID fieldId , low value and

high value of range match. In our scenario, we define

three range matches for delay, jitter and packet loss

(Listing 3) in our P4 code. We set the low limit

to 0 and the high limit to the maximum permissible

amount of delay, jitter or packet loss respectively in our

matchRange() function call. Table t_qroute_tunnel_fwd

(Listing 3) uses action qroute_tunnel_transit in the interme-

diate nodes and qroute_tunnel_egress in the egress nodes.

The qroute_tunnel_transit action(Listing 4) is used in the

intermediary nodes to forward the encapsulated packet on a

output port based on the egress_router_id , policyID and the

elapsed values of the QoS metrics. The BMv2 switch adds

to the respective headers of the packets the delay, jitter and

packet loss of the link to which it is supposed to forward the

packet and then sets the output port of the packet. The delay,

jitter and packet loss of the outgoing links are populated in

the P4 switches by the ONOS controller.

C. EGRESS ROUTER OPERATION

The qroute_tunnel_egress action is used in the egress nodes

to remove the qroute_tunnel_t header before forwarding the

packet to the output port.

D. MEASURING QoS METRICS FOR THE LINKS

We use P4-BMv2 switches in integration with Mininet.

Mininet provides us the options to specify the performance

parameters of the links like delay, jitter, packet loss and

maximum bandwidth. We need to start the mininet topology

using –link tc command to set these performance parameters.

This uses the TCLink class which is a wrapper around the

Link class of mininet and allows us to specify the perfor-

mance parameters like delay, jitter, etc. To create such a

link in the custom topology python file, we need to use the

command self .addLink(switch1, switch2, bw = 10, delay =
10ms, jitter = 8ms, loss = 1). This creates a link with

the maximum bandwidth of 10 Mbps, a delay of 10 ms,

a jitter of 8 ms and a packet loss percentage of 1%. We have

hard-coded the delay, jitter and packet loss percentage of

the links in our test-bed. To measure the available band-

width of the links, we create counters at every switch using

the counter() function supported by P4. The switch coun-

ters count the bytes sent by the ports which is polled by

an ONOS application at regular intervals and is stored in

a CSV file. We compute the available bandwidth in the

links using the bytes sent by the ports and the elapsed time

using the approach mentioned in [49]. Using this telemetry

information, the central controller computes new routes after

every 30 seconds and installs the new rules in the forwarding

tables of P4-BMv2 switches. A detailed discussion on mea-

suring the QoS metrics in a real-overlay network is given in

appendix B.

E. SIMULATING LINK FAILURES

Mininet provides a command link s1 s2 up and link s1 s2 down

which activates and deactivates respectively the link between

switch s1 and s2 of the network on the fly. We use this

command to fail a link for testing our routing scheme during

failures. Since there is no support in P4 switches to determine

the link status, we store the status of the links in another

table in the switches which are updated using the P4 switch’s

API used for accessing tables. When the outgoing link in the

primaryDAG is down, the packet is forwarded to the outgoing

link in the backup DAG if it is up. If the outgoing link in

the backup DAG is down, we drop the packet. Meanwhile,

the ONOS controller detects that a link is down and the

routing application calculates the new paths based on the new

topology and installs new rules in the forwarding tables.

APPENDIX B

MEASURING AVAILABLE BANDWIDTH IN OVERLAY

NETWORKS HAVING BACKGROUND TRAFFIC

We also provide an approach to measure available band-

width in overlay networks having background traffic in this

section. In a network with background traffic and unknown

link capacity, available bandwidth can be computed using the

values of delay and packet loss as described below. Since

the throughput-intensive applications use either TCP or TCP

like congestion control, the authors in [7] use the following

equation for modeling throughput:

T =
1

rtt

√

1.5

p
(8)

where p is the packet loss probability and rtt is the round trip

time.

However, they have only considered last re-transmit and

not timeout as the indicator for packet loss. Moreover, they

have assumed that a received ACK is acknowledging at most

1 packet. They have also not considered that the congestion

window size can be restricted. Thus, the below equation for

throughput [50] will give a much accurate measurement of

TCP throughput.

T

=min













Wmax

rtt
,

1

rtt

√

2bp

3
+T0min

(

1, 3

√

3bp

8

)

p(1+32p2)













(9)

In equation (9),Wmax is the maximum congestion window

size, b is the number of packets that are acknowledged by a

104124 VOLUME 8, 2020

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

receivedACK, and T0 is the initial time out. CurrentWindows

and Linux operating systems often set T0 = 3 sec, Wmax =
64 kb and b = 2 and putting them into Equation 9 will

give a better estimate of TCP throughput in current networks.

The delay, jitter and packet loss can be calculated by sending

packet probes between the routers with timestamps.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for

their valuable comments. This paper is revised and extended

from our previous paper published in IFIP/IEEE IM 2019 [1].

REFERENCES

[1] N. Varyani, Z.-L. Zhang, M. Rangachari, and D. Dai, ‘‘LADEQ: A fast

Lagrangian relaxation based algorithm for destination-basedQoS routing,’’

in Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), Apr. 2019,

pp. 462–468.

[2] S. P. C. Lewis, ‘‘Implementing quality of service over CiscoMPLSVPNs,’’

in Selecting MPLS VPN Services. San Jose, CA, USA: Cisco Systems,

May 2006, ch. 5.

[3] Z. Li and P.Mohapatra, ‘‘QRON: QoS-aware routing in overlay networks,’’

IEEE J. Sel. Areas Commun., vol. 22, no. 1, pp. 29–40, Jan. 2004.

[4] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, Overlay

Networks: An Akamai Perspective, vol. 51. Hoboken, NJ, USA: Wiley,

2014, ch. 16, pp. 305–328.

[5] Z. Duan, Z.-L. Zhang, and Y. T. Hou, ‘‘Service overlay networks: Slas,

QoS, and bandwidth provisioning,’’ IEEE/ACMTrans. Netw., vol. 11, no. 6,

pp. 870–883, Dec. 2003.

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, ‘‘Resilient

overlay networks,’’ in Proc. 18th ACM Symp. Oper. Syst. Princ., 2001,

vol. 35, no. 5, pp. 131–145.

[7] J. Kurian andK. Sarac, ‘‘A survey on the design, applications, and enhance-

ments of application-layer overlay networks,’’ACMComput. Surv., vol. 43,

no. 1, pp. 1–34, Nov. 2010.

[8] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet, ‘‘Adaptive and

reliable multipath provisioning for media transfer in SDN-based

overlay networks,’’ Comput. Commun., vol. 106, pp. 107–116,

Jul. 2017.

[9] Y. Guan, W. Lei, W. Zhang, S. Liu, and H. Li, ‘‘Scalable orchestration

of software defined service overlay network for multipath transmission,’’

Comput. Netw., vol. 137, pp. 132–146, Jun. 2018.

[10] P. Belzarena, G. G. Sena, I. Amigo, and S. Vaton, ‘‘SDN-based overlay

networks for QoS-aware routing,’’ in Proc. Workshop Fostering Latin-

Amer. Res. Data Commun. Netw. (LANCOMM), 2016, pp. 19–21.

[11] F. Francois and E. Gelenbe, ‘‘Optimizing secure SDN-enabled inter-

data centre overlay networks through cognitive routing,’’ in Proc. IEEE

24th Int. Symp. Modeling, Anal. Simulation Comput. Telecommun. Syst.

(MASCOTS), Sep. 2016, pp. 283–288.

[12] P. Medagliani, S. Paris, J. Leguay, L. Maggi, C. Xue, and H. Zhou,

‘‘Overlay routing for fast video transfers in CDN,’’ in Proc. IFIP/IEEE

Symp. Integr. Netw. Service Manage. (IM), May 2017, pp. 531–536.

[13] G. Calvigioni, R. Aparicio-Pardo, L. Sassatelli, J. Leguay, P. Medagliani,

and S. Paris, ‘‘Quality of experience-based routing of video traffic for

overlay and ISP networks,’’ in Proc. IEEE Conf. Comput. Commun.

(INFOCOM), Apr. 2018, pp. 935–943.

[14] W. Jiawei, Q. Xiuquan, and N. Guoshun, ‘‘Dynamic and adaptive multi-

path routing algorithm based on software-defined network,’’ Int. J. Distrib.

Sensor Netw., vol. 14, no. 10, pp. 1–10, 2018.

[15] N. Yadav and S. Merchant, ‘‘Forwarding tables for virtual networking

devices,’’ U.S. Patent 9 755 965, Sep. 5, 2017.

[16] T. Lin, T. Wen, W. Ren, Y. Zhang, and X. Zhang, ‘‘Table entry in software

defined network,’’ U.S. Patent 10 541 913, Jan. 21, 2020.

[17] Y. Guan, W. Lei, W. Zhang, H. Li, and S. Zhang, ‘‘SGMR: A spatial

geometry-based multipath routing method on overlay networks,’’ Int. J.

Commun. Syst., vol. 32, no. 5, p. e3894, Mar. 2019.

[18] S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. J. Prabhu, and

T. Chonavel, ‘‘Joint minimization of monitoring cost and delay in overlay

networks: Optimal policies with a Markovian approach,’’ J. Netw. Syst.

Manage., vol. 27, no. 1, pp. 188–232, Jan. 2019.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,

‘‘B4: Experience with a globally-deployed software defined wan,’’ ACM

SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Sep. 2013.

[20] A. Rai, R. Singh, and E. Modiano, ‘‘A distributed algorithm for through-

put optimal routing in overlay networks,’’ in Proc. IFIP Netw. Conf.

(IFIP Netw.), May 2019, pp. 1–9.

[21] G. Liu and K. G. Ramakrishnan, ‘‘A∗Prune: An algorithm for finding

K shortest paths subject to multiple constraints,’’ in Proc. IEEE Conf.

Comput. Commun., 20th Annu. Joint Conf. IEEE Comput. Commun. Soc.

(INFOCOM), vol. 2, Apr. 2001, pp. 743–749.

[22] T. Korkmaz and M. Krunz, ‘‘Multi-constrained optimal path selection,’’

in Proc. IEEE Conf. Comput. Commun., 20th Annu. Joint Conf. IEEE

Comput. Commun. Soc. (INFOCOM), vol. 2, Apr. 2001, pp. 834–843.

[23] G. Feng, K. Makki, N. Pissinou, and C. Douligeris, ‘‘Heuristic and exact

algorithms for QoS routing with multiple constraints,’’ IEICE Trans. Com-

mun., vol. E85-B, no. 12, pp. 2838–2850, Dec. 2002.

[24] J. W. Guck, A. Van Bemten, M. Reisslein, and W. Kellerer, ‘‘Unicast QoS

routing algorithms for SDN: A comprehensive survey and performance

evaluation,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 388–415,

1st Quart., 2018.

[25] P. Khadivi, S. Samavi, and T. D. Todd, ‘‘Multi-constraint QoS routing

using a new single mixed metrics,’’ J. Netw. Comput. Appl., vol. 31, no. 4,

pp. 656–676, Nov. 2008.

[26] P. T. A. Quang, J.-M. Sanner, C. Morin, and Y. Hadjadj-Aoul, ‘‘Multi-

objective multi-constrained QoS routing in large-scale networks: A genetic

algorithm approach,’’ in Proc. Int. Conf. Smart Commun. Netw. Technol.

(SaCoNeT), Oct. 2018, pp. 55–60.

[27] S. Torkzadeh, H. Soltanizadeh, and A. A. Orouji, ‘‘Multi-constraint QoS

routing using a customized lightweight evolutionary strategy,’’ Soft Com-

put., vol. 23, no. 2, pp. 693–706, 2019.

[28] D. Kalaiselvi and R. Radhakrishnan, ‘‘Multiconstrained QoS routing using

a differentially guided krill herd algorithm in mobile ad hoc networks,’’

Math. Problems Eng., vol. 2015, pp. 1–10, Sep. 2015.

[29] X. Liu, A. Liu, T. Wang, K. Ota, M. Dong, Y. Liu, and Z. Cai, ‘‘Adaptive

data and verified message disjoint security routing for gathering big data

in energy harvesting networks,’’ J. Parallel Distrib. Comput., vol. 135,

pp. 140–155, Jan. 2020.

[30] X. Zhang, W. Hou, L. Guo, Q. Zhang, P. Guo, and R. Li, ‘‘Joint opti-

mization of latency monitoring and traffic scheduling in software defined

heterogeneous networks,’’Mobile Netw. Appl., vol. 25, no. 1, pp. 102–113,

Feb. 2020.

[31] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

‘‘The Internet topology zoo,’’ IEEE J. Sel. Areas Commun., vol. 29, no. 9,

pp. 1765–1775, Oct. 2011.

[32] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, ‘‘Multi-controller based software-

defined networking: A survey,’’ IEEE Access, vol. 6, pp. 15980–15996,

2018.

[33] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, ‘‘Lagrange relaxation

based method for the QoS routing problem,’’ in Proc. IEEE Conf. Com-

put. Commun., 20th Annu. Joint Conf. IEEE Comput. Commun. Soc.

(INFOCOM), vol. 2, Apr. 2001, pp. 859–868.

[34] S. Boyd, L. Xiao, and A. Mutapcic, ‘‘Subgradient methods,’’ Stanford

Univ., Stanford, CA, USA, Lecture Notes EE392o, Autumn Quart., 2003,

vol. 2004, pp. 2004–2005.

[35] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,

‘‘P4: Programming protocol-independent packet processors,’’ SIGCOMM

Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[36] P4 Language Consortium. (2020). Behavioral Model Repository. [Online].

Available: https://github.com/p4lang/behavioral-model

[37] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, and W. Snow, ‘‘ONOS: Towards an open,

distributed SDN OS,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined

Netw., 2014, pp. 1–6.

[38] P4 Language Consortium. (2020). P4 Runtime. [Online]. Available:

https://p4.org/p4-runtime/

[39] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation

in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,

no. 2, pp. 69–74, Mar. 2008.

[40] (Jun. 25, 2012). OpenFlow Switch Specification, Version 1.3.0 (Wire

Protocol 0x04). [Online]. Available: https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-spec-v1.3.0.pdf

VOLUME 8, 2020 104125

N. Varyani et al.: QROUTE: An Efficient QoS Routing Scheme for Software-Defined Overlay Networks

[41] Y. Xiao, K. Thulasiraman, and G. Xue, ‘‘GEN-LARAC: A generalized

approach to the constrained shortest path problem under multiple additive

constraints,’’ in Algorithms and Computation, X. Deng and D.-Z. Du, Ed.

Berlin, Germany: Springer, 2005, pp. 92–105.

[42] W. Khallef, M. Molnar, A. Benslimane, and S. Durand, ‘‘Multiple con-

strained QoS routing with RPL,’’ in Proc. IEEE Int. Conf. Commun. (ICC),

May 2017, pp. 1–6.

[43] X. Hu, K. Wang, J. Wang, K. Wang, Y. Hu, and S. Wang, ‘‘Multi-

constrained routing optimization algorithm based on DAG,’’ in Proc. 44th

Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2018, pp. 5906–5910.

[44] A. Pasic and P. Babarczi, ‘‘Delay aware survivable routing with network

coding in software defined networks,’’ in Proc. 7th Int. Workshop Reliable

Netw. Design Modeling (RNDM), Oct. 2015, pp. 41–47.

[45] N. Zilberman, Y. Audzevich, G. Kalogeridou, N. Manihatty-Bojan,

J. Zhang, and A. Moore, ‘‘NetFPGA: Rapid prototyping of networking

devices in open source,’’ACMSIGCOMMComput. Commun. Rev., vol. 45,

no. 4, pp. 363–364, Sep. 2015.

[46] Barefoot Networks. (2020). Barefoot Tofino Switch ASIC. [Online]. Avail-

able: https://www.barefootnetworks.com/products/brief-tofino/

[47] Cisco. (2020). Cisco Annual Internet Report (2018–2023) White Paper.

[Online]. Available: [Online]. Available: https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/white-

paper-c11-741490.html

[48] Service Requirements for Next Generation New Services and Markets,

document TS 22.261, Release 15, 3GPP, Aug. 2016. [Online].

Available: https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=3107

[49] M. Singh, N. Varyani, J. Singh, and K. Haribabu, ‘‘Estimation of end-

to-end available bandwidth and link capacity in SDN,’’ in Ubiquitous

Communications and Network Computing, N. Kumar and A. Thakre, Ed.

Cham, Switzerland: Springer, 2018, pp. 130–141.

[50] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, ‘‘Modeling TCP through-

put: A simple model and its empirical validation,’’ ACM SIGCOMM Com-

put. Commun. Rev., vol. 28, no. 4, pp. 303–314, Oct. 1998.

NITIN VARYANI received the B.E. and M.E.

degree in computer science from the Birla Institute

of Technology and Science, India, in 2014 and

2016, respectively. He pursued a research intern-

ship in the area of software defined networking at

the National Cybersecurity Research andDevelop-

ment Lab, NUS School of Computing, Singapore.

He is currently pursuing the Ph.D. degree in com-

puter science with the University of Minnesota,

USA, under Prof. Zhi-li-Zhang.

His research interests include software defined networking, network func-

tion virtualization, mobile edge computing, and enabling quality of service

in networking. He has published articles in top computer science conferences

such as IFIP/IEEE IM, IEEE AINA, and EAI UBICNET. He is serving as a

Reviewer for various journals such as Future Generation Computer Systems,

the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and the IEEE Network

Magazine.

ZHI-LI ZHANG (Fellow, IEEE) received the B.S.

degree in computer science from Nanjing Uni-

versity, China, and the M.S. and Ph.D. degrees

in computer science from the University of

Massachusetts.

He joined the faculty of the Department of

Computer Science and Engineering, University of

Minnesota, in 1997, where he is currently the

McKnight Distinguished University Professor and

a Qwest Chair Professor in Telecommunications.

He also serves as the Associate Director for Research at the Digital Technol-

ogy Center, University ofMinnesota. He has publishedmore than 100 journal

and conference/workshop papers, many of them in top venues in networking

and related fields. His research interests include broadly in computer and

communication networks, Internet technology,multimedia systems, and con-

tent distribution networks, cyber-physical systems and Internet-of-Things,

and (applied) machine learning and data mining.

Dr. Zhang was a co-recipient of several Best Papers awards including

IEEE INFOCOM, ICNP, and ACM SIGMETRI.CS. He has Chaired the

program committees of several major conferences in networking including

IEEE INFOCOM, ACM SIGMETRICS, IEEE ICNP, and ACM Internet

Measurement Conference (IMC), and served on the Editorial Board of

several journals such as the IEEE/ACM TRANSACTIONS ON NETWORKING, ACM

TOMPECS, and PACM MACS.

DAVID DAI received the B.S. degree in

mechanical engineering from Shanghai Jiao Tong

University, in 1989, and the M.S. degree in civil

engineering and computer engineering from the

University of Missouri-Columbia, in 1995.

He is currently the Sr. Director of Engineering

with Futurewei Technologies, Inc., Santa Clara,

CA, USA. He leads a high-performance Research

and Development team with expertise in the areas

of cloud computing, edge computing, network vir-

tualization, SDN, SD-WAN, overlay networking, and service chaining. His

team prototypes and develops the infrastructure and technology needed for

mobile broadband solutions. He provides expertise and direction instrumen-

tal to the definition and design of new architecture and technologies needed

to drive adoption of NFV, SDN, cloud, and other related IT technologies

into 5G and MEC architecture. He proposes technology research initiatives,

from concept, analysis, detailed architecture definition, and specifications,

to project planning, budgeting, execution, prototype development, and vali-

dation and transform technologies to products.

104126 VOLUME 8, 2020

	INTRODUCTION
	PROBLEM FORMULATION
	SYSTEM FRAMEWORK
	OVERVIEW OF QROUTE
	MATHEMATICAL FORMULATION

	QROUTE CONTROL PLANE
	PRIMARY ROUTING DAG
	OPTIMIZING THE ``SUB-PROBLEM''
	GENERATING A ROUTING DAG USING THE ``SUB-PROBLEMS''
	MEETING THE BANDWIDTH REQUIREMENTS

	BACKUP ROUTING DAG

	QROUTE DATA PLANE
	REDUCING FORWARDING ENTRIES IN THE DATAPLANE
	DATA-PLANE FORWARDING ALGORITHM

	FRAMEWORK FOR EVALUATING PATH PERFORMANCE
	EVALUATION
	TRACE-DRIVEN EVALUATION
	EVALUATION ON P4 SWITCHES
	TEST-BED DESCRIPTION
	P4 PSEUDO-CODE FOR THE QROUTE OVERLAY HEADER AND ROUTERS
	RESULTS

	RELATED WORK
	LAGRANGE-RELAXATION BASED ROUTING SCHEMES
	DIRECTED-ACYCLIC-GRAPH (DAG) BASED ROUTING SCHEMES
	OTHER APPROACHES FOR ROUTING IN SOFTWARE-DEFINED OVERLAY NETWORKS

	CONCLUSION AND FUTURE WORK
	DETAILED DISCUSSION OF OUR P4 SWITCHES TEST-BED
	INGRESS ROUTER OPERATION
	INTERMEDIARY ROUTER OPERATION
	EGRESS ROUTER OPERATION
	MEASURING QoS METRICS FOR THE LINKS
	SIMULATING LINK FAILURES

	MEASURING AVAILABLE BANDWIDTH IN OVERLAY NETWORKS HAVING BACKGROUND TRAFFIC
	REFERENCES
	Biographies
	NITIN VARYANI
	ZHI-LI ZHANG
	DAVID DAI

