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ABSTRACT Objective: Accurate QRS complex detection is essential for electrocardiography (ECG)

diagnosis. Many proposed algorithms don’t perform satisfactorily on noisy and arrhythmia ECGs. The

purpose of this study is to develop a noise resistant and generalizable method to detect QRS complexes

accurately. Methods: Two deep learning models based on multi-dilated convolutional blocks are proposed.

One model (CNN) is mainly composed of convolutional blocks and Squeeze-and-Excitation networks

(SENet). The other model (CRNN) contains a hybrid convolutional and recurrent neural network. With

5-fold cross-validation approach the models are trained and tested on four open-access ECG databases:

the China Physiological Signal Challenge (2019) database (CPSCDB), the MIT-BIH Noise Stress Test

Database (NSTDB), the MIT-BIH Arrhythmia Database (MITDB) and the QT Database (QTDB). Results:

The F1 score of CNN model on CPSCDB, NSTDB, MITDB and QTDB are 0.9929, 0.9892, 0.9994 and

0.9998 respectively. The F1 score of CRNN model on these four databases are 0.9947, 0.9953, 0.9995 and

0.9998 respectively. The ensemble of both models scored the first place in the China Physiological Signal

Challenge (2019). Conclusion: The proposed models achieve state-of-the-art performance in QRS complex

detection and show good generalization on different databases. This work might help make better ECG

diagnosis.

INDEX TERMS Convolutional neural network, deep learning, electrocardiography, QRS complex, recurrent

neural network.

I. INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of death

globally, taking around 17.8 million lives each year [1].

Electrocardiogram (ECG) is the most widely used diagnostic

tool for CVD. It is easily performed, noninvasive and can give

immediate information. About 3 million ECGs are produced

each day throughout the world [2]. With the development

of wearable devices, more and more ECGs are generated

for analysis. Automated diagnostic methods are required to

process ECGs generated by wearable devices and to reduce

doctors’ workload. Many diagnostic methods are based on

accurate QRS complex detection. QRS complexes serve as

the beat positions and provide information about rhythm

and intraventricular conduction. Normally they are the most

prominent parts of the ECG and can be easily identified by

human eyes. A lot of algorithms have been developed to

automatically detect QRS complex since several decades ago.

Common QRS complex detectors share a two-stage structure
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including the preprocessing stage and the decision stage [3].

The preprocessing stage takes advantages of linear filtering

and non-linear transformation to enhance QRS complex and

attenuate other waves, noises and artifacts. The decision

stage establishes the peak detection logic and additional

decision rules to optimize the detection results. The popu-

lar methods include digital filtering [4], [5], wavelet trans-

form [6]–[9], empirical mode decomposition [10], Hilbert

transform [5], [8], and machine learning [11], [12]. A recent

study tested ten widely used QRS detection algorithms on

six ECG databases with varying degrees of noise and found

that these algorithms showed very high detection accuracy on

high quality ECG databases but poor accuracy on low quality

ECG signals [13]. For long-term ECG monitoring, intermit-

tent strong noise is unavoidable due to patient movement,

muscle activity or even loose lead contact. It still remains

a challenge to locate them accurately on noisy arrhythmic

ECG.

Deep learning has been very successful in computer vision,

natural language processing and speech recently. It’s reported

that a deep neural network achieved better than average

97082 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-9630-5516
https://orcid.org/0000-0001-6193-2619


W. Cai, D. Hu: QRS Complex Detection Using Novel Deep Learning Neural Networks

FIGURE 1. Schematic diagram for the proposed QRS complex detection method.

cardiologists in classifying 12 rhythm classes ECG [14]. And

there have already been a few deep learning approaches to

detect QRS complexes. Wang et al. proposed two parallel

residual neural network (ResNet) like deep neural networks

and achieved positive predictive value of 99.98% and sensi-

tivity of 99.92% on ECG data from the MIT-BIH Arrhythmia

Database (MITDB) [15]. However, they discarded 2 records

and the last 4.44 seconds of each remaining record, which

might attenuate the model’s generalization. Xiang et al. con-

structed two-level convolutional neural network and got pos-

itive predicted value of 99.91% and sensitivity of 99.77%

for the MITDB data [16]. Yang et al. turned one dimen-

sional ECG into two dimensional picture and used a faster

Regional CNN model to detect QRS complexes. They tested

the model on 24-h wearable ECG recordings and got a sensi-

tivity of 98.76% and a positive predictively of 98.52% [17].

These results are comparable to state-of-the-art approaches

and show promising application of deep learning in QRS

complex detection. However, according to the research done

by Habib et al., the CNN model didn’t generalize well

when the testing database was different from the training

database [18]. A more generalized and robust QRS detector

is required for real application.

The aim of this study is to propose a noise-resistant deep

learning method that reaches cutting edge performance for

QRS complex detection and generalizes well in different

ECG databases. Our algorithms won the first place in the

CPSC2019 and achieved state-of-the-art accuracies on three

other common ECG databases.

II. DATABASES

The China Physiological Signal Challenge (2019) database

(CPSCDB) consists of 5232 single-lead ECG recordings

which were collected from patients with CVD [19]. It con-

tains many noisy ECG excerpts together with various arrhyth-

mia patterns. All recordings are sampled at 500 Hz and

each is 10 s long. The training set has 2000 recordings

and was used for training. The test set has 3232 record-

ings and was used for algorithm performance evaluation by

the challenge committee. This database can be accessed at

http://2019.icbeb.org/Challenge.html.

MITDB consists of 48 half-hour two-lead ECGs which are

sampled at 360 Hz [20]. It’s the most popular standard ECG

database tested for QRS detection algorithms. Because there

is only one record that contains ventricular flutter segments,

model training and testing can’t be reasonably arranged.

In the same way as others [7], [10], [21] we also excluded

the ventricular flutter segments in record 207 and used all

109494 beats in this study.

FIGURE 2. Preprocessing for removing towering spikes.

NSTDB has 12 half-hour ECG recordings. These

recordings were created by adding calibrated amounts of

noise to two clean records (118 and 119) fm MITDB. The

noise signal was added intermittently after the first 5 min of

each record. The signal-to-noise ratios (SNR) of the noisy

segments are: 24, 18, 12, 6, 0, −6 dB [22].

QTDB contains 105 fifteen-minute two-lead recordings

which have various QRS and ST-T morphologies. 23 records

have no annotations and the remaining 82 records were

selected for our research. These recordings have a sampling

rate of 250 samples per second. To be consistent with most

reports, the first lead data in these three databases were used

in this study.

III. METHODS

The flowchart of our proposed method is shown in Figure 1.

The raw ECG is preprocessed and then fed into a deep learn-

ing model. The model’s output information is further judged

by the decision rules to obtain the final result.

A. PREPROCESSING

Single towering spike whose voltage is more than 20 mV

is examined and replaced by the normal sample immedi-

ately before it (Figure 2). These spikes are only existed in

CPSCDB and the spike removal algorithm makes no change

to the recordings in other three databases. All ECG recordings

are resampled to 500 Hz using fast Fourier transformation

method. To achieve better model generalization, the mean

of signal values is subtracted for each recording. No further

preprocessing such as differentiating, normalization or noise

filtering is required.
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FIGURE 3. The architectures of proposed deep learning models. (a) CNN model. (b) CRNN model. (c) The architecture of
each dilated block.

TABLE 1. Details of the dilated blocks.

B. PROPOSED DEEP LEARNING MODELS

The proposed CNN model is shown in Figure 3a. There

are three parallel dilated CNN blocks following the input

layer and each convolutional block contains six 1D con-

volution layers (Figure 3c). The first convolution layer has

the kernel size of 11. The second and third convolution

layers are stacked and have the kernel size of 7. The rest

three convolution layers are also stacked with the kernel size

of 5. Different sets of dilation rate for convolution layers

were designed for these dilated blocks. A dilation rate of 2

means a convolution takes every other point as the input.

The combination of different dilation rates is to get different

receptive fields for the output neurons. The details are shown

in Table 1. Block 1 has the smallest receptive field size that is

equivalent to 0.18 s of original samples. The receptive fields

of block 2 and block 3 are 0.97 s and 3.97 s of ECG samples

respectively. The batch normalization layer connected to the

convolution layer is used to speed up the training process

and improve generalization. TheMax pooling layer following

the batch normalization layer is to down-sample the features

while keeping important information. Then the concatenation

features extracted by convolutional blocks are fed into the

squeeze-and-excitation networks (SENet) followed by three

fully connected layers. The last layer uses sigmoid activation

to predict QRS complexes. The size of the output layer is

one-eighth the size of the input layer. So every output point

denotes 0.016 s of the original signal. And eachQRS complex

is expected to correspond to 7 points in the output which equal

0.112 s.

The proposed CRNN model is basically the same as the

CNN model except that two stacked LSTM layers are added

before the SENet (Figure 3b). LSTM layers are good at deal-

ing with time series data. They can extract temporal features

while convolution layers can only extract local features.

The input layer of both models accept variable input sizes.

In current study, we input 10 s long segments of the training

sets into the models during training to take full advantage

of the parallel performance of the GPU. And we used the

original recordings in the test sets for fast model inference.

C. MODEL TRAINING

The models are built using Keras which is a user-friendly

python library for deep learning. Adam is selected as the

training optimizer and its learning rate is set between

1e-3 and 1e-4. The models are trained 60 to 100 epochs with

the batch size of 200. Data augmentation techniques such as

adding random amount of Gaussian noise, combining a sinu-

soidal signal with random initial phase and amplitude [23],

randomly shifting the baseline and making the signal upside

down are applied on the fly to the input data. And So

the models hardly see two identical inputs during training.

It’s very helpful for deep learning models to improve their

performance and robustness.

D. PEAK LOCALIZATION

The decision stage is to localize the QRS complexes by

finding the peaks from the output of the deep learning model.

A fixed threshold of 0.5 is set for the output to determine

whether the samples belong to a QRS complex. Another

threshold of 64 ms for the duration of clustering positive

samples is set to eliminate some wrong predictions. If the

duration of clustering positive samples is longer than 64 ms,

the midpoint of these samples is considered as a QRS com-

plex candidate. After all the candidates are determined, the

distances of adjacent candidates are calculated. If there are
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two candidates whose distance is less than 100 ms, the candi-

date with low confidence score will be removed. The search

will be repeated until all the distances between adjacent

candidates are more than 100 ms. This algorithm was used

in CPSC 2019. However, it may miss paced beats. To fix

that, further search should be performed to locate where the

distances are greater than 1200 ms between adjacent QRS

complexes. For these periods, if there exists at least one

point that is great than 0.5, the threshold of the duration

of clustering positive samples is reduced by 16 ms and this

process will continue until a new QRS candidate is found or

the threshold decreases to zero.

E. PERFORMANCE EVALUATION

For CPSCDB, the accuracy of QRS location and heart rate

(HR) estimations are used for performance evaluation. The

evaluation algorithm, which is provided by the challenge

committee, compares the reference QRS annotations and the

predicted ones for every single ECG recording from 0.5 s

to 9.5 s in the test set. The first and last half second is

omitted. Each predicted location is deemed accurate if it lies

within 75 ms duration of the reference location. When all

the predicted locations and the annotated locations are totally

matched, that recording scores one point. If there is only one

false positive (FP) or false negative (FN) in the prediction,

the recording scores 0.7 and 0.3 points respectively. For other

situations, the recording scores 0 point. The detailed QRS

scoring rules for a single recording are as follows:

QRSscore =















1, FP+ FN = 0

0.7, FP = 1, FN = 0

0.3, FP = 0, FN = 1

0, FP+ FN > 1

(1)

The final QRS score is calculated as follows:

QRSacc =

∑

QRSscore

N
(2)

where N is the number of test recordings.

HR is calculated between 5.5 s and 9.5 s from each

recording. Its scoring rules are described in the following two

equations.

HRrel =

∣

∣HRref − HRtest
∣

∣

HRref
(3)

where HRref is the reference QRS location and HRtest is the

predicted QRS location.

HRscore =































1, HRrel ≤ 0.02

0.75, 0.02 ≤ HRrel ≤ 0.05

0.5, 0.05 ≤ HRrel ≤ 0.1

0.25, 0.1 ≤ HRrel ≤ 0.2

0, HRrel > 0.2

(4)

The final QRS score is calculated as follows:

HRacc =

∑

HRscore

N
(5)

where N is the number of test recordings.

Sensitivity (Se), positive predictive value (PPV), error rate

(ER) and F1 are calculated in all databases. These metrics are

defined as follows:

Se (%) =
TP

TP+ FN
× 100 (6)

PPV (%) =
TP

TP+ FP
× 100 (7)

Er (%) =
FP+ FN

TP+ FP+ FN
× 100 (8)

F1 (%) =
2 × Se× PPR

Se+ PPR
(9)

where TP is true positive and TN is true negative. The

standard grace period of 150 ms is used for beat-by-beat

comparison [24].

Three kinds of model evaluation strategies are used

on NSTDB, MITDB and QTDB. At first we performed

cross-database testing, which means the model is trained first

on CPSCDB and then tested on other databases. Secondly

we performed 5-fold cross-validation forMITDB andQTDB.

Since the data in NSTDB are basically mixture of two records

from MITDB with electrode motion (EM) artifact and some

other noise, 5-fold cross-validation will lead to data leakage.

We referred to Jia et al’s method [6] to make a training set

by adding the unused part of EM noise in NSTDB to the

last 20 records in MITDB and then tested the models on

the whole NSTDB. Lastly we performed fine-tuning, which

means the model is trained first on CPSCDB and then eval-

uated on MITDB and QTDB with 5-fold cross-validation

strategy or the specific method mentioned above for NSTDB.

When 5-fold cross-validation is used, the recordings of a

database are randomly split into 5 folds. The data in each

unique fold used for testing is kept in an unsegmented state,

whereas the recordings in the remaining folds are cut into 10 s

segments, which are fed into the model during the training

process.

IV. RESULTS

Two examples of using the proposed method for QRS

detection are showed in Figure 4. The upper figure shows

our CNN model identifies QRS complexes on an excerpt

of arrhythmic ECG with drifted baseline. The lower figure

shows that dynamic threshold for duration of clustering pos-

itive samples in our decision stage avoids a missed paced

heartbeat detection.

A. CPSCDB

To optimize the deep learning architecture for QRS detection,

different dilated CNN blocks or SENet of our proposed

models were removed. Their performance was evaluated

using 5-fold cross-validation (Table 2). The CNN model

showed good predictive ability. Its QRSacc, HRacc, Se, PPV,

ER and F1 were 91.23%, 94.67%, 99.26%, 99.31%, 1.42%

and 0.9929 respectively. When one of the dilated blocks was

removed from the proposed CNN model, the performance

on all these metrics decreased. Among these three blocks,

block 3 was more important, and the performance fell most
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TABLE 2. QRS detection performance of different architectures on CPSCDB.

FIGURE 4. Two examples of using the proposed method for QRS
detection. For each figure, the upper part is the raw ECG signal and the
lower part is the model’s output. Red inverted triangles indicate reference
annotations. Black inverted triangles indicate predicted QRS locations.
Red circle shows where dynamic threshold for duration of clustering
positive samples is used in the decision stage. (a) is from recording 956 in
CPSCDB and (b) is from recording 104 in MITDB.

significantly after it was removed. The lack of block 2 had

the least impact on the overall performance. When two of

the blocks were removed, the model performance further

decreased. Retaining block 3 performed slightly better than

retaining any other blocks. SENet could help the model get

better overall performance. The CRNN model has two more

TABLE 3. Model performance on CPSCDB test sets.

stacked LSTM layers than the CNNmodel and it significantly

improved QRS detection performance, especially QRSscore
and HRscore. Ensemble model of CNN and CRNN, which

averages CNN output and CRNN output, showed best in all

metrics except HRacc. And it was used to participate in the

CPSC2019 and won the first place. As shown in Table 3,

our final QRSacc and HRacc reached 92.14% and 94.89%

which were 0.59% and 0.60% higher respectively than that

of the second place.

B. NSTDB

The Se and PPV of different training strategies on NST

database are shown in Table 4. In all four different cases,

signals with high SNR were all well identified, whereas

the performance differed significantly in signals with low

SNR. The overall performance comparison of our methods

with others’ is shown in Table 5. Our cross-database testing

performance of both models is comparable to most published

results. The CNN model trained from scratch showed bet-

ter results and the fine-tuned CNN model further improved

its performance. The state-of-the-art result was got by the

fine-tuned CRNN model which was pre-trained on CPSCDB

and retrained on NSTDB.

C. MITDB

The performance of our models and some recent published

results on MITDB is reported in Table 6. Cross-database

testing showed the CNN model had better recognition of
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TABLE 4. Model performance on NSTDB.

TABLE 5. Comparison of the overall QRS detection performance on
NSTDB.

QRS complexes than the CRNN model. Its Se, PPV, ER and

F1 are 99.91%, 99.90%, 0.19% and 0.9991 respectively.

Cross-validation results of the CNN model showed similar

results. The fine-tuned CNN model outperformed other pub-

lished methods in terms of all four types of metrics. The

fine-tuned CRNN model got the best overall performance

with Se of 99.94%, PPV of 99.97%, ER of 0.09% and F1 of

0.9995.

D. QTDB

The performance comparison of our methods with others’

is shown in Table 7. Cross-database testing results of the

CRNNmodel were only better than Pan-Tompkins algorithm

while the results of the CNN model were comparable to

other reported results. In other situations our CNNmodel and

CRNN model reached the new high evaluation score with

F1 of 0.9998. They were superior to known published results

from various methods.

V. DISCUSSION

In this report, we introduced two novel deep learning models

that could perform accurate, robust and noise-resistant QRS

complex detection. Unlike many algorithms whose per-

formance decreased significantly when tested on different

TABLE 6. Comparison of the QRS detection performance on MITDB.

TABLE 7. Comparison of the QRS detection performance on QTDB.

databases [13], our methods were validated on a challenge

database and three commonly used database and showed

good generalization. Deep learning models normally get bet-

ter results when they were trained with more data. However,

the model’s generalization capacity does not increase by sim-

ply adding more similar ECG samples [18]. That’s because
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ECG is composed of many repeated patterns and when the

model has already learned them, more similar data won’t

help improve the model’s performance. But a diverse range

of subjects are useful [18] because they have many new

patterns and help improve the model’s robustness. Since

CPSCDB has noisier data and the recordings are abundant

with various arrhythmic patterns, it’s quite different from

other databases. So the model’s performance can be further

improved when the model is trained on a new database

together with CPSCDB. And we believe with more dynamic

arrhythmic ECG data, our models can achieve even better

performance in QRS complex detection.

Besides the data, deep learning algorithm is critical for

output results. The key part of our algorithm is the three

parallel dilated CNN blocks. They share the same parameters

except the dilation rates which affect the receptive field of

an output neuron. A small receptive field makes the cor-

respondence between output and input data more accurate,

while a large receptive field makes the output result represent

more original data. Table 3 shows that combination of three

different receptive fields has optimal results. Removal of a

medium-sized receptive field has less effect on the model

performance than removal of a small or large receptive field.

This is because the model can still take into account both

local features and enough nearby information simultaneously

when block 2 is removed. If only one block is left in the

model, larger receptive field size is better because the iden-

tification of QRS waves in noisy ECG cannot be directly

recognized from the local morphology, but requires a long

period of data for comprehensive consideration. So models

with three parallel convolutional blocks showed robust and

outstanding performance in various ECG databases. SENet,

which was introduced in ILSVRC 2017 classification chal-

lenge andwon the first place [27], can further improve the end

results. It introduces channel-wise attention mechanism to

the output features of convolutional blocks and improves the

models’ performance at minimal additional computational

cost.

The fine-tuned CRNN model showed powerful ability

in identifying QRS complexes in different ECG databases.

It increased F1 value by 0.62% in NSTDB and by 0.18%

in CPSCDB compared with the fine-tuned CNN model.

However, it improved performance just a little bit in MITDB

and QTDB. The reason is probably related to the noise

level existed in the ECG database. NSTDB has the noisiest

recordings and CPSCDB contains many low signal quality

recordings, while MITDB and QTDB have relatively clean

ECG data. For hard ECG excerpts, it’s difficult to identify

QRS complexes just from their morphology. Instead, the loca-

tion of the QRS complexes can be inferred from adjacent

heartbeats or farther signals with high quality. The stacked

LSTM layers in CRNN model are good at dealing with long

sequential data because an LSTM unit has memories of pre-

vious data by controlling the information flow through three

gates which are an input gate, a forget gate and an output

gate [28]. Whereas, convolutional layers can only extract

TABLE 8. Comparison of models’ inference speed.

local morphology features and lack of information from far-

ther signals. So the CRNNmodel is superior to CNNmodel in

identifying QRS complexes of noisy ECG data. However, the

cross-database testing showed that the generalization of the

CRNN model was not as good as the CNN model. It implies

that the CRNN model is more prone to overfitting when

trained in a single database. Another disadvantage of the

CRNNmodel is that it has 12 timesmore trainable parameters

than the CNN model. That leads to slow model training and

slow inference. Table 8 shows the models’ average inference

time for one second ECG sample. The wall time indicated

the real time consumption and was influenced greatly by

the numbers of CPUs and threads that participated in the

program running. The CPU time indicated the total amount

of time that used by all CPU cores for running the program.

The CNN model took 15.7 ms of CPU time to process a

one-second sample in CPSCDB, and it took less than half of

the CPU time for samples in MITDB and QTDB. Whereas,

the time consumed by the CRNN model is 17-32 times that

of the CNN model. The wall time of processing a 30-min

MITDB ECG recording by the CNN model is around 1.26 s

and it’s comparable with some conventional algorithms [29].

The CNNmodel can be implemented for real-time heartbeats

monitoring and ECG analysis, while the CRNN model is

suitable to be deployed on a workstation for static ECG

analysis.

There are several limitations of our method. First, the

predicted QRS locations are only approximate to the R-peak.

That is because the size of the model output is only one

eighth of the model input size and the final QRS locations

are obtained by multiplying the peak positions in the output

by eight. Second, our models can’t recognize ventricular

flutter.We just excluded the flutter segments ofMITDBwhen

testing our models. Third, the threshold of models’ output

confidence is arbitrarily set at 0.5 in the decision stage. Other

values or dynamic threshold may further improve model’s

performace.

VI. CONCLUSION

In this paper, we proposed two models with multi-dilated

convolutional blocks and tested them on various ECG

databases. The CNN model runs fast, achieves high per-

formance and generalizes well. The CRNN model makes

new state-of-the-art performance on several databases but it’s

computationally expensive. Both models show the powerful

potential of artificial intelligence in ECG analysis.
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