
Introduction

As the use of Quantitative Structure Activity
Relationship (QSAR) models for chemical manage-
ment increases, the reliability of the predictions
from such models is a matter of growing concern.
The OECD QSAR Validation Principles recommend
that a model should be used within its applicability
domain (AD; 1). The Setubal Workshop report (2)
provides conceptual guidance on defining a (Q)SAR
AD, but it is difficult to use directly. It states that:
The AD of a (Q)SAR is the physico-chemical, struc-
tural, or biological space, knowledge or information
on which the training set of the model has been
developed, and for which it is applicable to make
predictions for new compounds. The AD of a
(Q)SAR should be described in terms of the most rel-
evant parameters i.e. usually those that are descrip-
tors of the model. Ideally, the (Q)SAR should only be
used to make predictions within that domain by
interpolation not extrapolation. This definition
helps explain the intuitive meaning of the “AD”
concept, but its practical application requires an
operational definition allowing automatic (comput-
erised) design and quantitative procedure to deter-
mine a model’s AD. The lack of such guidance and
tools for assessing ADs are discussed in a paper by
Tunkel et al. (3).

Models yield reliable predictions when the mod-
els’ assumptions are met, and unreliable predic-

tions when these assumptions are violated. The
chemical space occupied by a training data set is the
basis for estimating where reliable predictions will
occur, because, in general, interpolation is more
reliable than extrapolation. A training set can be
analysed in the model descriptor space, where
chemicals are represented as points in a multivari-
ate space, or directly by structural similarity analy-
sis. The similarity approach to AD estimation relies
on the premise that QSAR predictions are reliable if
compounds are “similar” to the training set com-
pounds (4). However, chemical similarity is a sub-
jective term, and different concepts of similarity are
relevant to different endpoints (5–8). This paper
takes a statistical approach and examines AD
assessment by estimation of interpolation regions
in model descriptor space on the basis of the train-
ing data set. 

Methods

There are four major approaches to defining inter-
polation regions in multivariate space: range, dis-
tance, geometrical, and probability density
distribution. Our choice of methods is not exhaus-
tive, but focuses on the approaches which are most
suitable as regression and classification models.
Interpolation is the process of estimating values at
arbitrary points between the points with known
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values. An interpolation region in one-dimensional
descriptor space is simply the interval between the
minimum and maximum values of the training data
set. A convex hull defines an interpolation region in
multivariate descriptor space. The convex hull of a
bounded subset of space is the smallest convex area
that contains the original set. Readers seeking fur-
ther details on the mathematical terms used in this
paper may consult http://en.wikipedia.org/wiki/
Main_Page. 

Training sets in QSAR research

In practice, QSAR developers use retrospective
data, often from different sources. Therefore, the
selection of training data sets does not follow exper-
imental design patterns; this results in large empty
regions within the convex hull enclosing the data
set. This paper’s case study is an example of such a
situation (9, 10; Figure 1). There are also chemicals
outside the convex hull, but inside the ranges of the
training set. The meaning of this is, in general, that
different methods estimate the convex hull and
therefore the AD in different ways. In order to pro-
vide guidance on choosing a method, we pay partic-
ular attention to the assumptions for each of the
methods reviewed. 

Some authors consider the training set to consist
only of independent variables (11, 12). Considering
only the x-space part of the training set leaves out
the information about the prediction space (i.e. y-
space). Including both x-space and y-space allows
the model to incorporate all the information con-
tained in the training set, and prevents situations
where data points are interpolated in x-space but
are extrapolated in y-space. This can occur in linear
models with two or more descriptors, with non-lin-
ear models with one or more descriptors, and is
related to the amount of empty space included by a
particular interpolation approach while estimating
the AD. As the empty space a particular interpola-
tion approach covers, declines, so does the need to
include y-space in the assessment.

Thus, we propose to analyse the training set data in
n-dimensional descriptor space and m (most often m
= 1) dependent variables (property) space. In the case
study analysed in this paper, we assess x-space and y-
space separately. Because the usual dimensionality of
y is 1, we assess the domains of y-values with a range
method. A chemical will be in the domain if both con-
ditions are satisfied. It is also possible to combine x-
space and y-space and estimate joint interpolation
space, but this approach is more suitable to probabil-
ity distribution based methods.

Ranges

Descriptor ranges

The simplest method for approximating a convex hull
is taking ranges of the individual descriptors. These
ranges define an n-dimensional hyper-rectangle with
sides parallel to the coordinate axes. The data are
assumed to be distributed uniformly (13). The hyper-
rectangle neither detects interior empty space nor cor-
rects for correlations (linear or nonlinear) between
descriptors. This approach may enclose considerable
empty space, if the data are not uniformly distributed.

Principal components ranges

Principal Components Analysis (PCA) is a rotation of
the data set to correct for correlations between
descriptors. The principal components form a new
orthogonal coordinate system. The rotation yields
axes aligned with the directions of the greatest varia-
tions in the data set. The points between the mini-
mum value and the maximum value of each principal
component define an n-dimensional hyper-rectangle
with sides parallel to the principal components. This
hyper-rectangle AD includes empty space, but is
smaller than the hyper-rectangle in the original
descriptor ranges. This method has recently been
used to analyse the KOWWIN model AD (14).

446                                                                                                                                          J. Jaworska et al.

Figure 1: An eLUMO- logP 2D projection of
training data set chemicals (9)
and test set chemicals from
Glende et al. (10) 

= training data set chemicals; = test set chemicals.
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TOPKAT Optimal Prediction Space

The Optimum Prediction Space (OPS) from TOP-
KAT (11) uses a variation of PCA. As in typical
PCA, data are centred, but around the average of
each parameter range ([xmax–xmin]/2) instead of
the standardised mean. The new orthogonal coor-
dinate system is thus obtained (named the OPS
coordinate system) by the same procedure —
extracting eigenvalues and eigenvectors from the
transformed data’s covariance matrix. The mini-
mum and maximum values of the data points on
each axis of the OPS coordinate system define the
OPS boundary. In addition, the Property Sensitive
object Similarity (PSS) between the training set
and a queried point assesses the confidence of the
prediction. PSS is the TOPKAT implementation of
a heuristic solution to reflect the data set’s dense
and sparse regions, and includes the response vari-
able (y). Readers may consult the TOPKAT patent
(11) for more details. A “similarity search” enables
users to check the performance of TOPKAT in pre-
dicting the effects of a chemical that is structurally
similar to the test structure. The user also has
access to references to the original information
sources.

Geometric methods

The direct method for estimating the coverage of an
n-dimensional set is the convex hull calculation.
Computing the convex hull is a computational
geometry problem (15). Efficient algorithms for
convex hull calculation are available for two and
three dimensions; however, the algorithms’ com-
plexity rapidly increases in higher dimensions (for n
points and d dimensions, the complexity is of order
O[n[d/2]+1]). This approach does not consider data
distribution, but only analyses the set boundary. A
convex hull cannot identify potential interior empty
spaces.

Distance-based methods

Euclidean, Mahalanobis and City block distances

We review the three most useful distance methods
in QSAR research: Euclidean, Mahalanobis, and
City block distances. Distance-based approaches
calculate the distance from each point to a particu-
lar point in the data set. Distance to the mean, aver-
aged distance between the query point and all
points in the data set, and maximum distance
between the query point and data set points, are
examples of the many available options. Categor-
ising data points as close to/in the data set depends
on the threshold chosen by the user. 

Euclidean and Mahalanobis distance methods
identify the interpolation regions by assuming that
the data are normally distributed (13, 16). City-block
distance assumes a triangular distribution.
Mahalanobis distance is unique, because it automat-
ically takes into account the correlation between
descriptor axes through a covariance matrix. Other
approaches require the additional step of PC rotation
to correct for correlated axes. City block distance is
particularly useful for discrete descriptors. The
shape of the iso-distance contours (for example, the
regions at a constant distance) depends on the par-
ticular distance measure used (see Table 1) and on
the particular approach for measuring the distance
between a point and a data set. 

Hotelling T2 and leverage 

Hotelling T2 test and leverage, also distance meth-
ods, have been recommended for assessing QSAR
ADs (17, 18). These measures are proportional to
each other and to the Mahalanobis distance. The
Hotelling T2 method is a multivariate Student’s t-
test and assumes a normal data distribution, as
does the leverage approach (19). In regression, the
term “leverage values” refers to the diagonal ele-
ments of the hat matrix H = (X(X’X)–1X’). A given
diagonal element (h[ii])  represents the distance
between the X value for the ith observation and the
means of all X values. These values indicate
whether X values may be outliers (16, 20). Both
Hotelling T2 and leverage correct for colinear
descriptors through use of the covariance matrix. 

Hotelling T2 and leverage measure the distance
of an observation from the centre of a set of X obser-
vations. A tolerance volume is derived for Hotelling
T2 (18). For leverage, a value of 3 is commonly used
as a cut-off value for accepting predictions, because
points that lie +/– 3 standard deviations from the
mean cover 99% of normally distributed data.  

High leverage values do not always indicate out-
liers for the model, i.e. points that are outside the
model domain. If high leverage points fit the model
well (i.e. have small residuals), they are called
“good high leverage points” or good influence
points. Such points stabilise the model and make it
more precise. High leverage points, which do not fit
the model (i.e. have large residuals) are called “bad
high leverage points” or bad influence points. The
field of robust regression provides a number of
methods for overcoming the sensitivity of Hotelling
T2 and leverage to unusual observations, but that
is beyond the scope of this paper.

Probability density distribution methods 

Another approach to estimating the interpolation
region is the use of probability density distribution



methods (21). Parametric and non-parametric
methods are the two major approaches. Parametric
methods use the probability density function p(x) of
standard distributions such as Gaussian and
Poisson distributions. Alternatively, non-paramet-
ric techniques permit the estimation of probability
density solely from data. 

Non-parametric probability density estimation is
free of assumptions about the data distribution, and
is often referred to as a distribution-free method. It
is the only approach capable of identifying internal
empty regions within the convex hull. Furthermore,
if empty regions are close to the convex hull border,
non-parametric methods can generate concave
regions to reflect the actual distribution of the data.
In other words, this method captures the actual
data distribution. Finally, there is no need to spec-
ify a reference point in the data set. Instead, a prob-
ability of belonging to the set is calculated for each
data point. Because of these attractive features,
which are lacking in other estimation methods,
probability density estimation is explained in more
detail in Appendix 1. 

Relationships between different 
interpolation approaches 

Probability density and all distance-based methods
yield proportional results if the data are normally
distributed (Table 1), and the particular distance
method uses the data mean as a point of reference.
For all other distributions, the distance values are
not proportional to probability density, nor do they
identify the presence of dense and empty regions.

There is no general rule on which methods will
yield the most different results; it all depends on
the specific data distribution. For comparison,
Figure 2 displays AD regions estimated by
Euclidean, Mahalanobis and City block distances,
and probability density distribution based on the
case study data set (9).

Table 2 summarises the reviewed methods for
assessing interpolation regions. In addition to tech-
nical aspects, we compare software availability for
each method. The complexity of these approaches
varies greatly. This may turn some users away from
the more complex but more flexible approaches.
However, increasing accessibility to sophisticated
numerical methods through software packages
allows even non-experts to apply computationally
difficult methods. 

Different results versus different methods 

Figure 2 shows that different interpolation
approaches yield different ADs. This may leave
readers wondering which method to choose in spe-
cific situations. The choice of the particular method
is straightforward: the data distribution must meet
the assumptions of the method. If the training set
data are uniformly distributed, the ranges approach
would be recommended. If not, data distribution
should be tested for normality; if normality is con-
firmed, AD can be estimated by one of the distance
approaches. If the normality test fails, AD assess-
ment based on other parametric distributions or a
non-parametric probability distribution should be
considered. 

Table 1: List of data distribution assumptions for distance approaches

Distance measure Assumption on data distribution Shape of contour lines

Mahalanobis/Hotelling T2/leverage Multivariate normal, Ellipses (hyper-ellipses), defined by 
DM(x,µ) = (x – µ)T Σ–1(x – µ) mean µ, covariance matrix Σ matrix Σ
covariance matrix Σ

Euclidean Multivariate normal, Spheres (hyper-spheres)  
mean µ, unit covariance matrix

DE(x,µ) = Ï(x – µ)T (x – µ)

City block Multivariate uniform Rectangle with edges that must be 
traversed to get from point a to b   
within the grid, identical to getting  
from corner a to b in a rectilinear 
downtown area, hence the name 
“city-block metric”

n

d(x,y) = Σ |xi – yi|i=1

        1         p(x) =                    exp{–½DM(x,µ)}
(2π)N/2 |Σ|1/2

   1    p(x) =          exp{–½DE
2(x,µ)}

(2π)N/2
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Figure 2: Interpolation regions and respective highest density regions (HDR) of the training
set (9)

Interpolation and HDR regions estimated with a) Euclidean, b) Mahalanobis c) city block and d) non-
parametric probability density approaches. X% represents x% HDR.
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Although it is straightforward, the requirements
for the data distribution in a training set are becom-
ing quite complex. First, the data must conform to
the assumptions of a particular model fitting tech-
nique. Second, the data must also meet the assump-
tions of the domain estimation method. As an
example, we use the linear regression model as a
modelling technique and estimate the AD by lever-
age.

When fitting data to a linear regression model
with Ordinary Least Squares, one first needs to
determine whether the following conditions hold: 1)
the residuals are normally distributed; 2) the error
distribution has a mean of zero; 3) the variance of
the random error is constant for all values of x; and
4) the errors associated with any two observations
are independent. That is, the error associated with

one value of y has no effect on the errors associated
with other values. Assumptions 1 and 2 can be
checked by residual analysis. Verifying assumption
3 requires information about the experimental data
measurement error. Different experimental tests
may have different variances; researchers must be
alert for this when combining data from different
tests. While assumption 4 is usually satisfied in
QSAR research, very few papers report whether
assumptions 1–3 are satisfied, suggesting that this
step may be frequently overlooked. 

Next, modellers need to choose a method for AD
estimation that is suitable for the data distribution.
Let us consider the leverage method. This is an
appealing approach, because the hat matrix needed
to identify high leverage points (here identified as
out of the domain) is automatically calculated dur-

Table 2: Characteristics of the reviewed interpolation methods

Mahalanobis Probability  
distance/ density via 

Euclidean  Hotelling non-parametric  
Criterion Ranges OPS distance T2/leverage Geometric kernel estimation

Assumption Uniform Uniform  Normal, equal Normal, arbitrary  Arbitrary None, reflects 
regarding data variances variances distributions actual distribution 
distribution of any data set 

Assumption Uncorrelated, Arbitrary Uncorrelated Arbitrary descriptors, Uncorrelated, PC rotation is 
regarding model PC rotation can (uses PC descriptors potential correlations additional step necessary as a pre-
descriptors be added as a rotation) are accounted for of PC rotation treatment of the 

pretreatment directly in the can be added data step
step formula

Ability to discover No No No No No Yes
internal dense 
and sparse regions 
of the interpolated 
space

Ability to quantify No Yes Yes Yes No Yes 
distance from the 
centre of the set

Ease of Easy Easy Easy Easy, however Difficult above Used to be difficult 
application of the involves inversion of 3D above 3D, 
method in many the covariance matrix a recent very fast 
dimensions (could be slow for method in Matlab 

many dimensions) works in many 
dimensions 

Availability of Statistical TOPKAT Statistical Statistical software Computational Matlab, 
tools i.e. software software for software for for general use, may geometry Mathematica
using the method general use general use require some packages; most HDR calculation 

programming mathematical requires 
packages programming 

OPS = optimum prediction space, PC = principal components, HDR = highest density region.
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ing regression model development. However, this
method is only suitable when the data are normally
distributed. Note that in the model development
phase, developers check error distribution not data
distribution.

In the past, verifying whether a particular train-
ing set was appropriate for a particular modelling
technique was rare in QSAR research. Instead, tra-
dition and convenience determined the choices.
Now, in order to develop ADs effectively, we need to
re-examine existing training sets. It should not be
surprising that complexity of the training set distri-
bution will be matched by the complexity of the
appropriate AD estimation method. 

The AD estimation process may expose some defi-
ciencies in existing models. For example, if the
model uses collinear descriptors, it should be rede-
veloped, so the descriptors are orthogonal instead of
correcting for the collinearity during AD estimation
(14). Running PCA rotation only during AD estima-
tion may make it difficult to interpret predictions,
as the AD will be projected in a space different from
the original model descriptor space. One possible
solution is to start developing modelling approaches
that will allow for simultaneous model development
and AD estimation. Simultaneous development will
avoid imposing double, often different, require-
ments for the data distribution related to model
development and to AD estimation.

Case Study: AD of the Salmonella
Mutagenicity of Aromatic Amines
QSAR Model 

The model

Debnath et al. (9) published a mutagenicity model
for n = 88 aromatic and heteroaromatic amines: 
log TA98 = 1.08 log P + 1.28eHOMO – 0.73eLUMO
+ 1.46 IL + 7.20 (1), where log P is the n-
octanol/water partition coefficient, eHOMO and
eLUMO are energy on the highest occupied and
lowest unoccupied molecular orbitals, respectively,
and IL is an indicator variable with a value of 1 for
compounds containing three or more fused rings
and 0 for all other species. 

Glende et al. (10) studied 18 alkyl-substituted
(ortho to the amino function) derivatives not
included in the original data of Debnath et al. (9).
Most of these new chemicals had descriptor values
in the range of the original chemicals. However,
with growing steric hindrance of the alkyl groups,
the difference between the predicted and experi-
mental values increased. Glende et al. concluded
that the QSAR equation is not appropriate for eval-
uating the mutagenicity of aromatic amines substi-
tuted with such alkyl groups. The set of Glende et
al. was used as the test set in the case study.

The methods for AD estimation

We assessed the AD of the model of Debnath et al.
(9) by using the following approaches:

1. Ranges in descriptor space and in PC rotated
space;

2. Euclidean distance in descriptor space and in PC
rotated space;

3. City-block distance in descriptor space and in PC
rotated space;

4. Hotelling T2; 

5. Probability density distribution; and

6. Range of the response variable.

We developed criteria appropriate to each method
for in the domain and out of the domain. For the
ranges method, a chemical is out of domain if at
least one descriptor is out of range or a combination
of descriptors are out of range (this is equivalent to
the endpoint value being out of range). For
Hotelling T2 and distance methods, the cut-off
threshold was the largest distance among the train-
ing set points to the centre of the training data set.
For probabilistic density, the cut-off thresholds
were the 95th and 99th percentiles of the training
set’s probability density. 

The training set data distribution failed the
Kolmogorov–Smirov uniform distribution tests and
Jarque–Bera normality tests implemented in MAT-
LAB 6.5 R13 at p = 0.05. This suggests that only
non-parametric probability distribution estimation
methods are suitable for the model (9).
Nevertheless, for comparison purposes, we carried
out AD estimation with all five methods.

Figures 3–5 illustrate the correspondence
between domain assessment and prediction error
for the approaches evaluated. There is a trend indi-
cating that the average prediction error for chemi-
cals in the domain is smaller than that for
chemicals out of the domain for all the methods. In
that sense, the results are similar to the findings of
Tong et al. (12). This observation is trivial, but it is
interesting to see the quantitative difference in the
quality prediction in and out of the domain (Table
3).

Table 3 summarises the results of the AD estima-
tion approaches evaluated. The numbers of chemi-
cals in and out of the domain, their identification
numbers, and the root mean square errors (RMSEs)
for chemicals in and out of the domain are included.
The RMSE is a sum of squared prediction errors,
divided by the number of points. By using the
RMSE, we do not question the goodness of fit of
analysed QSAR model analysed, but rather use it as
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a relative measure of prediction accuracy in the
domain and out of the domain. The RMSE of out of
domain validation points exceeds the RMSE of all
validation points for all approaches. As expected,
the RMSE for the chemicals in the domain esti-
mated by probability density approach is the lowest
among the methods considered; this confirms that
this method is the most accurate and appropriate.
In this case study, ranges of the response variable
were always in the domain and did not influence the
results.

Discussion

We reviewed AD estimation methods by determin-
ing interpolation regions defined by the training
data set in model descriptor space. By focusing on
the training set, we did not discuss a particular
QSAR modelling approach. However, we would like
to stress that our discussion is more suited to the

low-dimension regression and classification models
prevalent in modelling safety endpoints (22). The
discussion is less appropriate to the partial least
squares approach, which has its own set of diagnos-
tic tools, such as distances to the model in x and y
space, DMODX and DMODY, respectively (18).
However, similarly to the situation with regard to
the partial least squares approach, DMODY, we
emphasise the need to include y-space in the AD
estimation, particularly for approximating training
set coverage. 

The results of AD estimation on the basis of
training set coverage in descriptor space reveal a
general trend — interpolative predictive accuracy,
i.e. concordance between observed and predicted
values, was, on average, greater than extrapola-
tive predictive accuracy. That, however, is only
true on average — many compounds with small
errors are outside the training set coverage, as
there are also compounds with large errors inside
the domain. 

Table 3: Summary statistics for different approaches to application domain assessment 

PC Validation (in) Validation (out)
rotation

Domain defined by: + scaling No. RMSE No. compounds No. RMSE No. compounds

Ranges 15 1.9557 All but 9, 10, 18 3 3.608 9, 10, 18

Euclidean distance 15 1.9557 All but 9, 10, 18 3 3.608 9, 10, 18

City block distance 17 2.0708 All but 18 1 4.85 18

Hotelling T2 17 2.0708 All but 18 1 4.85 18

Probability density 95% 8 1.26 1, 2, 3, 6, 7, 11, 12, 16 10 2.9 4, 5, 8, 9, 10, 13, 14, 15, 
17, 18,

Probability density 99% 12 1.7 1, 2, 3, 4, 5, 6, 7, 8, 11, 9 3.2 9, 10, 14, 15, 17, 18,
12, 13, 16 

Ranges Yes 17 2.0708 All but 18 1 4.85 18

Euclidean distance Yes 15 1.9557 All but 9, 10, 18 3 3.608 9, 10, 18

City block distance Yes 13 1.9403 All but 9, 14, 15, 17, 18 5 3.0816 9, 14, 15, 17, 18

Probability density 95% Yes 8 1.26 1, 2, 3, 6, 7, 11, 12, 16 15 2.5061 4, 5, 8, 9, 10, 13, 14, 15, 
17, 18

Probability density 99% yes 9 1.7 1, 2, 3, 5, 6, 7, 11, 12, 9 2.8 4, 8, 9, 10, 13, 14, 15, 17, 
16 18

The numbering of compounds is as in Glende (8).
PC = principal components, RMSE = root mean square error.

452                                                                                                                                          J. Jaworska et al.



Figure 3: Correspondence between the prediction error and the application domain
boundary obtained by principal components rotated ranges 

In the domain: training set (9) (  ) and test set (10) (  ); out of the domain: training set ( ) and test set ( ).
a) experimental vs. calculated values in original space; b) correspondence between prediction error and the number of
dimensions where the point is out of training set range (i.e. zero means in-range).
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Figure 4: Correspondence between the prediction error and the application domain
boundary obtained by the Euclidean distance

In the domain: training set (8) (  ) and test set (4) (  ); out of the domain: training set ( ) and test set ( ).
a) experimental vs. calculated values in original space; b) correspondence between prediction error and the distance
between a point and the mean for the test set.
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Different interpolation approaches yield different
ADs. By emphasising the need to meet each inter-
polation method’s assumptions, we demonstrate
that analysing the training data set distribution
provides clear guidance on choosing a particular
method (as the methods are mutually exclusive).
However, in practice, it is not always possible to
choose the correct method by considering only data
distribution. The dimensionality of the model needs
to be considered as well, because the number of
data points in the training set may be insufficient
for the application of a particular approach (14).
High model dimensionality increases numerical
complexity, especially for geometric and non-para-
metric probability density approaches (21).

In addition, researchers need to reconcile the
methods used for model development (fit) and the
methods used for estimating the AD. Treating these
two steps separately often imposes different
requirements for the data distribution in the train-
ing set, making it difficult to meet all the assump-
tions. Joint fit and estimation of AD by probability
density methods is a promising approach. This area
requires more attention and further work.

By identifying the training data set coverage in
descriptor space, we make only a partial step
toward defining a model’s AD. There is always a
possibility that the model lacks a descriptor needed
to correctly predict the activity of a chemical. Thus,
despite the fact that the chemical appears to be in

the descriptor domain, its activity will most likely
be predicted with error, because it is structurally
different from the training set. There is also
another possibility — that the model extrapolates
correctly outside the domain.

Therefore, to describe the domain more
robustly, the full training set comprising both
structures and descriptor set is required. The full
training set permits an assessment of its chemical
space coverage. In this paper, we have not dis-
cussed the need for a global structural similarity
test to ensure that the structural features in a new
test compound are covered in the original training
set of chemicals (a quantitative measure of unique-
ness relative to the training set; Dave Stanton,
personal communication). The global similarity
test should be sufficiently robust to cover general
chemistry. Then, the AD estimation would consist
of two steps: 1) training set coverage in terms of a
descriptor values assessment; and 2) structural
similarity identification. We recommend using dif-
ferent methodologies to examine the training set
in different ways, in order to maximise the chances
of finding a potential difference. These ideas were
recently discussed at an ECVAM Workshop on the
AD (23), and our review was used as the back-
ground paper for the workshop. The methods
described in this paper are implemented in the
software AMBIT, developed by us and available
free from http://ambit.acad.bg/.

Figure 5: Correspondence between the prediction error and the application domain
boundary obtained by the non-parametric probability density method

In the domain: training set (9) (  ) and test set (10) (  ); out of the domain: training set ( ) and test set ( ).
a) experimental vs. calculated values in original space; b) correspondence between prediction error and probability
density value. The 99th percentile was used as the cut-off value, points with a probability value less then 0.01 are
deemed as out of the domain.
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Lastly, we would like to stress that if a chemical
is inside the domain according to a given, correctly
applied method, this is not a final argument for
accepting the prediction; rather, it is an indication
of the correct application of a model and the
reduced uncertainty of a prediction. This uncer-
tainty can be expressed as the RMSE, confidence
intervals (16) or other methods. Similarly, if a
chemical is outside the domain according to a given,
correctly applied method, this is not a final argu-
ment for rejecting the prediction; rather, it is an
indication of the increased uncertainty of the pre-
diction. We can say that this is, in a statistical
sense, an incorrect application of a model, but it is
nevertheless possible that the model will generate a
correct result. 
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Probability density estimation

Density estimation is an area of extensive research.
Due to computational challenges, most methods
focus on low dimensional (1-, 2-, 3-) densities,
unless additional assumptions are made (24). The
recently developed Algorithm for Multivariate
Kernel Density Estimation (24–26) achieves several
orders of magnitude speed improvement by using
computational geometry to organise the data. This
method directly estimates true multivariate den-
sity, and is very accurate. 

The kernel density estimation method

In the kernel probability density estimation of m-
dimensional descriptor space, m-dimensional ker-
nels are placed on every data point and then are
summed up. With many data points and a high-
dimensional descriptor space, this procedure
requires considerable time and computer mem-
ory, consuming calculation. Estimating the joint
probability as a product of marginal (one-dimen-
sional) probabilities compromises the quality of
the estimate, if descriptors are statistically
dependent (27).

n
p(x1,...,xn) = Π p(xk) (2)

k=1

Lack of dependence is a much stronger requirement
than lack of linear correlation. It means lack of both
linear and any nonlinear correlation between the
descriptors. Descriptor independence is rare in real
data sets. While it is difficult to account for every
possible nonlinear correlation, linear correlation is
easy to handle via PCA.

There are four important steps in probability
density estimation: 

1. Standardising the data (scale and centre);

2. Extracting the principal components of the data
set;

3. Skewness correction transformation along each
principal component; and

4. Estimating the one-dimensional density on each
transformed principal component.

Figure 6 illustrates three projections of probability
density with increasing accuracy. The density
obtained as the product of 1-D densities in the orig-
inal descriptor space is shown in Figure 6a. The
estimated density does not reflect the actual data

density, because the parameters are dependent.
Figure 6b displays the density obtained as a sum of
Gaussian kernels in PC space. Figure 6c shows the
improved quality of the estimated density obtained
by employing data set transformations such as
standardising the data and correcting for skewness.
Figure 6 illustrates that there is a need to be very
transparent about data processing during density
estimation, as different results can be obtained.

Mathematical details of highest density region 
calculation

The next step after probability density estimation is
to find the highest density regions (HDR) which
comprise a predefined fraction of the total probabil-
ity mass. The (1 – α) HDR region is the smallest
interval (in 1-D) or multidimensional region 
(> 1-D), comprising (1 – α)*100 percents of the
probability mass, where (0 < α < 1) (Figure 7). The
user can choose different α levels for the AD bound-
ary.

A HDR region has two main properties: 1) the
density for every point inside the region is greater
than the density for every point outside the region;
and 2) for a given probability content, (1 – α), the
interval is of the shortest length. It is not a trivial
task to calculate the HDR, because it becomes com-
putationally intensive unless one assumes a
Gaussian or other parametric distribution (25).
HDRs provide a very easy and intuitive interpreta-
tion: a point x lies in the region where (1 – α) points
are situated or it has (1 – α) probability to belong to
a set. This method overcomes the need to define a
priori a cut-off value and reference point in a set, as
required in distance-based methods.

The biggest challenge in HDR location is estimat-
ing the integral: 

@ p(x)dx = (1 – α)
xA,

A={x:p(x)≤d}

Applying an elementary integration algorithm in
the multidimensional and non-parametric case
results in a very high computational time. Nina
Nikolova developed a novel, generic, fast method for
HDR calculation for the non-parametric method.
The novel algorithm was inspired by the basic idea
of Monte Carlo integration — generate random
points, evaluate function values at each point, cal-
culate the sum of the values, and finally, multiply
the sum by the multidimensional volume. The basic
theorem of Monte Carlo integration (28, 29) esti-
mates the integral of a function f over the multidi-
mensional volume, where the angle brackets denote

Appendix 1
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taking the arithmetic mean over the N sample
points:

@ f(x)dx Ğ=V [f(x)] ± V                                        (3)
x∈S

1 N 1 N

[f] = N Σ f(xi); [f2] = N  Σ f2(xi)
i=1 i=1

While the basic idea is simple, the algorithms for
Monte Carlo integration of general functions are
quite complex. However, we have the rather specific
case of a probability density function, and it is pos-
sible to develop a simple, yet effective, algorithm.
The algorithm consists of:

1. Setting the α value.  (For example, if we are
interested in regions covered by 90% of all data
points, set α = 0.1);

Figure 6: 2D kernel probability density

(a) a product of 1D marginal densities in the original descriptor space, (b) a joint 2D kernel density estimation in the
principal components space, (c) same as (b) with skewness correction. 
X% represents x% High Density Region
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2. Evaluating p(xi) for each point xi;

3. Sorting the points by descending p(xi) value; and

4. Counting the first M points belonging to the 
(1 – α) fraction of all the points.

The smallest p(x) of this (1 – α) set is the threshold
value d = D(1 – α). For a query point y, p(y) is cal-
culated. If p(y) ≥ D (1 – α), then the point is within
the dense region comprising (1 – α) of all the prob-
ability mass.

The density value, d = D(1 – α), is sufficient to
assess whether a query point y will fall within the
(1 – α) HDR. That is, we can determine whether a
new compound is inside or outside the descriptor
space covered by a given data set. The thresholds
D(1 – α) for different α can be stored and used for
further evaluations of query points. The knowledge
of the density value is also sufficient for HDR visu-
alisation (27, 30).

Figure 7: Probability density p(x) and 60%
high density region
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Structures of the Glende et al. (2001) test seta

Structure R No. Compound Abbreviation

H 1 2-Aminonaphtalene 2-AN
Et 2 1-Ethyl 2-aminonaphtalene 1-Et-2AN
iPr 3 1-iPropyl 2-aminonaphtalene 1-iPr-2AN
nBu 4 1-nButyl 2-aminonaphtalene 1-nBu-2AN
tBu 5 1-tBu 2-aminonaphtalene 1-tBu-2AN

H 6 2-Aminofluorene 2-AF
Et 7 1-Ethyl 2- aminofluorene 1-Et-2 AF
iPr 8 1-iPropyl 2- aminofluorene 1-iPr-2 AF
nBu 9 1-nButyl 2- aminofluorene 1-nBu-2 AF
tBu 10 1-tBu 2- aminofluorene 1-tBu-2 AF

H 11 4-Aminobiphenyl 4-ABP
Et 12 3-Ethyl-4-aminobiphenyl 3-Et-4 ABP
iPr 13 3-iPropyl-4-aminobiphenyl 3-iPr-4 ABP
nBu 14 1-nButyl 2- aminobiphenyl 3-nBu-4 ABP
tBu 15 1-tBu 2- aminobiphenyl 3-tBu-4 ABP

Me 16 3,5-Dimethyl-4-aminobiphenyl 3.5-diMe-4ABP
Et 17 3,5-Diethyl-4-aminobiphenyl 3.5-diEt-4-ABP
iPr 18 3,5-DiPropyl-4-aminobiphenyl 3.5-diiPr-4-ABP

aThe names of chemicals are not the IUPAC standard names, but have been retained as given in original paper (8).
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