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Abstract

Background: Epidermal Growth Factor Receptor (EGFR) is a well-characterized cancer drug target. In the past,

several QSAR models have been developed for predicting inhibition activity of molecules against EGFR. These

models are useful to a limited set of molecules for a particular class like quinazoline-derivatives. In this study, an

attempt has been made to develop prediction models on a large set of molecules (~3500 molecules) that include

diverse scaffolds like quinazoline, pyrimidine, quinoline and indole.

Results: We train, test and validate our classification models on a dataset called EGFR10 that contains 508 inhibitors

(having inhibition activity IC50 less than 10 nM) and 2997 non-inhibitors. Our Random forest based model achieved

maximum MCC 0.49 with accuracy 83.7% on a validation set using 881 PubChem fingerprints. In this study,

frequency-based feature selection technique has been used to identify best fingerprints. It was observed that

PubChem fingerprints FP380 (C(~O) (~O)), FP579 (O = C-C-C-C), FP388 (C(:C) (:N) (:N)) and FP 816 (ClC1CC(Br)CCC1)

are more frequent in the inhibitors in comparison to non-inhibitors. In addition, we created different datasets namely

EGFR100 containing inhibitors having IC50< 100 nM and EGFR1000 containing inhibitors having IC50 < 1000 nM. We

trained, test and validate our models on datasets EGFR100 and EGFR1000 datasets and achieved and maximum MCC 0.58

and 0.71 respectively. In addition, models were developed for predicting quinazoline and pyrimidine based EGFR inhibitors.

Conclusions: In summary, models have been developed on a large set of molecules of various classes for discriminating

EGFR inhibitors and non-inhibitors. These highly accurate prediction models can be used to design

and discover novel EGFR inhibitors. In order to provide service to the scientific community, a web server/standalone

EGFRpred also has been developed (http://crdd.osdd.net/oscadd/egfrpred/).

Reviewers: This article was reviewed by Dr Murphy, Prof Wang and Dr. Eisenhaber.

Keywords: EGFR inhibitors, Classification of EGFR inhibitors and non-inhibitors, Active substructure, Active functional
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Background
Epidermal Growth Factor Receptor (EGFR) is a member

of the receptor tyrosine kinase family. It is involved in

the regulation of several critical processes such as cell

proliferation, survival, adhesion, migration and differen-

tiation [1,2]. It is one of the most studied cancer drug

target [3], whose aberrant activity has been associated

with a number of cancers [4]. Since, inhibition of EGFR

has been demonstrated to have therapeutic potential.

Thus, a large number of tyrosine kinase inhibitors have

been designed in past [5]. The treatment of patients with

EGFR based inhibitors as targeted therapy thus has

shown a significant reduction in the cancer progression.

As a result, a large number of researchers have continu-

ously synthesized small molecules and investigated them

for anti-EGFR activity using a variety of in vitro cellular

and enzymatic assay systems. This has resulted in the

identification of a range of bioactive compounds making

a large volume of biological and structural information

available in the public domain. These hundreds of small

molecules belong to various distinct chemical classes such

as pyrimidine, quinazoline and indole. Although, the

number of active EGFR inhibitors is steadily expanding,
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yet the search for newer EGFR inhibitors is still a sig-

nificant scientific challenge.

In the recent years, various structure and ligand-based

approaches like virtual screening [6], molecular docking

[7], QSAR [8,9] and pharmacophore modeling [10] have

been widely exploited for identifying new EGFR inhibitor

molecules. QSAR models generated in the past have

been developed using single scaffold based analogues

along with experimental data generated by a single bio-

assay system [11-14]. These models have been developed

on a limited set of molecules for a particular class, and

thus the predictive coverage is limited. Thus, there is a

need to develop a single model that can cover wide

ranging inhibiting molecules from various classes of

chemicals. Unique model for diverse molecules is also

important in identification of chemical component/

properties (e.g., structural-fragments) that contribute to

inhibitory bioactivities of EGFR inhibitors. In the present

study, we have used a large dataset of ~3500 diverse

molecules for understanding structure-activity relation-

ship and for developing QSAR-based prediction models.

We develop models using various machine-learning

techniques (e.g., random forest) for predicting inhibition

potential of a molecule. We identify important scaffolds/

substructures/fingerprints that play a significant role in

discrimination in EGFR inhibitors and non-inhibitors.

As the coverage of chemical space offered by this model

is large, for this reason the application of this system is

expected to be high.

Results
Frequency of functional groups

We used chemmineR [15] to calculate the various

functional groups frequency in EGFR10 inhibitors and

EGFR1000 non-inhibitors (inhibitors having IC50values

greater than 1000 nM). We observe from the functional

group frequency distribution that the number of the sec-

ondary amines (R2NH), tertiary amines (R3N), and rings

are higher in the most active EGFR inhibitors (Figure 1).

Almost all the 4-anilino quinazoline based EGFR small

molecule kinase inhibitors that compete for ATP binding

site contains this functional group (R2NH). On one side

of Nitrogen is the core group, which is responsible for

making hydrogen bonds with EGFR active site residues

while on the other side, stabilizing group is present that

extends into the cleft for tighter interactions with the

enzyme. It is in accordance with the known biological

information that the most active EGFR inhibitors like

gefitinib drug demonstrate the above characteristics

(Figure 2). Thus, it indicates that use of the above func-

tional groups, as backbone moiety is helpful for designing

inhibitors active against EGFR.

Maximum common substructures (MCS)

The MCS module of Chemaxon (http://www.chemaxon.

com/) was used to find the maximum common substruc-

tures in EGFR10 inhibitor dataset. We mainly find that

three structural scaffolds (4-anilino quinazoline, indole

and anilino thienopyrimidine) dominate within the dataset

Figure 1 Average frequency with standard deviation of various functional groups in inhibitors and non-inhibitors of EGFR10 and

EGFR1000 datasets respectively.
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(Figure 3). The presence of 4-anilino quinazoline sub-

structures is as per the expectation, as these are present

in known drugs gefitinib and erlotinib. Consequently,

chemists worldwide have been synthesizing, and testing

analogues having these moieties to identify new molecules

with higher potency. In addition, in the previous studies,

analogues of anilino thienopyrimidines have been gener-

ated and demonstrated activity in the low nanomolar

range against EGFR [16-18]. We also find substituted

anilines (halogenated anilines) that are present in EGFR

inhibitors like gefitinib, EKB-569, lapatinib and act as

linkers have high frequency of occurrence (Figure 3). As

depicted in Figure 3, we observe that the 1st substructure

is aniline that is attached to the quinazoline in Anilino-

quinazoline, while the 2nd substructure occurs in two

known EGFR inhibitors gefitinib, EKB-569. The 3rd sub-

structure is quinazoline ring; 5th substructure is indole,

and the 6th substructure is a part of Lapatinib, a well

known EGFR inhibitors. This analysis gives us indication

that new analogues synthesized using these skeletons

would have a better probability of exhibiting significant

binding interactions and activity against EGFR.

Analysis of fingerprints

Using our fingerprint selection approach we found that

PubChem fingerprint (FP) 816 (ClC1CC(Br)CCC1), FP815

(ClC1CC(Cl)CCC1), FP380 (C(~O) (~O)), FP579 (O = C-

C-C-C), FP388 (C(:C) (:N) (:N)), FP661 (C-C = C-C-C)

and FP613 (C-N-C-C-C) are among the best fingerprints

for discrimination of EGFR inhibitors as opposed to non-

inhibitors (Table 1). As evident from Figure 4, PubChem

FP816 and PubChem FP815 are highly similar cyclic

structure with bromine or chlorine substitution at ortho

and para position indicating that the presence of halogens

attached to a cyclic structure influences the activity against

EGFR. The PubChem FP186 state the presence of > = 2

saturated or aromatic carbon-only ESSSR (canonic Ex-

tended Smallest Set of Smallest Rings) ring size 6. We also

observed high frequency of PubChem FP388 substructure

of 4- anilinoquinazoline in active inhibitors. A number of

derivatives of 4- anilinoquinazoline are inhibitors of EGFR

[19-21]. The PubChem FP661, FP613 and FP579 are in

essence part of the ring structure, which appeared to be ali-

phatic in nature. It is interesting to note that best positive

fingerprints are non-aromatic and aliphatic in nature.

Figure 2 Shows EGFR inhibitor gefitinib marked with two frequently occurring functional groups (R2NH and rings).

Figure 3 Maximum common substructures (MCS) and their count found in active/inhibitors of EGFR10 dataset.
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Classification based on best fingerprints

In order to understand, whether combining the best

fingerprints for classification purpose would increase

the efficiency of the classification or not. Therefore, we

have combined the best 10 positive and best 10 negative

to make best 20 fingerprints as described in Additional

file 1: Table S2, S3. For each compound the best 20 finger-

prints were summed, accordingly a compound having

zero score has equal number of positive and negative

fingerprints. If a compound has > = 1 score, positive

fingerprints dominate over negative fingerprints, and

we classify the compound as EGFR inhibitor. Similarly,

Table 1 List of best 10 positive and negative fingerprints that occurs more frequently in inhibitors and non-inhibitors

of EGFR10 dataset respectively.

Best 10 positive fingerprints Best 10 negative fingerprints

Fingerprint Number Freq. (+) Freq. (−) Diffe-rence Fingerprint Number Freq. (+) Freq. (−) Diffe-rence

380 71.85 43.64 28.21 698 21.26 45.15 −23.89

579 75.79 52.82 22.97 673 8.27 31.80 −23.53

189 38.78 17.35 21.43 690 57.48 76.51 −19.03

388 67.52 46.41 21.11 700 19.29 38.00 −18.71

816 24.21 6.24 17.97 714 3.54 20.42 −16.88

815 32.68 16.68 15.99 145 30.31 45.28 −14.96

374 39.96 27.06 12.90 701 14.37 28.50 −14.13

613 32.87 20.95 11.92 669 2.17 15.92 −13.75

661 31.50 19.82 11.68 195 6.50 18.02 −11.52

348 40.16 29.50 10.66 382 2.56 11.61 −9.05

Figure 4 Structural representation of PubChem fingerprints found more frequently in inhibitors as compare to non-inhibitors.
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for the compound having score below zero means nega-

tive fingerprints dominate over positive fingerprints and

the compound was classified EGFR non-inhibitor. It was

observed that neither positive nor negative fingerprints

achieved a reasonable sensitivity and specificity. The bal-

ance results were obtained at score < =0 and > =1, where

equal number of positive and negative fingerprints were

present. We obtained 71.7% sensitivity, 64.6% specificity,

66.0% accuracy and 0.26 MCC (Figure 5). Thus, it can

be concluded that by combining best positive and best

negative fingerprints, reasonable sensitivity and specificity

can be achieved.

Model developed on EGFR10 dataset

We developed classification models for predicting inhibi-

tors using various algorithms/techniques that include IBK,

Bayes, Naive Bayes, SVM, and Random forest. These

models were evaluated using fivefold cross-validation and

881 PubChem fingerprints. It was observed that model

based on Random forest algorithm using 100 trees

performed best among various classifiers and achieved

accuracy 84.95% with MCC 0.49 (Table 2). Random forest

based models were developed using 881 fingerprints and

evaluated on the EGFR10 validation set and achieved

accuracy 83.65% with MCC 0.49 MCC (Table 3). The

performance of models developed using best 10–100

fingerprints is slightly lower than model developed using

881 fingerprints. The algorithm of Random forest learn

the best fingerprints itself and the model developed using

881 fingerprints perform better.

Class specific models

In addition, we made an attempt to develop models for

predicting class-specific inhibitors. We developed models

on Pyrimidine for predicting Pyrimidine based inhibitors.

These models were evaluated on Pyrimidine class of

molecules using five-fold cross validation technique and

achieved maximum accuracy 86.92 with MCC 0.62

(Table 3). These models also evaluated on Quinazoline

class of molecules and achieved poor accuracy 58.88 with

MCC 0.21. Similarly we developed models on Quinazoline

dataset and achieved maximum accuracy 76.31 with MCC

0.45, when evaluated on Quinazoline class of molecules.

These models perform poor with MCC 0.27, when

evaluated on Pyrimidine class of molecules. It is clear

from results shown in Table 3, that models developed on

class-specific molecules are only suitable for that class of

molecules but not suitable for other class of molecules.

Figure 5 The performance of simple method that predicts inhibitors based on occurrence of best 20 fingerprints found in inhibitors

and non-inhibitors. The secondary Y-axis shows the range of MCC and X-axis shows the summed up values of best 20 Fingerprints.
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In order to understand the performance of general

classifier for prediction of unknown EGFR class, we

developed two datasets: EGFR10-pyrimidine (all mole-

cules except Pyrimidine class of molecules) and EGFR10-

quinazoline (all molecules except Quinazoline class of

molecules). The model trained and tested on EGFR10-

pyrimidine and EGFR10-quinazoline dataset achieved

accuracy 91.34 with MCC 0.59 and accuracy 94.04 with

MCC 0.64 respectively (Table 3). Next, we evaluate our

general classifier (trained on EGFR10-pyrimidine dataset)

on Pyrimidine class of molecules and achieved accuracy

74.77 with MCC 0.40. Similarly, we also evaluated our

general classifier (trained on EGFR10-quinazoline dataset)

on quinazoline dataset and achieved accuracy 71.66 with

MCC 0.35 MCC (Table 3).

Models developed on additional datasets

In addition to EGFR10 dataset, we also developed and

evaluated our models on additional datasets EGFR100

and EGFR1000. Initially, models developed and evaluated

on EGFR100 train set using 881 fingerprints achieved

maximum MCC 0.58 (Table 4). We also evaluate predic-

tion performance on EGFR100 validation set and achieved

MCC 0.58 using 881 fingerprints (Table 4). Similarly,

models were developed and evaluated on EGFR1000 train

and validation sets (Table 4). We achieved MCC more

than 0.6 for both train and validation sets. It is important

to note that performance was better for EGFR1000 dataset

in comparison to other datasets; it is probably due to

balancing of number of inhibitors and non-inhibitors data.

Comparison with existing methods

It is necessary to compare performance of newly devel-

oped method with existing methods in order to justify

whether newly developed method is worth. Unfortu-

nately, it is not possible for us to compare our method

with existing methods as we developed models on the

largest dataset. In addition, our models are classification

models whereas models developed in previous studies

are regression-based models. None of the previous

methods used more than 200 molecules for developing

models whereas we used around 3500 molecules.

Web server and standalone

In this study, we developed a user-friendly web server

for prediction anti-EGFR molecules. The user can either

draw a single compound or provide a list of compounds

in SMILES format for virtual screening. The web server

allows users to generate analogs based upon a combin-

ation of given scaffold, building blocks and linkers. The

server subsequently predicts the potential EFGR inhibitors

of analogs. The output shows the classification of the

query compound as anti-EGFR inhibitor or non anti-

EGFR inhibitor along with the probability score depending

upon the model selected. For the prediction of large

number of molecules, we have also provided Python

and R language based standalone package.

Conclusion
Epidermal growth factor protein is a well-known cell

surface receptor protein involved in cancer. Numerous

models have been developed in the past that considers

few molecules of a similar nature identified using a single

bioassay system. As these models have limitations, it has

become necessary to develop a model that considers het-

erogeneous dataset of molecules covering broad chemical

Table 2 The performance of models based on various

classifiers developed & evaluated on EGFR10 dataset

Classifier Sensitivity Specificity Accuracy MCC ROC

IBK 68.69 84.98 82.63 0.45 0.87

Bayes 68.73 70.57 70.31 0.29 0.72

Naive Bayes 69.87 67.96 68.23 0.27 0.70

SVM 67.11 86.24 83.48 0.46 0.87

Random Forest 68.74 87.67 84.95 0.49 0.89

Table 3 The performance of models developed on EGFR10 dataset, class-specific molecules and EGFR10 excluding

single class, evaluated using cross-validation techniques for testing on same-class of molecules

Trained on Tested on Sensitivity Specificity Accuracy MCC ROC

EGFR10 train EGFR10 train 68.74 87.67 84.95 0.49 0.89

EGFR10 train EGFR10 Validation 69.89 86.03 83.66 0.49 0.89

Pyrimidine Pyrimidine 69.25 92.13 86.92 0.62 0.92

Pyrimidine Quinazoline 68.62 54.88 58.88 0.21 0.67

Quinazoline Quinazoline 68.15 79.63 76.31 0.45 0.81

Quinazoline Pyrimidine 67.86 64.04 64.91 0.27 0.74

EFGR10-Pyrimidine EFGR10-Pyrimidine 68.7 94.08 91.34 0.59 0.92

EFGR10-Quinazoline EFGR10- Quinazoline 69.66 96.4 94.04 0.64 0.95

EFGR10- Pyrimidine Pyrimidine 68.06 76.74 74.77 0.4 0.77

EFGR10- Quinazoline Quinazoline 60.31 76.25 71.66 0.35 0.72
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space so that the pace of EGFR inhibitor drug discovery is

accelerated. In this study, we have used a large dataset of

diverse molecules from published literature to develop an

integrated robust and accurate prediction model using

881 PubChem fingerprints. In addition, analysis of finger-

prints displays the contribution of a particular pattern to-

wards anti-EGFR activity. Our analysis suggests that

PubChem FP 816 (ClC1CC(Br)CCC1), FP815 (ClC1CC

(Cl)CCC1), FP380 (C(~O) (~O)), FP579 (O = C-C-C-C),

FP388 (C(:C) (:N) (:N)), FP661 (C-C = C-C-C) and FP613

(C-N-C-C-C) are important for anti-EGFR activity. In this

paper, we have introduced a novel frequency based ap-

proach for selection of most relevant binary fingerprints.

Additionally, a freely available web server and standalone

package named EGFRpred (http://crdd.osdd.net/oscadd/

egfrpred) has been designed for prediction of anti-EGFR

inhibitors. Overall, this study will be helpful in the area of

computational designing of novel anti-EGFR molecules

used for cancer treatment.

Methodology
Dataset

We obtained 3528 anti-EGFR compounds along with their

inhibitory concentration (IC50) from database EGFRindb

that covers around 350 research articles [22]. These

compounds are diverse in nature and belong to various

structural scaffolds. Based on the inhibition activity, three

different datasets were constructed, i.e. EGFR1000,

EGFR100 and EGFR10 datasets (Additional file 1: Table

S1). In the case of EGFR10 dataset, a compound is assigned

as inhibitor or active molecule if IC50 (50% inhibition) is

less than 10 nM. EGFR10 dataset contains 508 inhibitors

and 2997 non-inhibitors (IC50 > 10 nM). In addition, we

created EGFR100 dataset where a compound is classified

as inhibitor if IC50 is less than 100 nM otherwise non-

inhibitor. Similarly, we created EGFR1000 dataset where a

compound is classified as inhibitor if IC50 is less than

1000 nM otherwise non-inhibitor. In this study, we

obtained inhibition activity (IC50 of molecules) from vari-

ous studies/assays, and it was observed that only a few

molecules have multiple IC50 values. We removed all

those compounds having conflicting inhibition IC50

values, for example, in case of EGFR10 we removed 23

compounds having IC50 values less than 10 nM as well as

greater than 10 nM. In the case of EGFR100 and EGFR100

datasets, we removed 16 compounds and 22 compounds

respectively. For evaluating the performance of the model,

we created two types of set from above datasets called

train and validation set. For example EGFR10 dataset is

split into two set called EGFR10 train set consist of 90% of

data and a set consist of remaining 10% of data called

EGFR10 validation set.

All molecules in EGFR10 dataset were examined and

observed two classes of molecules (Pyrimidine and

Quinazoline) dominate that dataset. Thus, we created

two datasets from EGFR10 dataset called Pyrimidine

and Quinazoline. The Pyrimidine dataset consists of 246

Pyrimidine inhibitors and 838 Pyrimidine non-inhibitors.

In case of Quinazoline, there are 218 Quinazoline inhibi-

tors and 540 Quinazoline non-inhibitors. In order to

understand the performance of general classifier on

unknown class, we created two additional datasets

EGFR10-pyrimidine dataset and EGFR10-quinazoline

dataset. The EGFR10-pyrimidine dataset consist of 262

EGFR inhibitors and 2162 non-inhibitors. There are no

pyrimidine inhibitors in the complete EGFR10-pyrimidine

dataset. Similarly, we also created EGFR10-quinazoline

dataset consist of 290 EGFR inhibitors and 3000 non-

inhibitors.

Descriptor calculation

Chemical descriptors are the representative features of

chemical molecules that are responsible for its activity. In

this study, we have used PubChem based 881 binary finger-

prints calculated using PaDEL software [23]. The complete

details of PubChem 881 fingerprints along with a descrip-

tion are available from PubChem website (ftp://ftp.ncbi.

nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.

txt). Here, we describe the use of a frequency-based ap-

proach for selection of highly significant descriptors.

Descriptor selection using FREQa-i based approach

We used a simple frequency-based approach for selection

of best fingerprints. For each descriptor or fingerprint, the

frequency of a descriptor, in active and inactive molecules,

is calculated using Equation 1 and 2.

FAi ¼

XNA

j¼1
D

j
i

NA
� 100 ð1Þ

Table 4 The performance of models developed on EGFR100 and EGFR1000 train sets using different PubChem

fingerprints and evaluated on validations sets

Trained on Tested on Fingerprints count Sensitivity Specificity Accuracy MCC ROC

EGFR100 train set EGFR100 train set PubChem 881 88.01 73.34 78.2 0.58 0.90

EGFR100 train set EGFR100 validation set PubChem 881 91.1 68.5 76.8 0.58 0.90

EGFR1000 train set EGFR1000 train set PubChem 881 86.97 78.36 82.92 0.66 0.89

EGFR1000 train set EGFR1000 validation set PubChem 881 85.7 85.5 85.6 0.71 0.90
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FAi ¼

XNA

j¼1
D

j
i

NA
� 100 ð2Þ

Where FAi and FAi represent mean of ith fingerprint in

active (A) and inactive (I) molecules respectively. NA

and NI are the total number of molecules in active and

inactive datasets respectively. D
j
i is the value of ith finger-

print for jth molecule (value is either 0 or 1). Finally, we

compute fingerprint score (FS) of each fingerprint using

following Equation 3.

FSi ¼ FAi −F
I
i ð3Þ

Where FSi is the inhibitory score of ith fingerprint. The

descriptors having higher positive score FS means there

are more preferred in active molecules as comparison to

inactive molecules. Similarly, a higher negative score

states that the fingerprint is more preferred in inactive

molecules (or not preferred in active molecules).

Magnitude of a fingerprint score represents significance of

fingerprint.

In order to select best fingerprints, first we remove all

redundant/similar fingerprints having correlation greater

than 0.6, using software package RapidMiner [24] and

obtained 465 non-redundant fingerprints. Secondly, we

select 20 best descriptors from 465 fingerprints, 10

having highest positive score (highly preferred in active

molecules) and 10 having highest negative score (highly

preferred in inactive molecules).

Classification

In this study, we have used various classifiers implemented

in WEKA package and SVMlight [25,26]. Further, based on

results and computational efficiency we selected Random

forest classifier for the final prediction. The final models

were developed using Random forest algorithm imple-

mented in WEKA package [27,28]. A Random forest is a

classifier consisting of a collection of tree-structured clas-

sifiers {h(x, Θk), k = 1,…} where the {Θk} are independent

identically distributed random vectors and each tree casts

a unit vote for the most popular class at input x” [27].

Performance evaluation

The performance of the models was evaluated using

five-fold cross-validation techniques. In this technique,

training and testing were carried five times in such a

way that each time one set was used for testing and

remaining (n-1) sets were used for training. The train set

was further randomly divided into five training and test-

ing sets. To avoid any bias in the prediction model, an

independent validation set was also used for further

evaluation. The whole process was repeated five times,

and the results were reported after obtaining the average.

Finally, fitness of the model was assessed using various

standard parameters like sensitivity, specificity, accuracy,

and Matthew’s correlation coefficient (MCC) [29].

Reviewer’s comment
Response to Dr Murphy

Question 1: The authors describe using standard

compound features and machine learning techniques to

train models of the relationship between chemical struc-

ture and EGF receptor inhibition activity. This best way

to treat this task is as a regression problem, in which the

task is to predict the activity of a given compound, not

whether it is ?active? or ?inactive? using an arbitrary

threshold.

Response: We agree with the reviewer that regression

based models provides more information than classifica-

tion based models. In previous studies, also regression

models have been developed for predicting EGFR inhibi-

tors (PLoS ONE 2014. 9(7): e101079). In order to develop

a regression models, one must collect data for a single

class of molecules whose activity has been determined

using the same bioassay system. Due to these limitations,

existing methods have been developed on limited set of

molecules (maximum 200 molecules). In this study, our

aim is to develop robust models on a large set of EGFR in-

hibitors. Here, we developed prediction models on ~3,500

EGFR inhibitors obtained from different studies. On this

large dataset, where molecules belong to different classes

and has IC50 from varied bioassay system, thus it is not

feasible to develop a regression method. This is the reason

we developed classification models in this study instead of

regression models.

Question 2: No attempt is made to determine whether

the classifier generalizes well across different structures

(e.g., functional groups). An even stronger approach

would be to hold out an entire functional group during

training and determine whether the resulting classifier

can generalize to the held out group.

Response: We are grateful to the reviewer for above

suggestion. Now, we have developed class/function spe-

cific models and evaluate their performance on self-class

of molecules and other class of molecules. It is clear

from results that class-specific molecules are suitable only

for that class of molecules whereas our model works

equally well for all class of molecules. In our revised ver-

sion of manuscript, we have described limitations and

strength of function or class specific models.

Question 3: The manuscript refers to ?validation?

datasets but does not describe their composition or

whether the compounds in the validation sets were

included in the feature selection step. This is only made

clear in Figure S1.

Response: In revised version of manuscript, we have

clearly described training and validation sets.
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Question 4: It is unclear why feature selection was

performed before training the random forest classifiers,

since the random forest should learn the most useful

feature combinations. The results in fact show that the

best performance is achieved using all of the features.

Thus the manuscript should be simplified by removing

feature selection.

Response: The main reason for feature selection is to

select best fingerprints. The best fingerprints perform-

ance is comparable to the performance achieved using

all fingerprints. The importance of selecting best finger-

print is to help biologist/chemist in understanding and

designing inhibitors, considering the best fingerprint

structure. It is always advisable to develop models on

minimum number of descriptors in order to avoid over

fitting.

Question 5: No information is provided about the

parameters used for the random forest classifier training.

Response: In this study, we used the Random Forest

implemented in WEKA package and found that using

100 trees we achieved the best performance. In revised

manuscript, parameter used for developing models has

been revealed.

Question 6: There are a number of English errors in

the manuscript. For example, ?biasness? is not considered

to be a valid English word by most scholars. ?Bias? is the

correct term. ?Accessed? is used but ?assessed? is meant.

Response: In the revised manuscript, we have incor-

porated reviewer suggestion and improved the overall

language of the manuscript.

Comments from second revision

Question 1: My second question was not addressed.

The question is not whether one can train structural

class-specific classifiers; that has been done before. The

question is whether if one trains a general classifier but

holds out all members of a specific structural class while

doing so, the resulting classifier does well at predicting

activities for the held-out class. They have not answered

this question.

Response: We apologize that we were not able to

understand reviewer’s previous query completely. In this

version of manuscript, we have tried to address above

query. In order to address above query we create two

datasets EGFR10-pyrimidine (all molecules except pyr-

imidine class of molecules) and EGFR10-quinazoline (all

molecules except Quinazoline class of molecules). It

means EGFR10-pyrimidine dataset consist of all EGFR

inhibitors and EGFR non-inhibitors, except Pyrimidine

class of molecules. We developed model using EGFR10-

pyrimidine dataset and tested/validated this model on

Pyrimidine class of molecules. We achieved accuracy of

74.77 with MCC 0.40 on Pyrimidine class of molecules.

Similarly, we also developed model on EGFR10-quinazoline

dataset and tested on Quinazoline class of molecules; we

achieved accuracy 71.66 with MCC 0.35 MCC (Table 3).

These results have been included in revised version.

Question 2: The authors apparently missed the point

in my fourth question about feature selection. The data

that feature selection is unnecessary since not using

it gives better results. In that case it does not seem

warranted to do feature selection at all.

Response: We agree with the reviewer that model

developed using selected features is not giving better

performance. Thus, in the revised manuscript, we have

removed the section describing the performance of

models developed using best features.

Question 3: Regarding my fifth question, the answer

is now provided about how many trees were trained.

However, this raises a more serious problem of potential

overestimation of generalizability if the validation set

was used in part or in whole for any decision-making.

For example, if the number of trees was chosen to give

the best performance on the validation set, any reported

accuracies using that number of trees are likely overesti-

mates of the generalizability (the accuracy expected on

future data).

Response: We are thankful to reviewer for raising

important query on overestimation of models perform-

ance. In this study, the optimized number of trees were

obtained from dataset used for training; estimated during

development of models using five-fold cross validation. Best

models on training dataset were evaluated on validation

dataset. In simple words, we have not used validation or

independent dataset for training or estimation of optimized

number of trees.

Response to Prof Wang

Strong points:

1. This manuscript describes the training and

evaluation of a classifier of EGFR inhibitors vs non-

inhibitors. This is a useful application.

2. It can make classification of a broad range of

molecules. This generality is good.

Weak points

Question 1: The individual steps and the overall

methodology are rather standard. So once the training/

testing data is collected, it is just mechanically feeding

into a standard classifier learning and testing process. So

the methodological novelty is limited.

Response: The novelty of the work is that for the first

time we have tried to develop a generalized QSAR model

for classifying EGFR inhibitors from non-inhibitors. We

identified fingerprints frequently occurs in inhibitors and

non-inhibitors in order to identify best descriptors for

developing classification models. We tried wide range of

algorithms and techniques for developing models for

searching best techniques. In our revised version, we also
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described class specific models developed for predicting

inhibitors of specific class.

Question 2: The performance does not look exciting

to me (~70% sensitivity, ~86% specificity). No effort is

made to seriously improve on it. Also, the performance

analysis lacks depth; e.g., it is unclear which classes of

molecules are predicted more accurately and why.

Response: We agree with reviewer that performance

is not very impressive; it is because it includes different

class of molecules. After getting comment of reviewer,

we perform more analysis and develop class-specific

models. In the revised manuscript, we have updated the

analysis section and added one section on class specific

models.

Question 3: There is no quantitative comparison with

existing works. So superiority of the proposed classifier

is unproven. I understand that these works may be

specific to a class of molecules. You can still compare

with them by restricting your test set to those classes of

molecules. Your classifier can be trained on the full

training set (or on a class-specific subset of the training

set) and tested on a specific class. The competitive

classifier can be trained on class-specific subset of the

training set and tested on the specific class.

Response: We agree that no comparison with the

existing methods was mentioned in the manuscript. We

had searched the literature and found no classification

method for distinguishing EGFR inhibitors from non-

inhibitors exist. The existing methods developed in recent

years are based upon small dataset and are regression

models. As suggested by the reviewer, we have developed

the class specific models and found that Pyrimidine class

of molecules is most accurately predicted. In revised

manuscript, we have added one section on comparison

with existing methods.

Question 4: Judging from the best features, they

appear in both inhibitors and non-inhibitors, though

there is some difference in frequency. The difference in

frequency is not exploited. Each feature can be weighted

based on the difference in its frequency in inhibitor and

non-inhibitor. Some alternative classifier models that can

take advantage of such weights can be considered (e.g.,

bagging of naïve Bayes based classifiers).

Response: We used frequency of features in inhibitors

and non-inhibitors and exploited it for selecting best fea-

tures. These features have been used for developed highly

accurate classification models; revised manuscript includes

detail description. In this study, we selected positive fin-

gerprints that are more frequent in inhibitors as compare

to non-inhibitors. Similarly, we selected negative finger-

prints that are more frequent in non-inhibitors as com-

pare to inhibitors. Based upon the frequency difference we

selected best60 fingerprint and developed a model, that

achieved 0.49 MCC and the model developed using all

881 fingerprints also achieved 0.49 MCC. We also devel-

oped models using bagging of naïve Bayes based classifiers

in WEKA package. The performance of the naïve Bayes

classifier improved from 0.27 MCC to 0.30 MCC, still the

performance is poor as compare to Random forest.

Question 5: Currently, molecules from different classes

are mixed. It may be worth considering each class (pyr-

imidine, quinazoline, etc.) separately, and have several

class-specific classifiers, in addition to an undifferentiated

classifier. Given a new molecular, if a class-specific classi-

fier for its class is available, the class-specific classifier is

used. Otherwise, the undifferentiated classifier is used.

Response: We are grateful to the reviewer for the sug-

gestion. We have developed class specific models and the

results have been reported in the section “Class specific

Models”. The models for two largest classes Pyrimidine and

Quinazoline have been developed as suggested by reviewer

and implemented in the web server. The user can select

either class specific models or the generalized model.

Question 6: While some fingerprints are highlighted,

other than their presence in known EGFR inhibitors,

they are not analyzed/discussed informatively within the

context of EGFR. One should discuss their structural/

physical/chemical significance, after all the structures of

EGFR and some of these inhibitors/non-inhibitors are

known.

Response: In our revised version, we have briefly

discussed the functional group, maximum common sub-

structure and analysis of fingerprints. In the updated

manuscript, we added more information in context of

EGFR (Figure 3).

Question 7: The supporting data needs to be prepared

in a way that is more convenient for others to repeat the

study or make comparative study.

Response: The supporting data is updated and available

on the website in smiles format.

Comment from second revision

Deficiencies:

1. The value of this work is mostly in the collection of

training/testing data. The methodological novelty is

very limited in the developed classifiers.

2. The performance of the developed classifiers is not

impressive. Given the lack of methodological novelty,

I feel that more effort needs to be devoted to improve

classifier performance and utility. I understand it is

hard to achieve improvement through methodological

novelty. However, you can still improve the utility of

the classifiers by more mechanical means.

Class-specific classifier is one possible –-I am

glad to see that tried. One can also create a family of

classifiers with different trade-off between sensitivity

and specificity, and let user choose high-sensitivity or

high-specificity classifier to use.
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Response: We are grateful for appreciating our efforts

and for providing useful suggestions. Based on reviewer’s

suggestion, we incorporated threshold parameter with

models in our web server. This threshold selection will allow

users to predict inhibitors with high specificity by selecting

higher threshold and better coverage/sensitivity by selecting

lower threshold.

Question 1: It seems that you have the selection of

the top (50) fingerprints before hand. In selecting these

fingerprints, have you used the test data? In a cross-

validation setting, fingerprints must be selected fresh

from the training portion of that cross-validation fold.

Otherwise, the obtained accuracy/sensitivity/etc. is not

an acceptable estimate of the performance of the result-

ing classifier. This makes your validation methodology

unsound

Response: The best fingerprints were selected only

from the training set; test/validation set was not used for

selection of best fingerprints.

Response to Dr. Eisenhaber

Question: Report form: I think the authors provide a

useful software application tailored to the design of

EGFR inhibitors. It is especially laudable that the authors

provide both download for datasets and software. It would

be of interest to which extent the tools are applicable if

mutated forms of EGFR are to inhibited.

Answer: It’s difficult to say how accurately EGFRpred

models can predict inhibitors for mutant EGFR. Recently

our group developed a web server ntEGFR (http://crdd.

osdd.net/oscadd/ntegfr) for predicting inhibitors against

wild and mutant EGFR that allows users to predict inhibi-

tors that inhibit mutant form of EGFR. In this study,

we have developed generalized method for predicting

inhibitors against EGFR not specifically against mutant

form of EGFR.

Additional file

Additional file 1: Table S1. Distribution of data in different datasets.

Table S2. Best 100 positive Fingerprints in EGFR10, 100 and 1000

datasets. Table S3. Best 100 negative Fingerprints in EGFR10, 100 and

1000 datasets.
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