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ABSTRACT 
 
A quantitative structure activity relationship study on a series of 5 (or 6)-nitro/amino-2-
(substituted phenyl/benzyl)-benzoxazole analogues were made using combination of various 
thermodynamic, electronic and spatial descriptors. Several statistical expressions were 
developed using stepwise multiple liner regression analysis. The best model was validated by 
leave-one-out method of cross-validation. The study revealed that the thermodynamic property, 
i.e., Standard Gibbs free energy contributed positively, Electronic property like Electronic 
energy contributed positively and HOMO energy and Repulsion energy contributed negatively. 
The study suggested that substitution of group at R1 position on benzoxazole ring with electron 
withdrawing group favourable for the antibacterial activity. The quantitative structure activity 
relationship study provides important structural insights in designing of potent antibacterial 
agents.  
 
Keywords: Benzoxazoles, antimicrobial activity, quantitative structure activity relationship 
(QSAR). 
______________________________________________________________________________ 
 

INTRODUCTION 
 
The dramatically rising prevalence of multidrug-resistant microbial infection in the past few 
decades has become a serious health care problem. In particular, the emergence of multidrug-
resistant strains of gram-positive bacterial pathogens such as methicillin-resistant Staphylococcus 
aureus and Staphylococcus epidermis and vancomycin-resistant Enterococcus is a problem of 
ever increasing significance [1-3]. In order to prevent this serious medical problem, the 
elaboration of the new types of the previously known drugs is a very actual task. The 
benzoxazoles have been the aim of many researchers for many years because they constitute an 
important class of heterocyclic compounds exhibiting substantial chemotherapeutic activities [4]. 
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The benzoxazoles derivatives exhibited antibacterial, antifungal, antimycobacterial, antitumoral, 
HIV-1 reverse transcriptase, and topoisomerase I inhibitory activity [5-12]. 
 
With the continuing development of clinical drug resistance among bacteria and the advent of 
resistance to the recently released agents quinupristin, dalfopristin and linezolid, the need for 
new, effective agents to treat multidrug- resistant Gram-positive infections remains important. 
Since the early 1990s, the epidemiology of pathogenic bacteria isolated from hospital infections 
has shifted from Gram-negative organisms, with the majority of nosocomial infections now 
caused by Gram-positive isolates. Increasingly, nosocomial pathogens are resistant to first-line 
antimicrobial agents, with 34% of staphylococcus aureus clinical isolates in the US, 26% of S. 
aureus isolates in Europe and 45% of S. aureus isolates in the western pacific, resistant to 
methicillin. Similarly, the incidence of vancomycin-resistant among US enterococcal 
bloodstream isolates has now reached ~ 20%, with the frequency of penicillin-non-susceptibility 
in US pneumococci at 34% [1]. 
 
Secondary metabolite formation (i.e., natural products), by microbes, is believed to be a 
Darwinian type response mechanism to environmental pressures. Some of these secondary 
metabolites are the basis for the widely used antibacterials (e.g., carbapenems, cephalosporins, 
macrolides, monobactams and penicillins)and antifungal agents(e.g., amphotericin B, nystatin). 
The introduction of these therapeutic agents has contributed significantly to reduce morbidity 
and deaths due to infection diseases. Ironically, as the pharmaceutical industry has created newer 
antibacterials and antifungals, the biological targets of these drugs have evolved mechanisms to 
overcome the effects of these potent drugs [2].   
 
 A benzoxazole derivative, Calcimycin, is a carboxylic polyether antibiotic from a strain of 
Streptomyces chartreuses (NRRL 3882). It was found to be very active against Gram-positive 
bacteria including some Bacillus and Micrococcus strains. Two calcimycin analogues, 
routiennocin and cezomycin which are 3-hydroxy-11,15-desmethyl and 3-demethylamino 
derivatives of it, respectively, were found to be highly active against Bacillus cereus, Bacillus 
negaterium, Micrococcus luteus and streptomyces rimosus. Additionally, frankamide, that is 11-
demethyl cezomycin, showed activity against Bacillus subtillis, Staphylococcus aureus, 
Entercoccus faecalis and against several plant pathogenic fungal strains [6].  
 
In the present work, we describe the QSAR employing multivariable regression analysis (MRA) 
in order to investigate the quantitative effect between the various physicochemical parameters of 
benzoxazole derivative (fig. 1) on their antibacterial activity against Gram-positive bacteria 
Bacillus subtilis ATCC 6633.  
 

MATERIALS AND METHODS 
 

The Table1 shows the structural features of bezoxazole derivatives along with their biological 
activities (MIC µg/ml) reported by T. Ertan et al [5]. and descriptors included in final QSAR 
model: 
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Table 1: Structure, Antimicrobial Activities of Compounds and descriptors used in QSAR model: 
 

Y

R3

R2

R1

R4

N

O

 
 

Comp no Substitutions Structural descriptors 
 R1 R2 R3 R4 Y MIC Homo NRE G ElcE 

1. C(CH3)3 H NO2 - - 50 -8.99 20394 292.09 -24161 
2. F H NO2 - - 50 -9.180 15647 60.76 -19264 
3. C2H5 H NO2 - - 50 -8.034 17364 272.41 -20797 
4. C2H5 NO2 H - - 50 -8.034 17364 272.41 -20797 
5. F NO2 H - - 50 -9.267 15499 60.76 19116 
6. Br H NO2 - CH2 25 -9.807 16998 278.31 -20638 
7. F H NO2 - CH2 12.5 -9.788 17263 69.18 -21034 
8. F NO2 H - CH2 12.5 -9.687 17250 69.18 -21022 
9. CH3 NO2 H - CH2 50 -9.482 17220 272.41 -20676 
10. C(CH3)3 H NH2 - - 25 -8.051 17750 437.2 -20907 
11. F H NH2 - - 50 -8.168 13078 205.87 -16083 
12. Br H NH2 - - 25 -8.228 12901 415 -15775 
13. C2H5 H NH2 - - 50 -8.161 14446 417.52 -17291 
14. H NH2 H - - 12.5 -8.242 11730 410.31 -14264 
15. F NH2 H - - 25 -8.323 13066 205.87 -16027 
16. F H NH2 - CH2 50 -8.285 14606 214.29 -17768 
17. F NH2 H - CH2 50 -8.358 14628 214.20 -17789 
18. H CH3 - H - 12.5 -8.910 11694 352.28 -14163 
19. Cl CH3 - H - 12.5 -8.992 12903 330.72 -15732 
20. Br CH3 - H - 12.5 -9.028 12850 356.97 -15658 
21. NO2 CH3 - H - 6.25 -9.404 15608 263.99 -18980 
22. Cl - CH3 H - 12.5 -8.885 12929 330.72 -15759 
23. Br - CH3 H - 12.5 -8.932 12856 356.97 -15665 
24. H CH3 - Cl - 25 -8.951 13226 330.72 -16055 
25. H CH3 - OCH3 - 25 -8.899 15203 246.07 -18148 
26. H CH3 - F - 25 -8.941 13739 147.84 -16380 
27. H CH3 - NO2 - 25 -9.241 16489 263.99 -19788 
28. Cl CH3 - Cl - 25 -9.029 14527 309.16 -17716 
29. H - CH3 Cl - 25 -8.847 13242 330.16 -16071 
30. H - CH3 OCH3 - 25 -8.793 15213 246.07 -18158 
31. H - CH3 F - 25 -8.843 13420 147.84 -16360 
32. Cl - CH3 Cl - 25 -8.927 14541 309.16 -17730 
33. CH3 - CH3 CH3 - 50 -8.721 14848 349.86 -17629 

 
The biological activity data MIC (minimum inhibitory concentration in µg/ml) were converted to 
negative logarithmic dose in moles (pMIC) for QSAR analysis. The correlations were sought 
between inhibitory activity and various substituent constants at position R 1, R2 and R3 of 
molecule. The series was subjected to molecular modelling using CS Chem-Office 6.0 [15]. 
Structures of all the compounds were sketched using builder module of the programme. These 
structures were then subjected to energy minimization using force field molecular mechanics-2 
(MM2) until the root mean square (RMS) gradient value became smaller than 0.1 kcal/mol. Å. 
Minimized molecules were subjected to re-optimization via MOPAC method until the RMS 
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gradient attained a value smaller than 0.0001 kcal/mol. Å. The descriptor values for all the 
molecules were calculated using "compute properties"  module of program. 

 
Table 2: The various descriptors calculated using chem.-office software 

 
Steric descriptors Thermodynamic 

descriptors 
Electronic descriptors 

Connolly accessible area (SAS) Critical temperature (Tc) Dipole (DPL) 
Connolly molecular area (MS) Ideal gas thermal capacity 

(Cp) 
Electronic energy (ElcE) 

Connolly solvent excluded volume 
(CSEV) 

Critical pressure (Cp) Highest occupied molecular orbital energy 
(HOMO) 

Principal moment of inertia-X-
component (Pmix) 

Henry’s law constant (H) Lowest unoccupied molecular orbital 
energy (LUMO) 

Principal moment of inertia-Y-
component (Pmiy) 

Bend energy (Eb) Repulsion energy (NRE) 

Principal moment of inertia-Z-
component (Pmiz) 

Heat of formation (Hf) VDW-1,4-Energy (E14) 

Molar refractivity (MR) Total energy (Et) Non-1,4-VDW Energy (Ev) 
Ovality (Oval) Partition coefficient (PC) Dipole length (DPLL) 
Balaban index (Blndx) Critical volume (Vc) Total energy (TotE) 
Cluster count (ClsC) Dipole-dipole energy (Ed)  
Diameter (Diam) Log P  
Molecular topological index (Tlndx) Stretch energy (Es)  
Sum of valence degrees (SVDe) Torsion energy   
Total valence connectivity (TVCon)   

 
Stepwise multiple linear regression analysis method was used to perform QSAR analysis 
employing in-house VALSTAT programme [16]. The ± data within the parentheses are the error 
of regression coefficients associated with corresponding regression coefficients in regression 
equation. The best model was selected on the basis of various statistical parameters such as 
correlation coefficient (r), standard error of estimation (std), sequential Fischer test (F). Quality 
of the each model was estimated from the cross-validated squared correlation coefficient (q2). 
calculated root mean square error (SDEP), chance statistics evaluated as the ratio of the equivalent 
regression equations to the total number of randomized sets; a chance value of 0.001 corresponds 
to 0.1% chance of fortuitous correlation and boot-strapping square correlation coefficient (r2

bs), 
which confirm the robustness and applicability of QSAR equation. 
 

RESULTS AND DISCUSSION 
 

When data set was subjected to sequential multiple linear regression analysis, in order to develop 
QSAR between antimicrobial activity as dependent variables and substituent constants as 
independent variables, several equations were obtained. The statistically significant equations 
were considered as best model.  
 
Model: 1 
pMIC = G [0.0014( ± 0.00045)] +ElcE [4.593e-005( ± 1.854e-005)] -Homo [0.266( ± 0.102)] + 
[5.061( ± 0.895)]    
n=21, r=0.931, r2=0.868, std=0.087, F=37.268, r2

bs=0.868 q2=0.807, SPRESS= 0.105, SDEP= 0.094 
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The model 1 shows that thermodynamic parameter; Standard Gibbs free energy (G) contribute 
positively and electronic parameters; electronic energy (ElcE) and HOMO energy contribute 
positive and negative respectively towards the activity. The model has correlation coefficient (r) 
of 0.931. The model have significance level more than 99% as the value F=37.268 against 
tabulated value F=26.1, with a low standard deviation of estimation 0.087, demonstrate accuracy 
of the model. The robustness of model was shown by magnitude of the bootstrapping r2, which 
was near to conventional r2. The internal predictivity of model (q2=0.807) was also good. The 
model once again favored by the least SPRESS and SDEP values. The observed, calculated and 
predicted activities (pMIC) for training set of model 1 is presented in Table 3. 
 

TABLE: 3 Training set activity (model: 1) 
 

Compound No. Observed value Calculated value Predicted value 
3 6.729 6.650 6.589 
6 7.125 7.140 7.147 
15 6.960 6.847 6.825 
2 6.713 6.716 6.717 
1 6.773 6.782 6.791 
25 6.981 6.964 6.963 
31 6.959 6.887 6.873 
11 6.659 6.804 6.842 
26 6.959 6.912 6.903 
20 7.362 7.276 7.261 
5 6.713 6.745 6.759 
32 7.046 7.083 7.086 
18 7.223 7.306 7.325 
14 7.225 7.208 7.202 
30 6.981 6.935 6.933 
19 7.289 7.224 7.215 
27 7.007 7.006 7.006 
29 6.989 7.170 7.188 
28 7.046 7.112 7.117 
16 6.685 6.771 6.787 
23 7.363 7.250 7.233 

 
The figure1 shows plot of observed versus calculated pMIC values for training set molecules 
and figure 2 is plot of observed versus predicted pMIC values for same set (model 1) 

 
Fig. 1: Discrete Plot of training set between observed vs. calculated by leave-one-out cross-validation pMIC 

values.  (model: 1) 
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Obs. pMIC: Observed pMIC, Cal. (LOO): calculated by leave-one-out cross-validation pMIC, 
y=0.868x+0.9226, r2=0.868 
 

 
Fig. 2: Discrete Plot of training set between observed vs. predicted by leave-one-out cross-validation pMIC 

values.  (model: 1) 
 
Obs. pMIC: Observed pMIC, Pred. (LOO): calculated by leave-one-out cross-validation pMIC,  
y = 0.8516x + 1.0363, r² = 0.8101 
 
The predicted activities for test set molecules are presented in Table 4. 
 

 
 
Fig. 3: Discrete Plot of test set between observed vs. predicted by leave-one-out cross-validation pMIC values.  

(model: 1) 
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TABLE: 4 Test set activity (model: 1) 
 

Compound No. Observed activity Predicted value 
12 7.063 7.142 
13 6.678 7.059 
24 6.989 7.198 
22 7.290 7.195 
21 7.609 7.090 
7 7.338 6.808 
10 7.028 6.892 
17 6.685 6.790 
4 6.730 6.650 

 
The applicability of model 1 in predicting activities of external molecules is shown by a plot of 
observed versus predicted pMIC values for test set in Figure 3. 
Obs. pMIC: Observed pMIC, Pred. (LOO): calculated by leave-one-out cross-validation pMIC, 
y = 0.2409x + 5.283, r² = 0.1506  
 
Model: 2 
pMIC =G [0.00152( ± 0.000457)] -Homo [0.262( ± 0.103)] -NRE [5.160e-005( ± 2.133e-005)]  
+ [5.028( ± 0.907)] 
n=21, r=0.929, r2=0.864, std=0.088, F=36.04, r2

bs=0.865, q2=0.804, SPRESS= 0.106, SDEP= 0.094 
 

TABLE: 5 Training set activity (model: 2) 
 

Compound No. Observed value Calculated value Predicted value 
3 6.730 6.654 6.589 
6 7.125 7.147 7.147 
15 6.960 6.850 6.825 
2 6.713 6.716 6.717 
1 6.773 6.782 6.791 
25 6.981 6.964 6.963 
31 6.959 6.887 6.873 
11 6.659 6.805 6.843 
26 6.959 6.912 6.903 
20 7.363 7.276 7.261 
5 6.713 6.745 6.759 
32 7.046 7.083 7.086 
18 7.224 7.306 7.325 
14 7.226 7.209 7.202 
30 6.981 6.935 6.933 
19 7.290 7.224 7.216 
27 7.007 7.006 7.006 
29 6.988 7.170 7.188 
28 7.046 7.111 7.116 
16 6.685 6.771 6.787 
23 7.363 7.250 7.233 

 
The model 2 shows that thermodynamic parameter; Standard Gibbs free energy (G) contribute 
positively and electronic parameters; HOMO energy and repulsion energy (NRE) show negative 
contribution towards the activity. The model has correlation coefficient (r) of 0.929. The model 
have significance level more than 99% as the value F=36.04 against tabulated value F=26.1, with 
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a low standard deviation of estimation 0.088, demonstrate accuracy of the model. The robustness 
of model was shown by magnitude of the bootstrapping r2, which was near to conventional r2. 
The internal predictivity of model (q2=0.804) was also good. The model once again favored by 
the least SPRESS and SDEP values. The observed, calculated and predicted activities (pMIC) for 
training set of model 2 is presented in Table 5. 
 
The figure 4 shows plot of observed versus calculated pMIC values for training set molecules 
and figure 5 is plot of observed versus predicted pMIC values for same set (model 2) 
 

 
Fig. 4: Discrete Plot of training set between observed vs. calculated by leave-one-out cross-validation pMIC 

values.  (model: 2) 
Obs. pMIC: Observed pMIC, Cal. (LOO): calculated by leave-one-out cross-validation pMIC, y 
= 0.8679x + 0.9242, r² = 0.8692 
 

 
Fig. 5: Discrete Plot of training set between observed vs. predicted by leave-one-out cross-validation pMIC 

values.  Eqn. 3. 
Obs. pMIC: Observed pMIC, Cal. (LOO): calculated by leave-one-out cross-validation pMIC,  
y = 0.8516x + 1.0363, r² = 0.8101 
 
The predicted activities for test set molecules are presented in Table 6. 
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TABLE: 6 Test set activity (model: 2) 
 

Compound No. Observed activity Predicted value 
12 7.063 7.153 
13 6.678 7.060 
24 6.989 7.197 
22 7.290 7.195 
21 7.609 7.091 
7 7.338 6.809 
10 7.028 6.891 
17 6.685 6.792 
4 6.730 6.654 

 
The applicability of model 2 in predicting activities of external molecules is shown by a plot of 
observed versus predicted pMIC values for test set in Figure 6. 
 

 
 
Fig. 6: Discrete Plot of test set between observed vs. predicted by leave-one-out cross-validation 
pMIC values.  (model: 2) 
Obs. pMIC: Observed pMIC, Cal. (LOO): calculated by leave-one-out cross-validation pMIC,  
y = 0.2393x + 5.2969, r² = 0.1483 
 

TABLE 7: Statistics of Significant Equations 
 

Model No. n r2 F r2
bs Chance SDEP SPRESS q2 

1 21 0.868 37.268 0.868 <0.001 0.094 0.105 0.807 
2 21 0.864 36.04 0.865 <0.001 0.094 0.106 0.804 

 
CONCLUSION 

 
Ovality is the ratio of the molecular surface area to the minimum surface area. The minimum 
surface area is the surface area of a sphere having a volume equal to the solvent excluded volume 
of the molecule. The positive contribution of the ovality indicates the activity will be increase 
with bulky substituent. 
 
HOMO is the highest occupied molecular orbital called frontier orbital and determines the way it 
interacts with other species. HOMO is the orbital that could act as an e- donor. Since it is 
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outermost (highest energy). The negative contribution of HOMO energy suggested that 
substitution of group at R1 position on benzoxazole ring with electron withdrawing group 
favourable for the antibacterial activity in the concerned microbes  
 
Electronic energy and repulsion energy are electronic descriptors. Electronic energy is defined as 
the total electronic energy at 298K, while the repulsion energy (Ev) is defined as the total core-
core internuclear repulsion between atoms.  
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