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The ability to determine which environmental chemicals pose the greatest potential

threats to human health remains one of the major concerns in regulatory toxicology.

Computational methods that can accurately predict a chemical’s toxic potential in silico

are increasingly sought-after to replace in vitro high-throughput screening (HTS) as

well as controversial and costly in vivo animal studies. To this end, we have built

Quantitative Structure-Activity Relationship (QSAR) models of 12 stress response and

nuclear receptor signaling pathways toxicity assays as part of the 2014 Tox21 Challenge.

Our models were built using the Random Forest, Deep Neural Networks and various

combinations of descriptors and balancing protocols. All of our models were statistically

significant for each of the 12 assays with the balanced accuracy in the range between

0.58 and 0.82. Our results also show that models built with Deep Neural Networks had

higher accuracy than those developed with simple machine learning algorithms and that

dataset balancing led to a significant accuracy decrease.

Keywords: Tox21, machine-learning, stress response signaling pathways, nuclear receptor signaling pathways,

endocrine disrupting chemicals, QSAR, deep learning

INTRODUCTION

The ability to determine which environmental chemicals pose the greatest potential threats to
human health remains one of the major concerns in regulatory toxicology. In addition, the
inability to recognize potentially toxic substances during the initial steps of drug development
contributes to the failure of promising pharmaceutical leads in more than 30% of human
clinical trials (Kola and Landis, 2004). Historically, the estimated human health impact of these
chemicals has been assessed through in vivo animal studies. Animal studies, however, are costly,
laborious, impractical for evaluating large numbers of chemicals, and are being progressively
eliminated due to their controversial nature (Anastas et al., 2010). However, over the past several
years, the focus has switched to high-throughput in vitro screening (HTS) in order to identify
chemical hazards and prioritize chemicals for additional in vivo testing (O’Brien et al., 2006).

Abbreviations: AR, androgen receptor; AR-LBD, androgen receptor—ligand binding domain; AhR, aryl hydrocarbon

receptor; ER, estrogen receptor alpha—full; ER-LBD, estrogen receptor alpha—ligand binding domain; PPAR-gamma,

peroxisome proliferator-activated receptor gamma; ARE, nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive

element; HSE, heat shock factor response element; MMP, mitochondrial membrane potential; p53, tumor suppressor p53;

QSAR, Quantitative Structure-Activity Relationship; HTS, High-Throughput Screening; AUC, Area under the curve; BA,

Balanced accuracy; DNN, Deep Neural Network.
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The ToxCast project and the Tox21 consortium have used
high-throughput screening to characterize the in vitro biological
activity of chemicals across multiple cellular pathways and
biochemical targets (Dix et al., 2007). HTS campaigns, however,
can also be costly and time-consuming because every new series
of chemicals must be screened against multiple toxicity endpoints
and at various concentrations. Therefore, in silico methods
that can accurately predict toxicity toward the prioritization of
chemicals for experimental testing are in-demand. To this end,
the 2014 Tox21 Challenge sought to “crowdsource” predictive
models from various researchers across the globe to assess
how well their models can predict the toxic potential of a
compound in several biological pathways screened against the
Tox21 10,000 compound library (https://tripod.nih.gov/tox21/
challenge/about.jsp).

Quantitative Structure-Activity Relationship (QSAR) models
provide such a computational method toward the in silico
prediction of chemical toxicity. QSAR models utilize complex
machine learning algorithms to establish a relationship between
chemical structure and the modeled endpoint (toxicity). Robust
and rigorously-validated QSAR models are then used to provide
in silico predictions of the endpoint-of-interest for yet-untested
chemicals (Tropsha, 2010). Thus, the Tox21 program aimed
to identify new methods for assessing chemical toxicity in the
form of QSAR models in order to improve the identification of
chemicals that may affect the functions of seven nuclear receptors
(AR, AR-LBD, ER, ER-LBD, AhR, Aromatase, PPAR-gamma)
and five stress response pathways (ARE, ATAD5, HSE, MMP,
p53) in the human body.

Several of these pathways of interest regulate normal
endocrine function. Endocrine disrupting chemicals (EDCs)
interfere with the endocrine system through interactions
with nuclear receptors (Diamanti-Kandarakis et al., 2009).
EDCs engender myriad adverse developmental, reproductive,
neurological, and immunological effects in both humans
and wildlife. Unfortunately, both humans and wildlife are
ubiquitously exposed to EDCs, as EDCs have widespread
industrial applications, resulting in endocrine toxicity (Casals-
Casas and Desvergne, 2011). For instance, bisphenol-A and its
analogs—EDCs which are used heavily in the manufacturing of
polycarbonate plastics and epoxy resins (Bae et al., 2002)—have
been shown to bind to the estrogen receptor (ER), androgen
receptor (AR), and peroxisome proliferator-activated receptor
(PPAR) gamma (Han et al., 2003). Moreover, there is ample
evidence that EDCs also interact with stress response pathways,
such as mitochondrial membrane potential (MMP) and tumor
suppressor p53 (Min et al., 2003; Chandra, 2013). For these
reasons, the identification of endocrine disrupting chemicals
(EDCs) is of particular interest to the Tox21 program and
environmental chemical hazard screening in general.

The overall goal of the Tox21 Challenge was to predict
compound activity (toxic or non-toxic) in pathway assays
provided by the Challenge organizers using only chemical
structure data. The data provided was generated from
seven nuclear receptor and five stress response pathway
assays run against the Tox21 compound library. We
performed various permutations of curation and balancing

protocols to generate Random Forest (RF) and deep neural
net (DNN) models employing either Dragon or SiRMS
descriptors.

METHODS

Datasets
All datasets (training and test sets) of compound toxicity in
12 different pathway assays were downloaded from the Tox21
Challenge website (https://tripod.nih.gov/tox21/challenge/index.
jsp). The training set included 11,764 compounds with activities
0 (non-toxic) and 1 (toxic) in each of the 12 assays. Test set
1 comprised 296 compounds with various activities in each of
the 12 assays. This test set, initially used to evaluate model
performance, was subsequently merged into the training set. Test
set 2 included 647 compounds with various activities in each of
the 12 assays. This set was used to evaluate model performance
and to rank model submissions of various participants. For all
datasets in each assay, a compound was active (1), inactive (0), or
untested.

Dataset Curation
Each dataset was curated according to our well-established
protocol (Fourches et al., 2010). Structural standardization, the
cleaning of salts, and the removal of mixtures, inorganics, and
organometallics was performed using Instant JChem software
(version 6.2, ChemAxon).

In the case of replicate compounds, InChI Keys were
generated using Instant JChem software. For replicates with the
same activities in a given assay, a single representative compound
was selected for inclusion into the training set. For replicates
with the different activities in a given assay, all compounds were
excluded.

After curation, the sizes of the training set, test set 1, and test
set 2 were reduced to 9323 compounds, 291 compounds, and 641
compounds, respectively.

Dataset Balancing
For each pathway assay, only compounds that were explicitly
tested (active or inactive) were used. Inactive (non-toxic)
compounds were the predominant majority (ratio 10:1 or higher)
as compared to active (toxic) compounds in the training sets for
each of the 12 assays. Inactive compounds were down-sampled
such as to make the remaining number of inactives similar to the
respective number of active compounds in each of the individual
assays either (a) randomly or (b) according to highest Tanimoto
similarity to compounds in test set 2. In a separate study (c), the
training set was left unbalanced (see Supplemental for individual
assay counts).

Molecular Descriptors
Dragon Descriptors
An ensemble of 2489 molecular descriptors was computed with
the Dragon software (version 5.4) for all compounds (with
explicit hydrogen atoms) in every dataset.
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SiRMs
2D Simplex Representation of Molecular Structure (SiRMS)
descriptors (Muratov et al., 2010) were generated by the HiT
QSAR software (Kuz’min et al., 2008). At the 2D level, the
connectivity of atoms in a simplex, atom type, and bond nature
(single, double, triple, or aromatic) have been considered. SiRMS
descriptors account not only for the atom type, but also for
other atomic characteristics that may impact biological activity of
molecules, e.g., partial charge, lipophilicity, refraction, and atom
ability for being a donor/acceptor in hydrogen-bond formation
(H-bond). Detailed description of HiT QSAR and SiRMS can be
found elsewhere (Kuz’min et al., 2008; Muratov et al., 2010).

Model Building and Evaluation
Random Forest (RF)
QSAR models were built using an in-house implementation on
Chembench (http://chembench.mml.unc.edu) of the original RF
algorithm (Breiman, 2001).

External 5-fold Cross Validation
All RF models were evaluated using external 5-fold cross
validation (Tropsha et al., 2003). Every training set for each of the
12 assays was randomly partitioned into five equal parts with the
same active (toxic)/inactive (non-toxic) ratio before modeling. In
turn, each of the five parts was “left out” to form an external set
used to validate the model developed on the remaining four parts
that collectively amounted to the modeling set.

Score Threshold
The ensemble of selected RF models outputs a continuous
consensus score (RF score) ranging from 0 (non-toxic) to 1
(chemical predicted to be toxic by all models). When there is a
disagreement between those individual RFmodels, the consensus
RF score can thus take any value between 0 and 1. When
computed for a set of chemicals, RF scores can be used to
rank those chemicals based on their increasing RF-evaluated
likelihood of being toxic. For all assays, a RF score threshold was
arbitrarily set to 0.5, with scores ≥ 0.5 being active (toxic) and
scores <0.5 being inactive (non-toxic).

Y-Randomization
Models were further validated through Y-randomization,
wherein activities (i.e., the response variable Y) observed
for the original training set are randomly assigned to the
training set compounds multiple times and the models are
built for all datasets generated by these multiple permutations
of the response variable. This procedure ensures that the
models built for the original datasets do not reflect a chance
correlation between multiple independent variables (i.e.,
chemical descriptors) and the dependent variable.

Deep Learning Models
We trained deep neural net (DNN) (Schmidhuber, 2015) models
with the rectified linear units (ReLU) activation function (Nair
andHinton, 2010) instead of typical sigmoidal units. The rectified
linear unit computes the function f(x) = max(0,x). In other
words, the activation is simply thresholded at zero when x < 0
and then linear with a of slope 1 when x > 0.

Neural networks can have many hyperparameters. Therefore,
in order to choose the best network architecture, we performed
a grid search over the parameters based on the 10% randomly
selected validation set from the training data. The parameter
space include number of hidden layers {2, 3}, number of neurons
{100, 200, 400, 800, 1600}, amount of dropout {0, 0.25, 0.5}, and
L2 regularization.

All networks were trained using mini-batched stochastic
gradient descent (SGD) and AdaGrad (Duchi et al., 2011).
AdaGrad is an Adaptive Gradient Method that utilizes different
adaptive learning rates for every feature. It was shown
to significantly accelerate convergence and slightly improve
performance of DNNs (Dean et al., 2012). The output layer is a
standard softmax classifier and cross entropy objective function.
For every endpoint, DNN models were trained independently.

In addition, we also investigated the performance of a
multitask network (one model for all 12 tasks trained jointly)
using the identical training approach. Learning several tasks
at the same time is performed with the aim of mutual
benefits between different tasks. The similarity (and dissimilarity)
between the tasks is exploited to enrich a model (Caruana, 1997).

All models were trained using in-house software based
on Theano framework (Bastien et al., 2012). We also used
normalized DRAGONH descriptors as our input vectors.

Data Visualization
We use a multidimensional scaling (MDS) approach (Borg
and Groenen, 1997), implemented in Python, to seek a
low-dimensional representation of the data that conserves
the distances in the original high-dimensional space. ECFP6
fingerprints are used to calculate the similarity matrix between
the chemicals. MDS applied on this similarity matrix attempts
to model the similarity or dissimilarity of data as distances
in geometric space. In this way, higher similarity between the
chemicals results in shorter distances between the chemicals in
the projection.

RESULTS

Overview
We have developed several Random Forest models using
different descriptors and balancing approaches as described in
Methods; these models are summarized in Table 1. Models 1, 2,
and 3 were submitted for final evaluation and ranking; whereas,
Model 4 was built after the Tox21 Challenge had closed (Table 1).

Evaluation and Ranking
The performance of all submitted models was evaluated by
AUC-ROC resulted from predictions made for test set 2.
Results for all of our models in comparison with the winning
model for each assay are summarized in Figure 1. None of
our submitted models (Model 1, Model 2, and Model 3) were
ranked in the top 10. Additionally, differences in balancing
protocol and descriptor type in our submitted models had
little effect on the overall performance. Model 4 was built
using unbalanced data. It was not submitted for evaluation
by the organizers, and therefore was ineligible for ranking.
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TABLE 1 | Description of models implemented using Random Forest.

Model name Descriptor Balancing protocol

Model 1 DRAGONH 1:1 Randomly

Model 2 DRAGONH 1:1 to test set 2

Model 3 SiRMS 1:1 Randomly

Model 4 DRAGONH Unbalanced

Nevertheless, Model 4 showed a greater AUC value for 10
of the 12 assays over our three submitted models. Model 4
also showed comparable predictive performance to the winning
models: seven of the 12 AUCs (AhR, Aromatase, ATAD5, ER, ER-
LBD, MMP, p53) differ from the winner by 0.05. Interestingly,
when comparing the external balanced accuracy, defined as
(Sensitivity + Specificity)/2, of our models to those of winning
models (based on AUC), a different trend emerges (Figure 2).
For nine out of the 12 assays, the external balanced accuracy of
at least one of our models is higher than that of the winning
model. Indeed, for all submitted models in the Challenge,
our Model 2 had the highest external balanced accuracy for
AR (0.74); Model 4 had an even higher external balanced
accuracy (0.82).

Figure 3 visualizes the distribution of active and inactive
compounds from the training dataset and test set 2 based on
fingerprint similarity (see SectionModel Building and Evaluation
for details). Figures 3A,B show the distribution of compounds
in the training sets of Models 2 and 4, respectively, as well as
in test set 2 for one of our most accurately predicted endpoints,
AhR. Figures 3C,D show the same type of distribution for one
of the least accurately predicted endpoints, HSE, that has largest
increase in AUC as a result of using unbalanced dataset for
modeling (Model 4). This analysis reveals that balanced training
dataset used in Model 2 for AhR (Figure 3A) has tight clustering
of active compounds in addition to broad coverage for the
compounds to be predicted in test set 2. Thus, an increase in the
number of compounds in the training dataset when unbalanced
dataset is used does not result in a significant gain in AUC.
However, as opposed to AhR, no distinct clusters are observed
in the balanced dataset for HSE. Active and inactive compounds
are widely dispersed, which calls into question the assay quality
of this endpoint. This dispersion results in the misclassification
of inactive compounds in test set 2. Figure 3D, however, shows
that using unbalanced data increases the chemical diversity,
which provides better coverage of test set 2, and enhances
representation of inactives found in the test set 2. This expansion
reflected in an increase of AUC (see Figure 1).

After the results of the challenge were announced, we also
decided to evaluate the limit of model performance even
further. We used Model 4 as our base line (see Table 2). We
combined all three datasets and retrained Model 4 with the
same RF parameters using 5-fold external cross validation (Model
4/5CV column inTable 2). Unexpectedly, we obtained significant
performance boost. AUCs for three endpoints, AR, AR-LBD, and
ER-LBD are significantly higher as compared to AUC values
achieved by Model 4. Accuracy for the other nine assays were
approximately on par with the balanced models. It is not clear
why such discrepancy is observed, most likely it is due to

TABLE 2 | Post-challenge assessment of the accuracy (AUC) of different

models and their comparison with the wining solution.

Subchallenge Model 4 Model DNN/1 DNN/12 Winner

4/CV5 task tasks

AhR 0.91 0.91 0.90 0.87 0.93

AR 0.73 0.82 0.83 0.89 0.83

AR-LBD 0.72 0.91 0.89 0.88 0.88

ARE 0.78 0.83 0.81 0.76 0.84

aromatase 0.80 0.82 0.86 0.76 0.84

ATAD5 0.81 0.83 0.85 0.72 0.83

ER 0.79 0.79 0.81 0.74 0.81

ER-LBD 0.78 0.86 0.83 0.90 0.83

HSE 0.79 0.80 0.79 0.77 0.86

MMP 0.93 0.92 0.95 0.85 0.95

p53 0.85 0.82 0.84 0.77 0.88

PPAR-gamma 0.79 0.81 0.70 0.80 0.86

Average AUC 0.81 0.84 0.84 0.81 0.86

The color gradient is a heat map for each model. The highest AUC for each subchallenge

is darkest green, etc.

the small size of the test set and very small number of active
compounds in each of them.

Given that the overall challenge winner used DNN (Mayr
et al., 2015), we decided to investigate the utility of DNN after
the completion of the challenge. Due to very limited technical
information released by the winning team, however, we were not
able to independently verify their models. Instead, we trained
DNN according to our own protocol (See SectionModel Building
and Evaluation). Table 2 also reports performance of DNN
models in single task and multitask regimes. On average, both
approaches were not able tomatch the winningmodel, AUCs 0.84
and 0.81 vs. 0.86. However, the difference between DNN/1task
(our best overall model) and winning team is small with a notable
exception of PPAR-gamma, 1AUC= 0.16. The single task DNN
model was also significantly better than Model 4 for AR and
AR-LBD. Very recently, models of drug-induced liver injury
(DILI) with DNN were also found to provide better performance
than previously described “shallow” prediction models (Xu et al.,
2015). Therefore, DNN architectures seems to be beneficial
for toxicity prediction. In strike contrast, performance of the
multitask model was poor for five assays (ARE, Aromatase,
ATAD5, ER, and p53). Due to the limited dataset size, we were
not able to reliably train all DNN models. In order to take
full advantage of deep learning methods at least an order of
magnitude larger number of training examples is necessary.

DISCUSSION

The results of our submitted models (Model 1, Model 2,
and Model 3) indicate that for these data no combination
of descriptors or balancing protocol outperforms any other
combination. Intriguingly, our unbalanced (and un-submitted)
Model 4 outperformed our submitted models and had AUC
values comparable to the winning models. This observation
demonstrates that for these assays balancing actually decreases
model performance. This may be because balancing restricts the
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FIGURE 1 | Comparison of AUC values for the Tox21 assays. AUC values of our models (blue, orange, gray, and yellow) as well as the AUC values of the winning

model (purple).

FIGURE 2 | Comparison of external balanced accuracy (BA) values for the Tox21 assays. BA values of our models (blue, orange, gray, and yellow) as well as

the BA values of the winning model (purple).

chemical space covered in toto by inactives. Since the number of
actives in test set 2 is much smaller than the number of inactives
(between 1 and 14% of test set 2 compounds are actives for a
given assay), reducing the chemical space of inactives through
balancing may have resulted in the misclassification of inactives
in test set 2. In general, when training set compounds are highly
imbalanced toward the inactive class, QSAR classification will
favor the majority (inactive) class, resulting in low sensitivity for
the minority (active) class (Chen et al., 2005). For this reason,
datasets are usually balanced as to maximize the sensitivity and
specificity of the training set. In the current challenge, however,
models were evaluated on an external dataset that was highly
populated with the inactive class. Therefore, for future challenges
and/or modeling efforts regarding these assay endpoints, using
unbalanced data may be preferable.

Conflicting performance trends obtained in Table 2 also
emphasizes the following community needs:

1. Judging model performance using a very small test set can be
suboptimal.

2. Deep Learning can provide some accuracy improvement
compared to regular machine learning methods. However,
model reproducibility is very hard to achieve, especially for
this rapidly emerging field.

3. Further methodological developments are required to
investigate applicability and methods of training multitask-
DNN method. There is a significant room for model
improvement and exploiting information about assay
relations as well as target features and other biological

information.

CONCLUSION

In this work, we investigated the use of different QSAR
approaches for toxicity assays prediction in the 2014 Tox21
challenge. We carefully curated all datasets according the well-
established protocol. We used Random Forest and Deep Neural
Nets to train models. In addition we also explored several
balancing strategies. The model performance was evaluated by
the area under the receiver operating characteristic curve (AUC-
ROC) and by the balanced accuracy (BA). The values for AUC-
ROC were in the range of 0.55–0.87 and those for BA were
in the range of 0.58–0.82; the highest predictive power was
achieved for the AR pathway assay. No significant difference in
respective model performance was found when using different
curation protocols or different descriptors. Marginal increase
in AUC-ROC as well as in BA was observed for some of
the pathways when the dataset was balanced based on the
similarity to the external test set (test set 2). Moreover, a
significant increase in the balanced accuracy of prediction
for external datasets was found once the unbalanced datasets
were used to build the model. Our results show that overall
neural networks achieved improvement over simple machine
learning algorithms and that balancing lead to a significant
accuracy decrease.

The Tox21 Challenge was evaluated using the AUC metric.
Interestingly we noticed, when evaluated using BA, at least one
of our models outperformed the winning model in 10/12 assays.
Furthermore, our Model 2 had the highest balanced accuracy for

AR (0.74) against all submissions. Our models, therefore, can
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FIGURE 3 | Distribution of active and inactive compounds from the training dataset and test set 2 based on fingerprint similarity. (A) Balacned training

set used for endpoint AhR in Model 2 and test set 2. (B) Unbalanced training set used for AhR in Model 4 and test set 2. (C) Unbalanced training set used for

endpoint HSE in Model 2 and test set 2. (D) Unbalanced training set used for HSE in Model 4 and test set 2. Each point represent either compounds from the test set

2 (cyan) and training set inactives (black) and actives (orange).

be used for future screening of compounds for toxicity in these
pathways. Our models have the additional advantage of being
freely and publicly available through our Chembench platform
(https://chembench.mml.unc.edu/; Walker et al., 2010).

The goal of the 2014 Tox21 Challenge was to predict toxicity
in the various biological pathways using chemical structure data
only. The availability of these chemical structures and their
associated biological activity in the pathways of interest affords
the opportunity to build pathway-based hybrid QSAR models.
Hybrid QSAR models utilize in vitro bioactivity as biological
descriptors in conjunction with chemical descriptors in order to
improve the predictivity of QSARmodels (Liu et al., 2015). These
hybrid QSAR models could be employed toward the prediction
of in vivo toxic effects, which is a considerable challenge for
predictive toxicology.

In sum, the 2014 Tox21 Challenge successfully enabled
academic groups, industrial teams, and fans of machine-learning
from around the world to compare and contrast various in
silico methodologies toward the prediction of toxicity in several
different assays. These modeling efforts and their associated
findings will be of great use to the scientific community and will
enhance the quality of toxicity prediction going forward.
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