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Abstract: In our continuing efforts to find out acceptable Absorption, Distribution, Metabolization, Elimination and 

Toxicity (ADMET) properties of organic compounds, we establish linear QSAR models for the carcinogenic potential 

prediction of 1464 compounds taken from the “Galvez data set”, that include many marketed drugs. More than a thousand 

of geometry-independent molecular descriptors are simultaneously analyzed, obtained with the softwares E-Dragon and 

Recon. The variable subset selection method employed is the Replacement Method, and also the improved version 

Enhanced Replacement Method. The established models are properly validated through an external test set of compounds, 

and by means of the Leave-Group-Out Cross Validation method. In addition, we apply the Y-Randomization strategy and 

analyze the Applicability Domain of the developed model. Finally, we compare the results obtained in present study with 

the previous ones from the literature. The novelty of present work relies on the development of an alternative predictive 

structure-carcinogenicity relationship in a large heterogeneous set of organic compounds, by only using a reduced number 

of geometry independent molecular descriptors. 
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1. INTRODUCTION 

 A growing area of modern pharmaceutical research is the 
application of the Quantitative Structure-Activity 
Relationships (QSAR) Theory [1-5] to predict ADMET 
properties of chemical compounds, such as Absorption, 
Distribution, Metabolization, Elimination and Toxicity. 
Rational QSAR researches on ADMET properties enable to 
reduce the failure rate of drug development programs due to 
ADMET issues at late stages of the research (i.e. clinical 
trials) [6-8]. Therefore, allow moving towards finding a 
balance between potency, selectivity, bioavailability and 
safety from the very beginning of the project. This modern 
paradigm may be synthesized under the expression “to fail 
early is to fail cheap”, and is implemented by including at 
early stages parallel ADMET filters to discard structures 
with unfavorable pharmacokinetic and toxicity profiles [9]. 

 The underlying hypothesis of the different formulations 
of the QSAR Theory is that the chemical structure is the only 
influential factor on the exhibited activity of the collection of 
interacting molecules. This hypothesis has been extensively 
applied during past decades to the study of many different 
physicochemical and biological properties of interest [1-5]. 
In the realms of QSAR, the molecular structure is translated 
into the so-called molecular descriptors, which are used to  
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describe different structural characteristics/attributes of the 
molecules in order to model the property being studied [10, 
11]. A descriptor is defined as an empirical or a theoretically 
defined numerical quantity, and the most elementary type of 
descriptor is the count of atom types and chemical bonds. 

 Every QSAR study is established for a set of chemical 
structures known as the molecular training set, and does not 
have to be limited to work correlatively on the training set, 
but also has to behave predictively on new structures (never 
seen by the model) which take part of the test set. This 
validation process [12-15] is the most import step during the 
model design, and it is considered the basis of the QSAR 
hypothesis. When the validation step fails, then there is no 
way to use QSAR to create new chemical information for the 
biological activity based on the known one from the training 
set. 

 The carcinogenic activity exhibited by chemical 
substances is a toxicological endpoint of high health 
concern. There are available many QSAR studies developed 
during past years by different research groups, which involve 
a limited number of class-specific compounds, most of them 
nitro-containing derivatives [16-32]. On the other hand, 
Galvez has gathered the carcinogenic activity in the 
Discriminant Function (DF) scale (DFcarc) for a wide set of 
1815 organic compounds extracted from the Merck index, 
based on the annual report of carcinogenesis [33]. From this 
data set, different molecular subsets have been taken to 
establish QSAR models [34, 35]. 

 A recent study of Kar and Roy [36] employs for the first 
time a greater number of carcinogenic compounds, having 
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1464 molecules from the Galvez data set involving many 
marketed drugs. These authors use 17 molecular descriptors 
having physical meaning, including topological indices, 
structural fragments, and hydrophobicity descriptors, and 
modeled the carcinogenicity by means of a predictive Partial 
Least Squares (PLS) model having 10 latent variables (732 
molecules for the training set, 732 for the test set). They 
conclude that higher lipophilicity values and conjugated ring 
systems, thioketo and nitro groups contribute positively 
towards drug carcinogenicity. On the contrary, tertiary and 
secondary nitrogens, phenolic, enolic and carboxylic OH 
fragments and presence of three-membered rings reduce the 
carcinogenicity. Branching, size and shape are found to be 
crucial factors for drug-induced carcinogenicity. 

 In this work, we establish linear QSAR models on the 
same large set of 1464 organic compounds studied 
previously [36], with the purpose of improving the structure-
carcinogenicity relationship found. For comparison 
purposes, we use the same training and test sets, and explore 
a pool containing more than a thousand of geometry-
independent molecular descriptors. We decide to exclude the 
three dimensional aspects of the molecular structure, in order 
to avoid problems associated to numerical uncertainties. 
Such ambiguities result from an incorrect geometry 
optimization due to the existence of molecular structures in 
various conformational states. We consider that such kind of 
problem may lead to loosing of the predictive capability of 
the QSAR when applied for the prediction of the molecular 
test set. Therefore, the novelty of present work relies on the 
development of an alternative predictive structure-
carcinogenicity relationship in a large heterogeneous set of 
organic compounds, by only using a reduced number of 
geometry independent molecular descriptors. 

2. MATERIALS AND METHODS 

2.1. Experimental Data Set 

 The carcinogenic activity of the organic compounds 
collected by Galvez in the DFcarc scale [33] is a 
discriminant function obtained by Linear Discriminant 
Analysis (LDA). The DF is performed in such a manner that 
values are positive for carcinogenic and negative for non-
carcinogenic compounds. The DF values are not normalized 
and are in arbitrary units, but it is expected that when higher 
is the positive value, higher is the observed carcinogenicity, 
while the more negative value, the lower is the activity. The 
chemical domain analyzed involves hydrocarbons, aliphatic 
alcohols, phenols, ethers, and esters; anilines, amines, 
nitriles, nitroaromatics, amides, and carbamates; urea and 
thiourea derivatives, isothiocyanates, thiols, phosphate 
esters, and halogenated derivatives. The carcinogenicity 
values range in the interval [-9.91, 9.86], and the complete 
list of 1464 compounds studied here are included in Table S1 
as Supplementary Material. 

2.2. Molecular Descriptors Calculation 

 The compounds are imported from Pubchem [37] in sdf 
format, with exception to few structures not available which 
are drawn with Hyperchem for Windows [38]. 

 We compute 931 conformation-independent molecular 
descriptors using E-Dragon [39]. This well-known 
descriptor’s database includes structural descriptors of 
thirteen different types, such as Constitutional, Topological, 
Walk and Path Count, Connectivity Index, Information 
Index, Edge Adjacency Index, Topological Charge Index, 
Burden Eigenvalues, Eigenvalue-Based Index, 2D-
Autocorrelation, Functional Group Count, Atom-Centred 
Fragment, and Molecular Property [10]. 

 In addition, atomic charge density-based descriptors are 
obtained, encoding electronic and structural information 
relevant to the chemistry of intermolecular interactions, by 
means of Recon 5.5 [40]. This sort of descriptors is not 
provided by E-Dragon, while the robustness of Recon has 
previously been demonstrated elsewhere [41, 42]. Recon is 
an algorithm for the reconstruction of molecular charge 
densities and charge density-based electronic properties of 
molecules, using atomic charge density fragments 
precomputed from ab initio wavefunctions. The method is 
based on the Quantum Theory of Atoms in Molecules [43]. 
A library of atomic charge density fragments has been built 
in a form that allows for the rapid retrieval of the fragments 
and molecular assembly. In present case, the smiles chemical 
notation is employed as input for the generation of 248 
Transferable Atom Equivalent (TAE) descriptors, developed 
by Breneman et al. [44]. 

 In this way, the total number of calculated molecular 
descriptors is 1179 variables. 

2.3. Model Development 

2.3.1. Molecular Descriptors Selection 

 In recent years theoretical and experimental researchers 
have focused an increasing attention on finding the most 
efficient tools for selecting molecular descriptors in QSAR 
studies. There is available a great number of feature selection 
methods are available to search for the best descriptors from 
a pool of variables, and the Replacement Method (RM) [45, 
46], employed here, has been successfully applied elsewhere 
[47-51]. In brief, the RM is an efficient optimization tool 
which generates linear regression models on the training set 
by searching in a set having D descriptors for an optimal 
subset having d<<D ones with smallest training set standard 
deviation (S). The quality of the results achieved with this 
technique approaches that obtained by performing an exact 
(combinatorial) full search of molecular descriptors 
although, of course, requires much less computational work. 
However, in some cases, the RM can get trapped in a local 
minimum of S. Although such local minima provide 
acceptable models, an improvement of the method has been 
developed in the Enhanced Replacement Method (ERM) [52, 
53]. We use Matlab 7.0 in all our calculations [54]. 

2.3.2. Model Validation 

 The theoretical validation of the linear regression models 

is based on the popular validation criteria based on Cross 

Validation using Leave-One-Out (loo) and Leave-More-Out 

(ln%o, with n% being the percentile of molecules removed 

from the training set). The statistical parameters R
ln%o

 and  
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S
ln%o

 (correlation coefficient and standard deviation of 

Leave-More-Out) measure the stability of the QSAR upon 

inclusion/exclusion of molecules. The number of cases for 

random data removal analyzed in this study is 100000. 

According to the specialized literature, the loo explained 

variance ( R
loo

2
) should be greater than 0.5 for a validated 

model, although this is a necessary but not sufficient 

condition for its predictive power [55]. 

 A more reliable validation is applied, that consists on 
using an external test set of structures. The same training set-
test set partition from ref. [36] is used in present analysis, 
that is to say, the 1464 organic compounds are ranked 
according to their carcinogenicity values and every alternate 
compound is assigned to the test set. Each set thus includes 
732 compounds. 

 We use Y-Randomization [56] as a way of checking that 

the model does not result from happenstance. This technique 

consists on scrambling the experimental property values in 

such a way that they do not correspond to the respective 

compounds. After analyzing 10000 cases of Y-

Randomization, the smallest standard deviation value 

obtained using this procedure ( S
rand

) has to be a poorer 

value than the one found by considering the true calibration 

(S). 

2.3.3. Applicability Domain 

 The applicability domain (AD) for the QSAR model is 

also explored, as not even a predictive QSAR model can be 

expected to reliably predict the modeled property for the 

entire universe of molecules. In fact, only the predictions for 

molecules falling within this AD can be considered reliable 

and not just model extrapolations. The AD is a theoretical 

region in the chemical space, and depends upon the 

molecular descriptor values and the experimental property 

analyzed [57]. The AD can be characterized in various ways, 

and one is the leverage approach [58], which allows to verify 

whether a new compound can be considered as interpolated 

(with reduced uncertainty, reliable prediction) or 

extrapolated outside the domain (unreliable prediction). The 

leverage for compound i ( h
i
) and its critical or warning 

value ( h
*

) are defined as follows: 

h
i
= x

i
(X

T
X)

1
x
i

T
  h

*
= 3(d +1) N

train
         (1) 

where xi is the descriptor vector for the compound,  X  is the 

model matrix for the training set, and N
train

 is the size of the 

training set. When h
i
> h

*
, then a warning should be given: 

for the training set, it means that the compound is highly 

influential in determining the model, while for the test set, it 

means that the prediction is the result of substantial 

extrapolation of the model and could not be treated as 

reliable. 

2.3.4. Degree of Contribution of Selected Descriptors 

 In order to determine the relative importance of each 

descriptor in the linear regression model, we standardize the 

regression coefficients ( b j
s
) as: 

b j
s
= s jb j sY              (2) 

where b j  is the regression coefficient for the descriptor j-th 

descriptor, and s j  and s
Y

 are the standard deviations for 

such descriptor and for the experimental activity, 

respectively. The larger the absolute value of b j
s
, the greater 

the importance of the descriptor [59]. 

3. RESULTS AND DISCUSSION 

 We apply the RM and ERM variable subset selection 

methods on the training set and explore the pool containing 

D=1179 molecular descriptors. In this way, we try to identify 

the most representative structural features of the organic 

compounds that lead to their carcinogenicity behavior. Table 

1 includes the best molecular descriptors found in present 

analysis, while a brief description for the meaning of each 

descriptor is given in Table 2. It is clear from Table 1 that 

the use of six descriptors has an acceptable predictive power 

on the test set, and that the explained variance of the training 

set ( R
train

2
) does not improve so much beyond such a number 

of variables. We also follow the common practice of keeping 

the model’s size as small as possible, in order to avoid any 

possible fortuitous correlation. Thus, we select the following 

structure-carcinogenicity relationship: 

DFcarc = 0.163(±0.01)Se+ 3.079(±0.2)nR09 +

3.753(±0.3)DECC 3.409(±0.1)IC2 +

             1.198(±0.09)C 003+ 5.784(±0.4)S

108 +12.506(±0.4)

                             

 

Ntrain = 732, d = 6, Ntrain d = 122, Rtrain
2

= 0.74,

Strain = 2.04, F = 345.83, Rijmax
2

= 0.66

o(3S) = 6, Rloo
2
= 0.76, Sloo = 2.08,

S
rand

= 3.93, Rl20%o
2

= 0.69, Sl20%o = 2.23,

Ntest = 732, Rtest
2

= 0.77, Stest = 1.91,

            (3) 

 Here, F is the Fisher parameter, R
ijmax  

denotes the 

maximum correlation coefficient between descriptors, o(3S)  

indicates the number of outlier compounds having a residual 

(difference between experimental and calculated activity) 

greater than three times S. 

 The statistical quality achieved in the QSAR of Eq. 3 
compares fairly well with the one found in the study of Kar 
and Roy [36], who used 17 molecular descriptors searched 
with the Stepwise Regression technique, leading to a 10 
latent variables-PLS model. According to this model, the 
explained variance in the training set is 74.5% while for the 
test set is 73.1%; for Eq. 3 it results in 74% and 77% for the 
training and test sets, respectively. 

 The approval of the internal validation process of Eq. 3 is 
evidenced by the stability of this equation upon the 
inclusion/exclusion of compounds from the training set, 
measured via the exclusion of one molecule at a time (loo) 
and also by excluding 20% of the observations (147 
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molecules) in l20%o. Finally, as a further step to assess the 
robustness of present equation, we apply Y-randomization, 
demonstrating that the calibration does not result from 
happenstance and results in a valid structure-carcinogenicity 
relationship. 

 Fig. (1a, b) plot the predicted carcinogenicity as a 
function of the experimental values for the training and test 
sets, respectively, showing that there exists a tendency for 
the points to have a straight line trend. The dispersion plots 
of residuals (i.e. residuals as function of predicted activities) 
from Fig. (2a, b). reveal that the residuals tend to obey a  
 

random pattern around the zero line, indicating the absence 
of non-modeled factors. It is appreciated the presence of 6 
outliers molecules, which are: Clopidogrel, 
Diathymosulfone, Ethylenediamine, Mirex, Octenidine, and 
Sulbenox. After checking their structures, we assume that 
this abnormal behavior may be purely attributed to the 
structural diversity of the present set containing 1464 
structures. 

 The correlation matrix (Table 3) demonstrates that the six 

descriptors from Eq. 3 are non-collinear and that each of 

them includes non-redundant structural information content  

 

Table 1. The Best Linear QSAR Models Obtained from a Pool of 1179 Geometry Independent Descriptors. The Selected Model 

Appears in Bold 

 

d R
2

 S R
test

2  Stest Rijmax
2

 Descriptors 

1 0.38 3.16 0.35 3.21 0.00 IC2 

2 0.53 2.75 0.55 2.67 0.04 nR09 IC2 

3 0.60 2.54 0.64 2.41 0.46 nR09 ATS5e ALOGPS_logS  

4 0.65 2.37 0.70 2.22 0.46 nR09 ATS5e S-108 ALOGPS_logS 

5 0.69 2.24 0.74 2.05 0.55 nR09 IC1 ATS5v S-108 ALOGPS_logS 

6 0.74 2.04 0.77 1.91 0.66 Se nR09 DECC IC2 C-003 S-108 

7 0.76 1.99 0.78 1.87 0.66 Se nR09 DECC IC2 ATS4m C-003 S-108 

8 0.77 1.92 0.81 1.73 0.66 Se nR09 DECC IC2 ATS5e C-003 S-108 ALOGPS_logS 

9 0.79 1.85 0.82 1.70 0.97 nSK nR09 CSI IC2 GGI8 AEigm C-003 S-108 ALOGPS_logS  

 

Table 2. Brief Description of Molecular Descriptors Involved in Calculated QSAR Models 

 

Constitutionals (0D)
a
 

nR09 number of 9-membered rings 

nSK number of non-H atoms 

Se sum of atomic Sanderson electronegativities (scaled on Carbon atom) 

Properties (1D) 

ALOGPS_logS calculated aqueous solubility 

Atom-Centred Fragments (1D) 

S-108 number of R=S bonds 

C-003 number of CHR3 groups 

Information Indices (2D) 

IC1 Information Content index (neighborhood symmetry of 1-order) 

IC2 Information Content index (neighborhood symmetry of 2-order) 

2D Autocorrelations (2D) 

ATS5e Broto-Moreau autocorrelation of lag 5 (log function) weighted by Sanderson electronegativity 

ATS5v Broto-Moreau autocorrelation of lag 5 (log function) weighted by van der Waals volume 

ATS4m Broto-Moreau autocorrelation of lag 4 (log function) weighted by mass 

GGI8 topological charge index of order 8 

Topologicals (2D) 

DECC Eccentric 

CSI eccentric connectivity index 

AEigm absolute eigenvalue sum from mass weighted distance matrix 
aDescriptor’s dimensionality. 
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Fig. (1). Predicted and experimental carcinogenicity values for a. 

training set; b. test set. 

( Rijmax
2

= 0.66 ). Among such descriptors, the Constitutionals 

(0D) are: Se, sum of atomic Sanderson electronegativities 

(scaled on Carbon atom) and nR09, number of 9-membered 

rings; the Atom-Centred Fragments (1D) are C-003, number 

of CHR3 groups and S-108, number of R=S bonds; the 

Information Index is: IC2, Information Content index 

(neighborhood symmetry of 2-order); and the Topological 

(2D) is: DECC, Eccentric [10]. The ranking of contributions 

of these descriptors reveals that Se and IC2 contribute most 

to the predicted carcinogenicity values: 

Se(0.65) > IC2(0.62) > DECC(0.50) >

nR09(0.37) > C 003(0.30) > S 108(0.26)
         (4) 

 The relative magnitude of the coefficients b j
s
 (shown in 

parentheses) suggests that the numerical variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Dispersion plot of residuals for a. training set; b. test set. 

complement each other for predicting the activity. In 

addition, as the chosen set of descriptors take positive 

numerical values, it is concluded that the sign of the 

regression coefficients in Eq. 3 determine the value of the 

predicted carcinogenicity. Therefore, lower values for Se and 

IC2 and higher values for nR09, DECC, C 003 and S 108 

would lead to higher predicted DFcarc values. 

 According to the applicability domain analysis as defined 
by Eq. 1, the results obtained indicate that 698 out of 732 
compounds included in the test set belong to the AD of Eq. 
3. The following 34 molecules have leverage values 
exceeding the warning leverage: Lorajmine, Stigmasterol, 
Vinconate, Metralindole, Dihydrocodeine, Pyrazophos, 
Tolciclate, Tilorone, Phosalone, Thiamylal, 
Dihydrotachysterol, Nitroscanate, Amoscanate, Diazinon, 
Cholesterol, Ergosterol, Rosaramicin, Ticarbodine, Nitrodan, 
Etrimfos, Dicapthon, Triazophos, Sulfathiourea, Fenthion,  
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Table 3. Correlation Matrix for Eq. 3 

 

 Se nR09 DECC IC2 C-003 S-108 

Se 1.00 0.03 0.66 0.40 0.17 0.01 

nR09  1.00 0.00 0.04 0.14 0.00 

DECC   1.00 0.32 0.04 0.00 

IC2    1.00 0.05 0.00 

C-003     1.00 0.00 

S-108      1.00 

 

Methidathion, Aldrin, Endrin, Paromomycin, Oxendolone, 
Mibolerone, Iloprost, Dromostanolone, Mesterolone, and 
Cortivazol. The predicted carcinogenicity for such 
compounds may not be considered as reliable, although this 
necessarily does not mean that the residuals for these test set 
compounds should be high. The leverage value for each 
compound is provided in Table S2. 

4. CONCLUSIONS 

 The statistical results achieved for the heterogeneous 
molecular set composed of 1464 organic compounds are 
satisfactory and in line with previous reported studies from 
the literature. A main characteristic of the linear models 
established here is that they are based on geometry-
independent molecular descriptors. In addition, we do not 
discard any outlier compound from the training set, 
including all of them during the analysis. We succeeded in 
establishing a quite simple QSAR model that includes only 
six molecular descriptors, by using an elaborated variable 
subset selection technique such as the Replacement Method 
and the Enhanced Replacement Method. 

 As future tasks for our drug research and development 
program, we pretend to continue exploring different 
ADME/Tox properties of drugs, including new attempts for 
QSAR improvements in this Galvez carcinogenicity data set, 
using different classes of structural descriptors in 
combination with linear/nonlinear methodologies. 
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